空压机选型
空压机选型和配置的问题详解

空压机选型和配置的问题详解
空压机
按照空压机的重要技术指标空压机选型和配置的问题主要分三种:一、空压机控制方式的选择1.气调控制:空压机排气压力达到上限压力,空压机卸载运行,达到下限压力加载运行。
一般应用在用气量较大及频繁加卸载运行的空气系统。
2.电调控制:空压机排气压力按照空压机的重要技术指标空压机选型和配置的问题主要分三种:
一、空压机控制方式的选择
1.气调控制:空压机排气压力达到上限压力,空压机卸载运行,达到下限压力加载运行。
一般应用在用气量较大及频繁加卸载运行的空气系统。
2.电调控制:空压机排气压力达到上限压力,空压机停止运行,达到下限压力启动运行。
一般应用在用气量较小及不频繁加卸载运行的空气系统。
二、空压机的排气量
1、压缩机的排气量是指单位时间内压缩机最后一级的气体体积量换算到第一级进口状态的压力和温度的气体容积量。
2、选择压缩机的排气量过大,投资大,运行成本高。
3、选择压缩机的排气量过小,供小于求,达不到使用压力,压缩机负载重。
三、空压机的排气压力
1、工作压力因大于用气点的使用压力和系统压力损失之和。
2、更大压力是空压机排气的更大上限压力。
3、活塞式空压机利用排气压力的上限压力和下限压力的压差来控制空压机加卸载或停机。
(螺杆式空压机有智能和恒压控制。
)
4、活塞式空压机的下限压力必须大于工作压力。
5、空压机的排气压力选择必须考虑到控制中的压差。
以上就是空压机选型和配置的问题详解的全部内容,希望对广大客户有所帮助!。
空压机选型主要计算公式及定律

空压机选型主要计算公式及定律1.波义目定律:假设温度不变则某一定量气体的体积与绝对压力成反比。
V1/V2=P2/P12.查理定律:假设压力不变,则气体体积与绝对温度成正比。
V1/V2=T1/T23.博伊尔-查理定律(P1V1)/T1=(T2V2)/T2P:气体绝对压力V:气体体积T:气体绝对温度4.排气温度计算公式T2=T1×r(K-1/K)T1=进气绝对温度T2=排气绝对温度r=压缩比(P2/P)P1=进气绝对压力P2=排气绝对压力K=Cp/Cv 值空气时K 为1.4(热容比/空气之断热指数)5.吸入状态风量的计算(即Nm3/min 换算为m3/min)Nm3/min:是在0℃,1.033kg/c ㎡absg 状态下之干燥空气量V1=P0/(P1-Φ1·PD)(T1/T0)×V0(Nm3/hr dry)V0=0℃,1.033kg/c ㎡abs,标准状态之干燥机空气量(Nm3/min dry)Φa=大气相对湿度ta=大气空气温度(℃)T0=273(°K)P0=1.033(kg/c ㎡abs)T1=吸入温度=273+t(°K)V1=装机所在地吸入状态所需之风量(m3/hr)P1:吸入压力=大气压力Pa-吸入管道压降P1 △=1.033kg/c㎡abs-0.033kg/c ㎡=1.000kg/c ㎡absφ1=吸入状态空气相对湿度=φa×(P1/P0)=0.968φaPD=吸入温度的饱和蒸气压kg/c ㎡Gabs(查表)=查表为mmHg 换算为kg/c ㎡abs 1kg/c ㎡=0.7355mHg例题: V0=2000Nm3/hr ta=20 φa=80%℃则V1=1.033/(1-0.968×0.8×0.024)×﹝(273+20)/273﹞×2000=22206.理论马力计算A 单段式HP/Qm3/min=﹝(P/0.45625)×K/(K-1)﹞×﹝(P2/P1)(K-1)/K-1﹞B 双段式以上HP/Qm3/min=﹝(P/0.45625)×nK/(K-1)﹞×﹝(P2/P1)(K-1)/nK-1﹞P1=吸入绝对压力(kg/c ㎡Gabs)P2=排气绝对压力(kg/c ㎡Gabs)K =Cp/Cv 值空气时K 为1.4n =压缩段数HP=理论马力HPQ=实际排气量m3/min7.理论功率计算单段式KW=(P1V/0.612)×K/(K-1)×﹝(P2/P1)(K-1)/K-1﹞双段式以上KW=(P1V/0.612)×nK/(K-1)×﹝(P2/P1)(K-1)/nK-1﹞P1=吸入绝对压力(kg/c ㎡Gabs)P2=排气绝对压力(kg/c ㎡Gabs)K =Cp/Cv 值空气时K 为1.4n =压缩段数KW=理论功率V=实际排气量m3/min8.活塞式空压机改变风量之马达皮带轮直径及马力之修正Dm=Ds×(Qm/Qs)Ds=马达皮带轮标准尺寸(mm)Qs=标准实际排气量(m3/min)Qm=拟要求之排气量(m3/min)Dm=拟修改之马达皮带轮直径(mm)例题:本公司YM-18 型空压机之马达皮带轮之标准为440mm,实际排气量为7.56m3/min,今假设客户要求提高风量至8.7m3/min,应将马达皮带轮如何修改?解:已知Ds=400mm,Qs=7.56 m3/min,Qm=8.7 m3/min。
空压机的选型

一、空压机选型“以需定型” 结合客户的需要,找到最佳的运行经济性,将来扩大规模均需要作出大量的决策。
决策的基础是压缩空气的用途或使用流程,着眼点计算空气需求量,储备量和将来扩展的余地,而压力是一决定因素,对能耗有很大影响,不同的压务范围用不同的压缩机有时可能是经济性。
二、工作压力的计算压缩空气的设备决定了必需的工作压力取决于压缩机、设备、管路、最高的工作压力决定必需的装置压力,而耗气地点用减压阀来满足设备需求。
在极端的情况下,配一台单独空压机很不经济。
工作压力:最终用户+末级过滤+管路系统+尘粒过滤+干燥机+压缩机调节幅度压力越高,耗电愈大,须考虑配管尺寸大小及长度所造成的压力降。
列出各种机种之使用压力,如使用压力相差太多,则须购置不同压力之空压机,不可降低压力使用,以增加费用支出。
三、空气需用量计算压缩空气是将电能转化为空气势能,并借助压缩空气的膨胀对外做功的一种清洁的动力,但是它对电能的消耗也是非常大的。
一般说来,将1m3的空气压缩至0.7MPa所需消耗的电能约为7KW。
据统计,空压站对电能的消耗约占整个企业电能总消耗的20%。
这意味着空气需用量:将全工具+机器设备+相关流程空气消耗量+泄漏+磨损+未来用气+使用系数(采用标准值20%)四、压缩机的数量与规格的确定根据所需的灵活程度+控制系统+能量的效率选用一台大机还是选用多台小机?生产中停机事件的费用,电子的利用率,载(荷)的变化情况,压缩空气系统的成本,可利用楼面的空间。
由于费用的原因,一个装置中只用一台压缩机供应全空气,那么这个系统可以准备一个移动式压缩机的快速接口供使用时相接,可以用一台旧的空压机作为不昂贵的备用动力提供储备气源。
(2)稳定性(一直是非常重要的问题)(3)能耗支出1.管路泄漏;2.用气需求每时每刻不断的波动;3.单机的输出效率(4)零配件的通用化多台110KW机型的优化组合可能是40-160m3/min,用气范围的的最好选择。
空压机选型原则步骤及注意事项

空压机选型原则步骤及注意事项1、确定空压机工作压力空压机选型时,首先要确定用气端所需要的工作压力,加上1-2bar 的余量,再选择空压机的压力,当然,管路通径的大小和转弯点的多少也是影响压力损失的因素,管路通径越大且转弯点越少,则压力损失越小;反之,则压力损失就越大。
因此,当空压机与各用气端管路之间距离太远时,应适当放大主管路的通径。
如果环境条件符合空压机的安装要求且工况允许的话,可在用气端就近安装。
2、确定空压机相应容积流量1.空压机选型时,应先了解所有的用气设备的容积流量,把流量的总数乘以1.2;2.向用气设备供应商了解用气设备的容积流量参数进行空压机选型;3.空压机站改造可参考原来参数值结合实际用气情况进行选型。
3、确定空压机供电容量在功率不变的情况下,当转速发生变化时,容积流量和工作压力也相应发生变化,转速降低了,排气也相应减少了,依此类推。
空压机选型功率是在满足工作压力和容积流量的条件下,供电容量能满足所匹配驱动电机的使用功率即可。
空压机选型注意以下这些问题:1、考虑排气压力的高低和排气量的大小根据国家标准一般用途空气动力用压缩机其排气压力为0.7MPa(7个大气压),老标准为0.8MPa(即8个大气压)。
因为风动工具和风力机械其设计工作压力为0.4Mpa,因此空压机这一工作压力完全能满足要求。
如果用户所用的压缩机大于0.8MPa一般要特种制作,不能采取强行增压的办法以免造成事故。
排气量的大小也是空压机的主要参数之一,选择空压机的气量要和自己所需的排气量相匹配,并留有10%的余量。
如果用气量大而空压机排气量小,风动工具一开动,会造成空压机排气压力的大大降低,而不能驱动风动工具。
当然盲目追求大排气量也是错误的,因为排气量越大压缩机配的电机越大,不但价格高,而且浪费购置资金,使用时也会浪费电力能源。
另外在选排气量时还要考虑高峰用量和通常用量及低谷用量。
通常的办法是以较小排气量的空压机并联取得较大的排气量,随着用气量的增大,而逐一开机,这样不但对电网有好处,而且能节约能源(用几台开几台),并有备机,不会因一台机器的故障而造成全线停产。
空压机选型

空压机选型引言空压机,又称空气压缩机,是一种将空气压缩,以达到增加气压和储存能量的装置。
空压机广泛应用于工业领域,用于驱动各种机械设备、供应气体和快速充气等。
本文将介绍空压机选型的一般原则和过程,帮助读者选择适合自己需求的空压机。
空压机的工作原理空压机的工作原理主要包括以下几个步骤: 1. 吸气过程:空气通过吸气阀进入空气压缩机。
2. 压缩过程:空气在压缩室中逐渐增加气压,同时也增加了气体的温度。
3. 排气过程:压缩后的空气通过排气阀排出,同时冷却降温。
空压机选型的一般原则在选择适合的空压机时,需要考虑以下几个方面:气源需求要考虑所需的气源流量、气源质量等。
根据所需的气源流量,可以选择合适的空压机工作压力和排气量。
工作环境条件工作环境的温度和湿度对空压机的运行和维护都有影响。
要考虑工作环境的温度范围、相对湿度等因素,以选择适合的空压机型号。
能源消耗空压机的能源消耗也是选型的重要考虑因素,不同型号的空压机在能源利用率上有所差异。
要考虑工作效率和能源消耗之间的平衡,选择经济实用的空压机。
维护保养不同型号的空压机在维护保养方面也有差异,要考虑设备的可靠性和维护成本,以选择维护保养比较方便的空压机。
空压机选型的具体过程确定气源需求首先,需要明确所需的气源流量和工作压力。
根据不同的应用场景,可以根据机器设备的需求及使用频率来确定气源需求。
确定工作环境条件根据工作环境的温度和湿度范围,选择符合条件的空压机型号。
如果工作环境条件较为恶劣,需要选择耐高温、防锈蚀的特殊型号空压机。
能源消耗分析了解不同型号的空压机的能源消耗情况,可通过查看产品规格表和能源利用率指标,选择性价比较高的空压机。
维护保养考虑了解不同型号的空压机的维护保养周期、更换零部件的成本等。
选择维护保养相对简便、成本较低的空压机类型。
比较评估根据以上步骤的分析结果,将不同型号的空压机进行比较评估。
综合考虑气源需求、工作环境条件、能源消耗、维护保养等因素,选择合适的空压机。
空压机选型注意事项

空压机选型注意事项1. 空压机的基本原理和工作方式空压机是一种将空气压缩并储存起来的设备,它的工作原理是通过机械或电动力源驱动压缩机,将空气压缩至一定压力,然后将压缩空气储存在储气罐中,以供后续使用。
空压机的工作方式可以分为以下几种: - 往复式空压机:通过活塞来压缩空气,属于正压式空压机。
- 螺杆式空压机:通过两个螺杆来实现空气的压缩,属于正压式空压机。
- 离心式空压机:通过离心力将空气压缩,属于负压式空压机。
2. 空压机选型的重要参数在选型空压机时,需要考虑以下几个重要参数:2.1 压缩比和排气量压缩比是指空压机出口压力与入口压力之比,决定了空气的压缩程度。
在选型时,需根据所需的最终压力确定合适的压缩比。
排气量是指空压机每分钟产生的压缩空气量,通常以标准立方米/分钟(Nm³/min)或标准立方英尺/分钟(SCFM)表示。
在选型时,需根据所需的空气流量确定合适的排气量。
2.2 功率和效率功率是指空压机的驱动功率,通常以千瓦(kW)或马力(HP)表示。
在选型时,需根据所需的工作负荷和能源消耗来确定合适的功率。
效率是指空压机的能源利用效率,通常以比功率(kW/m³/min)或比能耗(kW/Nm³)表示。
在选型时,需选择高效率的空压机,以降低能源消耗和运行成本。
2.3 噪音和振动噪音是指空压机在工作时产生的噪音水平,通常以分贝(dB)表示。
在选型时,需选择低噪音的空压机,以减少对工作环境和操作人员的影响。
振动是指空压机在工作时产生的振动水平,通常以米每秒平方(m/s²)表示。
在选型时,需选择低振动的空压机,以减少对设备和结构的损伤。
3. 空压机选型的其他考虑因素除了上述重要参数外,还需考虑以下其他因素:3.1 使用环境使用环境包括室内或室外、温度、湿度、海拔高度等因素。
在选型时,需选择适应所在环境的空压机,以确保其正常运行和寿命。
3.2 维护和保养维护和保养是保证空压机正常运行和延长寿命的重要环节。
空压机的比较及选型

空压机的比较与选型金良俊前言目前市面上主流的空气紧缩机有活塞式、单螺杆(蜗杆)式、双螺杆式、离心式等,本文就各类类型的空压机进行比较分析,从用户的角度表达选用空压机的依据和要点,并简单介绍了合理配置和设置的一样方式,以帮忙一样用户正确选择和利用气源设备。
一、常见空压机简介按工作原理空压机分为容积型和速度型,别离通过体积转变和气体动能转变来产生紧缩空气。
往复式紧缩机(也称活塞式紧缩机)的工作原理是直接紧缩气体,当气体达到必然压力后排出。
螺杆式紧缩机的工作原理是紧缩气体的体积,使单位体积内气体分子的密度增加以提高紧缩空气的压力;离心式紧缩机的工作原理是提高气体分子的运动速度,使气体分子具有的动能转化为气体的压力能,从而提高紧缩空气的压力。
活塞式空压机原理活塞式空压通过活塞的往复运动,循环吸气、紧缩、排气的流程来紧缩气体,这就决定了其产出的紧缩空气会产生低频脉冲,假设要提供较平稳的气流必需配套缓冲罐。
一样由于周期性的往复运动其振动和噪音都较大,易损件较多,保护量大,已慢慢被螺杆式和离心式取代。
其优势在于国内技术成熟,适用范围广、价钱低廉,保护技术要求不高,产出气体污染小,在小型工程,特殊气体介质紧缩等领域应用较多。
螺杆空压机原理螺杆空压机属于容积式紧缩机的一种,按结构又分为单、双螺杆。
单螺杆紧缩机又称蜗杆式(OG),紧缩机由一个螺杆转子和两个与螺杆转子垂直的行星齿装在机壳内组成。
螺杆槽、机壳和星轮齿面组成封锁的容积,运转时,动力传到螺杆轴上,由螺杆带动星轮齿在螺槽内相对移动,封锁的齿间容积发生转变,相应的气体由吸气阀进入螺杆齿槽空间,经紧缩后从壳体上的排气口排出,具体紧缩原理见图(a)吸气:螺杆吸气端的齿槽与吸气腔相通时处于吸气进程,螺杆转至齿槽空间被与之啮合的星轮齿封锁,吸气终止见图(1a)。
(b)紧缩:随着星轮齿沿螺杆齿槽的推动,大体容积缩小,实现气体的紧缩进程,见图(1b )。
(c )排气:当大体容积与排气孔口相连通后,由于螺杆的继续回转,进行气体的排出进程,将紧缩后具有必然压力的气体送至排气接管,见图(1c )。
空压机选型指南

空压机的选型指南工作压力(排气压力)的选型当用户准备选购空压机时,首先要确定用气端所需要的工作压力,加上1-2 bar的余量,再选择空压机的压力,(该余量是考虑从空压机安装地点到实际用气端管路距离的压力损失,根据距离的长短在1-2 bar之间适当考虑压力余量)。
当然,管路通径的大小和转弯点的多少也是影响压力损失的因素,管路通径越大且转弯点越少,则压力损失越小;反之,则压力损失就越大。
因此,当空压机与各用气端管路之间距离太远时,应适当放大主管路的通径。
如果环境条件符合空压机的安装要求且工况允许的话,可在用气端就近安装。
容积流量的选型① 在选择空压机容积流量时,应先了解所有的用气设备的容积流量,把流量的总数乘以1.2(即放大20%余量);② 新项目上马可根据设计院提供的流量值进行选型;③ 向用气设备供应商了解用气设备的容积流量参数进行选型;④ 空压机站改造可参考原来参数值结合实际用气情况进行选型;合适的选型,对用户本身和空压机设备都有益处,选型过大浪费,选型过小可能造成空压机长期处于加载状态或用气不够或压力打不上去等弊端。
功率与工作压力、容积流量三者之间的关系在功率不变的情况下,当转速发生变化时,容积流量和工作压力也相应发生变化;例如:一台22KW的空压机,在制造时确定工作压力为7bar,根据压缩机主机技术曲线计算转速,排气量为3.8 m3/min;当确定工作压力为8bar时,转速必须降低(否则驱动电机会超负荷),这时,排气量为3.6 m3/min;因为,转速降低了,排气也相应减少了,依此类推。
功率的选型是在满足工作压力和容积流量的条件下,供电容量能满足所匹配驱动电机的使用功率即可。
因此,选配空压机的步骤是:先确定工作压力,再定相应容积流量,最后是供电容量。
空压机异响故障现象1、金属撞击声;2、均匀的敲击声;3、摩擦啸叫声。
故障原因1、连杆瓦磨损严重,连杆螺栓松动,连杆衬套磨损严重,主轴磨损严重或损坏产生撞击声;()2、皮带过松,主、被动皮带槽型不符造成打滑产生啸叫;3、空压机运行后没有立即供油,金属干摩擦产生啸叫;4、固定螺栓松动;5、紧固齿轮螺母松动,造成齿隙过大产生敲击声;6、活塞顶有异物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空压机的选型指南工作压力(排气压力)的选型:当用户准备选购空压机时,首先要确定用气端所需要的工作压力,加上1-2 bar的余量,再选择空压机的压力,(该余量是考虑从空压机安装地点到实际用气端管路距离的压力损失,根据距离的长短在1-2 bar之间适当考虑压力余量)。
当然,管路通径的大小和转弯点的多少也是影响压力损失的因素,管路通径越大且转弯点越少,则压力损失越小;反之,则压力损失就越大。
因此,当空压机与各用气端管路之间距离太远时,应适当放大主管路的通径。
如果环境条件符合空压机的安装要求且工况允许的话,可在用气端就近安装。
容积流量的选型:①在选择空压机容积流量时,应先了解所有的用气设备的容积流量,把流量的总数乘以1.2(即放大20%余量);②新项目上马可根据设计院提供的流量值进行选型;③向用气设备供应商了解用气设备的容积流量参数进行选型;④空压机站改造可参考原来参数值结合实际用气情况进行选型;合适的选型,对用户本身和空压机设备都有益处,选型过大浪费,选型过小可能造成空压机长期处于加载状态或用气不够或压力打不上去等弊端。
功率与工作压力、容积流量三者之间的关系在功率不变的情况下,当转速发生变化时,容积流量和工作压力也相应发生变化;例如:一台22KW的空压机,在制造时确定工作压力为7bar,根据压缩机主机技术曲线计算转速,排气量为3.8 m3/min;当确定工作压力为8bar时,转速必须降低(否则驱动电机会超负荷),这时,排气量为3.6 m3/min;因为,转速降低了,排气也相应减少了,依此类推。
功率的选型是在满足工作压力和容积流量的条件下,供电容量能满足所匹配驱动电机的使用功率即可。
因此,选配空压机的步骤是:先确定工作压力,再定相应容积流量,最后是供电容量。
选择空压机的基本准则是经济性、可靠性与安全性一是应考虑排气压力的高低和排气量大小一般用途空气动力用压缩机排气压力为 0.7MPa ,以前标准为 0 .8MPa 。
目前行业内也有一种排气压力为0.5MPa 的空压机,从使用角度看是不合理的,因为对风动工具而言其压力余量太小,输气距离稍远一些就不能使用。
另外,从设计角度看,这种压缩机设计为一级压缩,压比太大,易引起排气温度过高,造成气缸积炭,导致事故发生。
如果用户所用的压缩机大于0.8MPa,一般要特别制造,不能采取强行增压的办法,以免造成事故。
排气量是空压机的主要参数之一,选择空压机的气量要和所需的排气量相匹配,并留有 10% — 20% 的余量。
如果用气量大而空压机排气量小,风动工具开启后,会造成空压机排气压力的大大降低,而不能驱动风动工具。
当然盲目追求大排气量也是错误的,因为排气量越大压缩机配的电机越大,不但价格高,而且浪费购置资金,使用时也会浪费电力能源。
另外,在选排气量时还要考虑高峰用量和通常用量及低谷用量。
如果低谷用量较大,而通常用量和高峰用量都不大,国外通常的办法是以较小排气量的空压机并联取得较大的排气量,随着用气量增大而逐一开机,这样不但对电网有好处,而且能节约能源。
二是要考虑用气场合和条件。
如用气场地狭小( 船用、车用 ),应选立式;如用气场合有长距离的变化(超过 500 米) ,则应考虑移动式;如果使用场合不能供电,则应选择柴油机驱动式;如果使用场合没有自来水,就必须选择风冷式。
在风冷、水冷两种冷却方式上,用户常有错误的认识,认为水冷好,国内外小型压缩机中风冷式大约占到90 %以上,这是因为在设计上风冷简便,使用时无需水源。
而水冷式压缩机的致命缺点有四:必须有完备的上下水系统,投资大;水冷式冷却器寿命短;在北方冬季还容易冻坏气缸;在正常的运转中会浪费大量的水。
三是要考虑压缩空气质量。
一般空压机产生的压缩空气均含有一定量润滑油,并有一定量的水,有些场合是禁油和禁水的,这时不但对压缩机选型要注意,必要时要增加附属装置。
解决的办法:一是选用无润滑压缩机。
这种压缩机气缸中基本上不含油,其活塞环和填料一般为聚四氟乙烯。
但这种机器也有缺点,润滑不良,故障率高;聚四氟乙烯也是一种有害物质,食品、制药行业不能使用;无润滑压缩机只能做到输气不含油,不能做到不含水。
第二种也是常用的方法,是将空压机 ( 无论哪种 ) 再加一级或二级净化装置或干燥器。
这种装置可使压缩机空气既不含油又不含水,使压缩空气中的含油水量在 5ppm 以下,可满足工艺要求。
四是要考虑压缩机运行的安全性。
空压机是一种带压工作的机器,工作时伴有温升和压力,其运行的安全性要放在首位。
国家对压缩机的生产实行规范化的“两证”制度,即压缩机生产许可证和压力容器生产许可证( 储气罐) 。
因此,在选购压缩机产品时,要严格审查“两证”。
通常有证厂家的产品质量保证系统是完善的,不会出现大的质量问题,即使出现一些问题,也会由厂家负责三包。
空压机的标示方法二十一世纪的空压机市场竞争激烈,消费者在选购产品时,常常将机器品质和价格列入购买标准之中。
因此,将市场上所常见的各种标示方法作一说明,为保护消费者运动尽一份力。
一、四种基本的标志方法:1、使用马达马力来表示:这在早期空压技术不发达时还行得通,但随着技术的不断发展,现在纵使是使用相同的马达,也会因压力高低,空压机制造厂家及机型大小不同,而使实际空压机所排的风量多寡有天壤之别。
因此,目录上只标示马达马力,是最不负责任的作法。
2、使用活塞变位量(Piston displacement)来表示由于这是空压机的设计资料,只须将气缸大小乘上回转数即可,所以,这资料最容易得到,也为许多制造厂家所用以标示。
这个理论值与实际出气量之间没有一定的关系,视生产厂家的技术能力而定。
3、使用入气体积(Inlet volume)来表示:这种表示方法通常在入气口侧以孔径测量计(Orifice meter)来测定,目前只用来标示离心式空压机的大小。
采用的单位用ICFM,这虽然较前二种方式准确,但因未计内部损失,故仍比实际出气量为高。
4、使用自由出气量(Free air delivery)来表示:此法是采用孔径测流计在出口侧测定,由于准确因而成为世界主要标准用以测定空压机的实际出风量,如ISO,ASME,JIS等,不过,在有的日本制造厂目录中,使用F.A.D.来标示,却又加注Nominal capacity,通常可理解的说法是:这个F.A.D.不是真的,而只是一种设计值。
可惜的是,有标准是一回事,有没有做又是一回事,因此,除非原厂目录上白纸黑字说明所依据的标准,否则,其可信度便得大打折扣。
二、不同工况下表示出的实际出风量:实际出风量指的是考虑了所有损耗,在空压机整机出口处(后冷却器之后)测得的出风量,通常用自由出气量(Free Air Delivery)来表示。
所谓自由出气量是指经过压缩机压缩后的空气体积以入气口的自由空气状况(温度,压力,湿度等)来表示。
因此,即使是使用了相同的测试标准,也会因取用的“自由空气”不同而使表示出来的数字相差20%以上,以下是几种常用的自由空气状况。
1、正常状况(Normal Condition):表示的方法:Nm3/min(或注明测试所采用之入气状况)所指的空气状况:760 mmHg, 0 0C, 0% RH体积指数:1.002、标准状况(Standard Condition):表示方法:SCFM(或注明测试所采用之入气状况)所指的空气状况:1 bar, 20 0C, 0% RH体积指数:1.05(约)3、实际状况(Actual Condition):表示方法:ACFM,ICFM(或注明测试所采用之入气状况)所指的空气状况:14.4 psi, 35 0C, 60% RH体积指数:1.20(约)同样的出气量,只要使用不同空气状况,便可把数字变大20%。
三、不同压力下测试出的实际出风量:实际出风量(FAD)的数值与参照的空气状况有关,同时也与在什么压力下测试有关。
例如,55 kW的鲁茨鼓风机在0.5 barg时测得的实际出风量约为40 m3/min,55 kW的微油螺杆式空压机在8 barg 时测得的实际出风量约为9.1 m3/min,而在13 barg 时测得的实际出风量约为6.8 m3/min。
因而在比较同功率不同品牌空压机的实际出风量时,要考虑其测试流量时的压力。
这里没有严格的理论计算公式来换算,但是有一个公认的经验公式可做参考。
对于喷油螺杆式空压机,如果在压力升高时仍要保持同样的实际出风量,需要增加转子的转速,同时要多消耗6~7%的马达功率。
对于完全无油螺杆式空压机,则需要增加约10%的功率消耗。
举例来说,假定一台55 kW微油螺杆机A在7 barg下测得实际出风量为9.54 m3/min,另一台55 kW 微油螺杆机B在8bar下测得实际出风量为9.1 m3/min,究竟是A的效率高还是B的效率高?根据上面的经验公式,A要在8 barg下仍保持9.54 m3/min出风量不变,则需增加6%以上的功率消耗,即55 kW ×1.06=58.3 kW两者的比能分别是:A:58.3kW÷9.54m3/min=6.11kW/(m3/min)B:55kW÷9.1 m3/min=6.04kW/(m3/min)(6.11-6.04)÷6.04×100%=1.16%这就是说B空压机的效率高1.16%。
四、空压机的马达功率空压机的效率与空压机的实际出风量和马达所消耗的功率有关。
实际出风量会因测试方法和表示方法不同而在数值上有很大差异。
在考察空压机的马达功率时同样有类似的情况。
同时,空压机的效率还与马达服务系数,马达效率等相关。
1、特定压力之轴马力们常用比能(Specific energy)-单位出气量之动力消耗来衡量空压机效率,这里的动力消耗说的是特定压力之轴马力,意思是空压机出口压力达到一定压力点时,空压机主轴所消耗之动力。
由于不同厂家选定的压力点不一样,因而标示的轴马力值也不一样。
2、服务系数(Service Factor)空压机的马达功率指的是马达的名义马力或额定功率,但这并不等于马达实际消耗的功率。
对于欧洲和中国国内的厂家,马达实际动力消耗一般要小于名牌上的额定功率,而美国的制造厂家在习惯上都配用较小的马达,其服务系数较大如1.25, 而在全负载时, 马达出力可以超过铭牌的15%, 如标识为100HP的马达,其实际出力可能超过115HP。
这使得“马达的实际动力消耗一定小于马达铭牌上的额定功率这一老规则被打破了”。
因此,一般而言,对于同马力的空压机,欧洲品牌的风量数据比美国品牌的风量数据小,原因如上。
现在有些欧洲品牌的制造厂家已经开始美国的做法了。
五、空压机的效率如上述,考虑空压机的效率要考虑其测试方法,表示状态、测试压力点,实际功率消耗等,同时还要考虑马达效率,因为轴马力只是马达的输出部分,用户支付电费是按输入功率计算的,考察空压机的效率不能不考虑马达的效率。