空气压缩机选型主要计算公式

合集下载

压缩空气系统的设备选型

压缩空气系统的设备选型

压缩空气系统的设备选型压缩空气站的设备一般包括产生压缩空气的空气压缩机和使气源净化的辅助设备。

气源净化辅助设备分为油水分离器、贮气罐、干燥机和过滤器。

空气压缩机:用以产生压缩空气,一般由电动机带动。

其吸气口装有空气过滤器以减少进入空气压缩机的杂质。

贮气罐:用以贮存压缩空气,稳定压缩空气的压力并除去部分油分和水分。

油水分离器:用以分离并排出降温冷却的水滴、油滴、杂质等。

干燥机:用以进一步吸收或排除压缩空气中的水分和油分,使之成为干燥空气。

过滤器:用以进一步过滤压缩空气中的灰尘、杂质颗粒。

1、空气压缩机的选型首先要确定用气端所需要的工作压力,加上1-2 bar的余量,再选择空压机的压力,(该余量是考虑从空压机安装地点到实际用气端管路距离的压力损失,根据距离的长短在1-2 bar之间适当考虑压力余量)。

当管路通径的大小和转弯点的多少也是影响压力损失的因素,管路通径越大且转弯点越少,则压力损失越小;反之,则压力损失就越大。

因此,当空压机与各用气端管路之间距离太远时,应适当放大主管路的通径。

如果环境条件符合空压机的安装要求且工况允许的话,可在用气端就近安装。

根据容积流量选型:1、在选择空压机容积流量时,应先了解所有的用气设备的容积流量,把流量的总数乘以1.2(即放大20%余量);2、新项目上根据设计院提供的流量值进行选型;3、向用气设备供应商了解用气设备的容积流量参数进行选型;4、空压机站改造可参考原来参数值结合实际用气情况进行选型;合适的选型,对用户本身和空压机设备都有益处,选型过大浪费,选型过小可能造成空压机长期处于加载状态或用气不够或压力打不上去等弊端。

2、其他设备的选择2.1 储气罐的选型储气罐容积大小是要根据空压机的容积流量、调节系统和用气设备的耗气量来决定。

当一个系统由几台空压机组成时,储气罐的容积大小是根据最大空压机的容积流量而确定的。

下面的公式可用于储气罐容积大小的确定,应按如下公式计算得出:V=QS×t×P0/(P1-P2)式中: V:储气罐总容量;QS:供气设计总容量,NM3/min;t:5~20min保持时间;P0:大气压,绝压;P1:正常操作压力,绝压;P2:最低送出压力,绝压。

空压机轴功率的计算公式

空压机轴功率的计算公式

空压机轴功率的计算公式
空气压缩机是工业生产中常见的一种设备,通过压缩空气来产生
动力,广泛应用于机床、化工、矿山、建筑等领域中。

作为一种高效
节能的设备,空气压缩机的设计和选择十分重要,而轴功率的计算是
其中的一项关键步骤。

空气压缩机轴功率的计算公式为P=Q*ΔP/(737*η)。

其中,P代
表轴功率,单位为千瓦;Q代表空气流量,单位为立方米/分钟;ΔP
代表压缩机出口与入口的压力差,单位为巴;737代表功率换算系数,η代表压缩机机械效率,通常取0.8-0.9之间。

轴功率是衡量空气压缩机能力的重要指标之一,它直接决定了压
缩机的能耗和工作效率。

因此,在进行轴功率计算时,必须准确测量
和确定各项参数,才能保证计算结果的准确性和可靠性。

首先,需要确定空气流量。

这个参数取决于所选用的空气压缩机
的型号和规格,需根据实际需要进行选择。

其次,需要测量出口和入
口的压力差,通过压力表或传感器来测量,确保精确度。

最后,机械
效率是空气压缩机设计参数之一,其值一般在0.8-0.9之间,在计算
时需按实际情况取值。

通过轴功率的计算,可以评估空气压缩机的性能和能耗水平。


选用空气压缩机时,需要根据实际需要,合理选择功率和型号,以求
达到最佳的经济效益。

同时,定期检查和维护机器,确保其正常运行,也是保持压缩机高效稳定运行的重要措施。

总之,空气压缩机轴功率的计算是空气压缩机设计和使用中不可或缺的一项工作,只有准确计算出轴功率,才能选择合适的空气压缩机并进行科学化管理。

压缩机动力计算实例

压缩机动力计算实例

压缩机动力计算实例压缩机动力计算的目的:1)求得施加于各零部件上的作用力及其力随转角α的变化规律,为压缩机的强度验算及基础设计提供计算依据;2)确定压缩机所需要的飞轮矩。

本计算实例是为了让学生掌握压缩机动力计算的方法和步骤。

选择压缩机热力计算中的例题2,压缩机的排气量为10min /3m 其结构型式为L 型空气动力用。

结构示意图如下一. 计算的原始数据由压缩机热力计算实例确定了有关的热力参数与结构参数如下一级气缸的实际进气压力 Pa p s 5111095.0⨯= 一级气缸的实际排气压力Pa p d 5111024.3⨯= 二级气缸的实际进气压力Pa p s 5121089.2⨯= 二级气缸的实际排气压力Pa p d 5121054.9⨯=L 型动力用空气压缩机结构示意图 一级气缸直径 D 1=270 mm 二级气缸直径 D 2=160 mm活塞杆直径 d=30 mm; 一级气缸的相对余隙容积 11.01=α 二级气缸的相对余隙容积 125.02=α 活塞行程 S=120 mm 曲轴的转速 n = 980 r/min 曲柄连杆比2.0=λ (113.56) 一级气缸的指示功率 N 1=25.8 KW 二级气缸的指示功率 N 2 =25.5 KW 机械效率 9.0=m η 由压缩机的零件结构图得出:连杆件的总质量 m 1 = 8 kg 十字头组件总的质量 m c = 4.5kg一级铝活塞总的质量 m p1 = 8.146 kg 二级铝活塞总的质量 m p2 = 8.13 kg在初步计算时,可以按照下式计算出名列最大往复运动质量:max 2=(1+)p Pm r ωλ P 活塞力二。

计算各级的气体力指示图气体力指示图可以采用图解法也可以采用计算法。

本例采用计算法进行。

计算时,可使用简化指示图,根据不同的曲柄转角,求取对应的活塞位移x , 然后按此位移求取对应的气体压力,力的正负号规定为:凡是使连杆受拉伸的力为正,反之为负。

0.6兆帕压缩空气流量计算公式

0.6兆帕压缩空气流量计算公式

在工程学和物理学中,压缩空气流量计算是一个非常重要的课题。

特别是当我们需要设计和优化空气压缩系统时,准确计算压缩空气流量对于保证系统的高效运行至关重要。

在本文中,我将共享关于0.6兆帕压缩空气流量计算公式的相关知识,并探讨其在工程实践中的应用。

让我们来了解一下0.6兆帕压缩空气流量计算公式的基本概念。

在压缩空气系统中,0.6兆帕通常是系统的工作压力,用来表示系统在运行时所承受的压力大小。

而压缩空气流量,则是指单位时间内通过系统的空气量,通常以标准体积流量的形式表示。

0.6兆帕压缩空气流量计算公式可以用来计算在0.6兆帕压力下,单位时间内通过系统的空气流量。

针对0.6兆帕压缩空气流量的计算公式,通常可以用以下的方式来表示:Q=VAρ/60,其中Q表示空气流量,V表示容积流量(单位时间内通过的空气体积),A表示空气的密度,ρ表示压力(在这里为0.6兆帕),而60是一个常数,用来将计算结果转换为标准体积流量的单位。

在进行具体计算时,我们需要根据实际情况来确定容积流量V和空气密度A的数值。

而这部分的计算通常会涉及到系统的具体参数、工作条件和环境因素等。

通过对这些参数的准确测量和计算,我们就能够利用0.6兆帕压缩空气流量计算公式来准确地计算出在0.6兆帕压力下单位时间内通过系统的空气流量。

在工程实践中,准确计算压缩空气流量对于系统的设计、运行和维护具有重要意义。

在空气压缩机的选择和使用中,我们需要根据系统的需求和工作条件来确定所需的空气流量。

而在系统的运行中,通过对空气流量的实时监测和调整,我们可以保证系统的高效运行和节能运行。

对于一些对空气流量有严格要求的工业领域,如食品加工、医药制造等,准确计算压缩空气流量更是至关重要。

0.6兆帕压缩空气流量计算公式是工程实践中的重要工具,它能够帮助我们准确地计算系统中压缩空气的流量,为系统的设计、运行和维护提供重要参考。

在实际应用中,我们需要根据系统的具体情况来确定计算中涉及的参数,并结合实际情况进行灵活运用。

螺杆压缩机功率计算公式

螺杆压缩机功率计算公式

螺杆压缩机功率计算公式螺杆压缩机是一种常用的工业设备,广泛应用于空气压缩、制冷、液压和化工等领域。

在设计和运行螺杆压缩机时,计算其功率是非常重要的一项任务。

本文将介绍螺杆压缩机功率的计算公式及其相关内容。

一、螺杆压缩机的功率计算公式螺杆压缩机的功率计算公式为:P = (Q × P1) / (η × 3.6)其中,P为螺杆压缩机的功率,单位为千瓦(kW);Q为螺杆压缩机的排气量流量,单位为立方米/分钟(m³/min);P1为螺杆压缩机的进气绝对压力,单位为巴(ba);η为螺杆压缩机的总压缩效率,无单位;3.6为单位换算系数,将立方米/分钟转换为立方米/小时。

二、螺杆压缩机功率计算公式的解释1. 流量(Q):螺杆压缩机的流量指的是单位时间内通过螺杆压缩机的气体体积。

它是衡量螺杆压缩机工作能力的重要参数。

通常情况下,流量越大,螺杆压缩机的功率需求也就越大。

2. 进气绝对压力(P1):螺杆压缩机的进气绝对压力是指螺杆压缩机在工作状态下的进气压力。

它影响着螺杆压缩机的工作效率和功率需求。

进气压力越高,螺杆压缩机的功率需求也会相应增加。

3. 总压缩效率(η):螺杆压缩机的总压缩效率是指螺杆压缩机在实际工作中所能达到的压缩效率。

它受到螺杆压缩机结构、工作条件以及维护保养等因素的影响。

总压缩效率越高,螺杆压缩机的功率需求也就越低。

4. 单位换算系数(3.6):由于功率单位是千瓦(kW),而流量单位通常为立方米/分钟(m³/min),所以需要将流量的单位进行换算,使其与功率单位保持一致。

在这里,将流量单位从立方米/分钟转换为立方米/小时,需要乘以3.6。

三、螺杆压缩机功率计算公式的应用螺杆压缩机功率计算公式的应用非常广泛。

在设计螺杆压缩机系统时,可以根据所需的流量、进气压力和总压缩效率,通过计算公式得出所需的功率。

这样可以选择适当的螺杆压缩机型号,并合理配置其电机功率。

在实际运行中,螺杆压缩机的功率计算也非常重要。

冷干机选型计算公式

冷干机选型计算公式

冷干机选型计算公式
冷干机选型计算公式可以根据以下参数进行确定:
1. 空气流量需求(Qa):表示冷干机需要处理的空气流量,通常
以单位时间内处理的空气体积或质量来表示,单位为m3/h或
kg/h。

2. 空气干燥度要求(Xa):表示从冷干机出口处的干燥空气
中所含水分的含量。

通常以绝对湿度、相对湿度或露点温度来表示。

3. 进口空气温度(Ta):表示冷干机中进入的空气的温度,
通常以摄氏度或开尔文度量。

4. 出口空气温度(Td):表示冷干机中处理后的空气的温度,通常以摄氏度或开尔文度量。

5. 压缩机出口温度(Tc):表示压缩机出口的空气温度,通
常以摄氏度或开尔文度量。

6. 冷干机能力(Qc):表示冷干机所能提供的制冷量或能量,通常以千瓦或千焦耳每小时来表示。

冷干机选型计算公式如下:
Qc = Qa * (Xa - Xd) * Cw
其中,Qc为冷干机能力;Qa为空气流量需求;Xa为进口空
气的干燥度要求;Xd为出口空气的干燥度;Cw为空气的比热容。

此外,根据具体的冷干机型号和参数,还需要考虑其他因素,如压缩机功率、制冷剂种类、冷却器和蒸发器的传热能力等。

因此,实际选型计算过程中还需结合相关设备的需求和性能参数进行综合考虑。

空气压缩机选型计算

空气压缩机选型计算

空气压缩机选型计算
空气压缩机的选型计算需要考虑以下几个因素:
1. 空气需求量:根据工业生产所需的空气用量来选择合适的空气压缩机,通常以单位时间内的气体流量为衡量标准。

2. 压力要求:根据工业生产所需的气体压力来选择合适的空气压缩机。

3. 压缩机的工作状态:根据空气需求量和压力要求来选择合适的单级或多级压缩机。

4. 空气质量要求:根据工业生产的要求和环境的要求选择空气过滤器和空气干燥器等附件。

5. 能源消耗:根据工业生产的需求和能耗要求选择合适的节能型空气压缩机,以节约生产成本。

根据以上因素,可以进行以下空气压缩机选型计算公式:
Q = m×n(单位时间内的气体流量,m3/min)
p = F/A(气体压力,bar)
功率P=Q×p/η(压缩机功率,kW)
其中,m为每单位时间内需要的空气质量(kg/m³),n为生产所需空气的流量(m³/min),F为液缸工作力(N),A为
液缸面积(m²),η为压缩机效率(通常为0.7~0.8)。

根据以上公式可以得出所需空气压缩机的技术参数,以便选择合适的压缩机型号,从而满足生产所需的空气质量和压力要求,并节约能源成本。

制冷压缩机与设备的选型计算

制冷压缩机与设备的选型计算

低压循环贮液器 低压循环贮液器是用制冷剂泵强制供液制冷系统的重要设备,起着容纳贮存制冷剂液体供给制冷剂泵,调节对蒸发器的供液和气液分离,保证压缩机安全地运行。
低压循环贮液器容积 下进上出系统 上进下出系统
低压循环贮液器直径
第三节 辅助设备的选型计算
第三节 辅助设备的选型计算
分离捕集设备的选型计算
选型计算
01
冷凝器传热面积 冷凝器的对数平均温差⊿tm
02
(K或℃)
03
第二节 换热设备的选型计算
第二节 换热设备的选型计算
(2)冷凝器的传热系数K 由冷凝器的结构型式、制冷剂种类、冷却介质的速度、温度差、传热面上的污垢系数、传热管的材质等因素所支配。
冷凝器种类
油分离器
气液分离器 气液分离器的作用是使混合的气体和液体制冷剂进行分离,按照不同的蒸发系统分别设置,并按设置位置的不同,分为机房气液分离器和库房气液分离器。
机房气液分离器
库房气液分离器
第三节 辅助设备的选型计算
节流机构
第三节 辅助设备的选型计算
节流机构的作用是为蒸发器提供适量的制冷剂液体,同时又维持系统高、低压侧的压力差,保证蒸发器中适宜的蒸发压力。 常用节流机构 手动调节的节流装置—手动膨胀阀; 用制冷剂蒸气过热度调节的节流装置—包括热力膨胀阀及电子膨胀阀等; 不能调节的节流装置—恒压膨胀阀和毛细管等; 浮球调节阀。 应用
进热交换器的制冷剂气体温度
出热交换器的制冷剂气体温度
第二节 换热设备的选型计算
第三节 辅助设备的选型计算
第三节 辅助设备的选型计算 一、液体储存设备 1.高压储液器 高压贮液器的选择主要是确定容积,保证制冷装置在运行时,最大贮液量小于容积的70%,最小贮液量大于容积的10%。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.波义目定律:假设温度不变则某一定量气体的体积与绝对压力成反比。

V1/V2=P2/P1
2.查理定律:假设压力不变,则气体体积与绝对温度成正比。

V1/V2=T1/T2
3.博伊尔-查理定律
(P1V1)/T1=(T2V2)/T2
P:气体绝对压力
V:气体体积
T:气体绝对温度
4.排气温度计算公式
T2=T1×r(K-1/K)
T1=进气绝对温度
T2=排气绝对温度
r=压缩比(P2/P)P1=进气绝对压力 P2=排气绝对压力
K=Cp/Cv 值空气时K 为1.4(热容比/空气之断热指数)
5.吸入状态风量的计算(即Nm3/min 换算为m3/min)
Nm3/min:是在0℃,1.033kg/c ㎡ absg 状态下之干燥空气量
V1=P0/(P1-Φ1·PD) (T1/T0)×V0 (Nm3/hr dry)
V0=0℃,1.033kg/c ㎡ abs,标准状态之干燥机空气量(Nm3/min dry)
Φa=大气相对湿度
ta=大气空气温度(℃)
T0=273(°K)
P0=1.033(kg/c ㎡ abs)
T1=吸入温度=273+t(°K)
V1=装机所在地吸入状态所需之风量(m3/hr)
P1:吸入压力=大气压力Pa-吸入管道压降P1 △=1.033kg/c ㎡ abs-0.033kg/c ㎡=1.000kg/c ㎡ abs
φ1=吸入状态空气相对湿度=φa×(P1/P0)=0.968φa
PD=吸入温度的饱和蒸气压kg/c ㎡ Gabs(查表)=查表为mmHg 换算为kg/c ㎡ abs 1kg/c ㎡=0.7355mHg
例题: V0=2000Nm3/hr ta=20 φa=80% ℃
则V1=1.033/(1-0.968×0.8×0.024)×﹝(273+20)/273﹞
×2000=2220
6.理论马力计算
A 单段式HP/Qm3/min=﹝(P/0.45625)×K/(K-1)﹞×
﹝(P2/P1)(K-1)/K-1﹞
B 双段式以上HP/Qm3/min=﹝(P/0.45625)×nK/(K-1)﹞×﹝(P2/P1)(K-1)/nK-1﹞
P1=吸入绝对压力(kg/c ㎡ Gabs)
P2=排气绝对压力(kg/c ㎡ Gabs)
K =Cp/Cv 值空气时K 为1.4
n =压缩段数
HP=理论马力HP
Q=实际排气量m3/min
7.理论功率计算
单段式 KW=(P1V/0.612)×K/(K-1)×﹝(P2/P1)(K-1)/K-1﹞双段式以上KW=(P1V/0.612)×nK/(K-1)×
﹝(P2/P1)(K-1)/nK-1﹞
P1=吸入绝对压力(kg/c ㎡ Gabs)
P2=排气绝对压力(kg/c ㎡ Gabs)
K =Cp/Cv 值空气时K 为1.4
n =压缩段数
KW=理论功率
V=实际排气量m3/min
8.活塞式空压机改变风量之马达皮带轮直径及马力之修正Dm=Ds×(Qm/Qs)
Ds=马达皮带轮标准尺寸(mm)
Qs=标准实际排气量(m3/min)
Qm=拟要求之排气量(m3/min)
Dm=拟修改之马达皮带轮直径(mm)
例题:本公司YM-18 型空压机之马达皮带轮之标准为440mm,实际排气量为
7.56m3/min,今假设客户要求提高风量至8.7m3/min,应将马达皮带
轮如何修改?
解:已知Ds=400mm,Qs=7.56 m3/min,Qm=8.7 m3/min。

Dm=Ds×(Qm/Qs)=400×8.7/7.56=460mm
Nm=Ns×(Qm/Qs)
Nm=修正后之马力数(HP)
Ns=标准之马力数(HP)
Qm、Qs 如上。

例题:马达皮带轮加大后,必须跟着加大使用马达之马力数,上例中之标准马
力数为75HP,排气量提高为8.7 m3/min 后,所需马力为何?解:已知Qs=7.56 m3/min,Qm=8.7 m3/min,Ns=75HP
Nm=75×8.7/7.56≒86HP
9.空气桶容积之计算
QA=(π/4)×D2×L×0.91
D=空气桶直径(cm)
L=空气桶高度(cm)
例题:780φ×1524 mm之空气桶容积为多少L。

解:已知D=78cm,L=152.4cm
Qa=(π/4)×782×152.4×0.91=728.223cm×0.91≒6621
10.现有空压机风量不足,欲维持额定工作压力之风量计算Qs=Q×(P1+1.033)/(P2+1.033)
Qs=实际状况下系统所需要之空压机之排气量(l/min)
Q=原使用空压机之排气量(l/min)
P1=原使用空压机之工作压力(l/min)
P2=实际状况下系统所需之工作压力(kg/cm2·g)
例题:一部一马力之空压机,现工作压力仅能维持在
4kg/cm2·g,但工作需要
维持在7kg/cm2·g 方能顺利工作,问须使用风量多大之空压机才能符合上述要求?
解:已知1HP 在7kg/cm2·g 时实际排气量为110 l/min Os=110×(7+1.033)/(4+1.033)=176 l/min
※即一台空压机若其实际排气量大于176 l/min,即可保证系统压力维持在7 kg/cm2·g。

11.气压缸之空气消耗量计算:
Q=﹝(A1+A2)×L×(P+1)N﹞/1000×e(L/min)
Q=单支气缸之空气消耗量(L/min)
A1=头端活塞有效面积(c ㎡)
A2=杆端活塞有效面积(c ㎡)
L=冲程(cm)
P=使用压力数(kg/c ㎡)
N=每分钟往复数
e=系数1.5-2
例题:100φmm 之气压缸,冲程300mm,每分钟往复式10 次,
使用压力5kg/c ㎡。

解:依下图(比依上列公式计算较方便)找出粗线所示,自
5kg/c ㎡纵线往上
看,与100φmm 曲线之交点,向左相对之耗气量即为0.9
l/min(冲程
100mm,每往复一次)。

因冲程为300mm,每分钟往复10 次,故耗气量
Q=0.9×(300/10)×10=270 l/min
270 l/min×1.5(消耗系数)=405 l/min
(注:素材和资料部分来自网络,供参考。

请预览后才下载,期待你的好评与
关注!)。

相关文档
最新文档