仪器设计实验报告mDOC

合集下载

仪器分析实验报告

仪器分析实验报告

仪器分析实验报告实验名称:仪器分析实验报告实验目的:通过仪器分析技术,对样品进行分析和定性定量测定,并掌握仪器的基本原理和操作方法。

实验原理:仪器分析是基于物理、化学和光电原理的一种分析方法,通过利用仪器仪表的测定功能,对样品中所含化合物的性质和含量进行定性和定量分析。

常见的仪器分析方法包括:光谱分析、色谱分析、质谱分析、电化学分析等。

实验仪器:本实验使用的仪器为紫外可见分光光度计。

实验步骤:1. 打开紫外可见分光光度计,并进行预热。

2. 调节仪器的波长和光程,根据待测样品的特性选择合适的波长和光程。

3. 准备待测样品溶液,按照规定的方法和配比将样品溶解并稀释至适当浓度。

4. 将样品溶液倒入光度计试管中,注意不要溢出。

5. 调节样品的基线,即让光度计读数稳定在零点附近。

6. 启动仪器测量功能,记录样品的吸光度读数。

7. 根据测得的吸光度数据和标准曲线,计算样品的浓度。

8. 定性判断样品中的化合物,可以根据吸光度谱和特征峰的位置进行判断。

实验注意事项:1. 操作仪器时要仔细阅读仪器操作手册,并熟悉仪器的安全操作方法。

2. 样品溶液的配制要准确,避免影响实验结果。

3. 光度计试管和仪器的光路要保持清洁,避免污染和漂白。

4. 测量数据要准确记录,避免失误或遗漏。

5. 实验后及时关闭仪器,清洁试管和仪器,保持仪器的正常使用。

实验结果与讨论:根据实验步骤和操作,得到待测样品的吸光度数据,并根据标准曲线计算出样品的浓度。

通过定性判断,可以确定样品中的化合物种类。

根据实验结果对样品进行分析和讨论,比较实验结果和预期结果之间的差异,分析可能的原因,并提出改进方案。

结论:通过仪器分析实验,有效地对样品进行了定性定量分析,获得了样品的浓度和化合物种类。

实验结果与预期结果基本吻合,证明了仪器分析方法的准确性和可靠性。

实验过程中,要注意仪器操作和数据记录的准确性,避免误差的引入。

同时,对于实验结果的分析和讨论也十分重要,可以为进一步的研究提供参考和指导。

仪器设计实验报告m

仪器设计实验报告m

实验1 仿真信号产生实验一、实验目的:1.熟悉LabVIEW中仿真信号的多种产生函数及参数设置。

2.掌握常用测试仿真信号的产生。

3.学会产生复杂的函数波形和任意波形。

二、实验内容:1.采用Express VI仿真信号发生器,产生规定的附有噪声的正弦信号,并显示波形。

2. 采用波形发生器VI,产生规定的附有噪声的多波形信号,并显示波形。

3. 产生任意波形信号,并显示和存盘。

4. 采用公式节点,产生规定的复杂函数信号。

三、实验器材:安装有LabVIEW软件的计算机1台四、实验原理:1.虚拟仪器中获得信号数据的3个途径:(1)对被测的模拟信号,使用数据采集卡或其他硬件电路,进行采样和A/D变换,送入计算机。

(2)从文件读入以前存储的波形数据,或由其他仪器采集的波形数据。

(3)在LabVIEW中的波形产生函数得到的仿真信号波形数据。

2.测试信号在LabVIEW中的表示在LabVIEW中测试信号已经是离散化的时域波形数据,表示信号的数据类型有数组、波形数据和动态数据3种。

波形数据是一种特殊的簇结构,它由时间起始值t0、两个采样点的时间间隔值dt以及采样数据一维数组Y组合成的一个簇。

它的物理意义是对一个模拟信号x(t)从时间t0开始进行采样和A/D转换,采样率为fs,对应采样时间间隔dt=1/fs ,数组Y为各个时刻的采样值。

对周期信号,1个周期的采样点数等于采样频率除以信号频率。

3.仿真信号产生函数在LabVIEW中产生一个仿真信号,相当于通过软件实现了一个信号发生器的功能。

LabVIEW提供了丰富的仿真信号,包括正弦、方波、三角波、多频信号、调制信号、随机噪声信号、任意波形等。

针对不同的数据形式(动态数据类型、波形数据和数组),LabVIEW中有3个不同层次的信号发生器(Express VI仿真信号发生器、波形发生器VI和普通信号发生器VI)。

4.公式节点产生仿真信号用公式节点可以产生能够用公式进行描述的信号,用公式节点可产生经过复杂运算生成的信号。

仪器分析实习报告

仪器分析实习报告

仪器分析实习报告导读:本文仪器分析实习报告,仅供参考,如果觉得很不错,欢迎点评和分享。

实验一原子吸收光谱(1)、原子吸收测量条件的选择1. 实验目的:了解原子吸收原子分光光度计的基本结构及使用方法,掌握原子吸收光谱分析测量条件的选择方法及测量条件的相互关系和影响,确定各项条件的值。

2. 实验仪器与试剂:2.1 WFX-1型双光束原子吸收分光光度计2.2 铜空心阴极灯2.3 铜标准溶液5μg mL-13. 实验步骤3.1 初选测量条件:铜吸收波长:324.8nm;灯电流:3mA;狭缝宽度:0.7mm;空气流量:5L min-1;乙炔流量:1.8L min-13.2 燃烧器高度和乙炔流量的选择:吸光度(A)燃烧器高度(mm) 乙炔流量(L min-1)1.4 1.6 1.82.0 2.24.0 0.2815.0 0.3176.0 0.3307.0 0.339 0.345 0.341 0.340、0.338 0.3368.0 0.3383.3 灯电流的选择:灯电流(mA) 1.0 2.0 3.0 4.0吸光度(A) 0.425 0.378 0.346 0.2174. 实验结果测定铜的仪器参数为:铜吸收波长(nm):324.8 空气流量(L min-1):5乙炔流量(L min-1):1.4 燃烧器高度(mm):6.0灯电流(mA):1.0 单色器狭缝宽度(mm):0.7(2)、原子吸收光谱法测定矿石中的铜1. 实验目的:掌握原子吸收光谱法测定矿石中铜的分析方法,学会正确使用原子吸收分光光度计。

2. 实验仪器与试剂:2.1 WFX-1C型双光束原子吸收分光光度计2.2 铜空心阴极灯2.3 100μg mL-1铜标准溶液:移取1mg mL-1铜标准储备液5mL于50mL容量瓶中,用蒸馏水稀释至宽度,摇匀。

2.4 分析纯盐酸、硝酸3. 实验步骤3.1 仪器工作条件:3.2 标准系列溶液的配制:分别移取100μg mL-1铜标准溶液配制成0,0.5,1,2μg mL-1 5%盐酸介质的标准系列。

教学仪器测量实验报告(3篇)

教学仪器测量实验报告(3篇)

第1篇一、实验目的1. 了解教学仪器的种类、构造和基本原理。

2. 掌握教学仪器的操作方法和注意事项。

3. 通过实验,验证教学仪器的测量精度和可靠性。

二、实验器材1. 水准仪:DS3微倾式水准仪1台、水准尺1对、三脚架1个。

2. 经纬仪:电子经纬仪1台、水准尺1把、花杆1根、记录板1块、粉笔若干根、计算器1个、量角器1把、图纸1张。

3. 全站仪:全站仪1台、记录夹1个、记录纸若干张、计算器1个。

4. 其他:罗盘仪1架、棱镜1个、三角板1个、圆规1个、铅笔1支。

三、实验内容1. 水准仪测量实验(1)认识水准仪的基本构造,了解各部件的功能。

(2)掌握水准仪的使用方法,包括安置仪器、粗略整平、瞄准水准尺、精确置读数等。

(3)练习普通水准测量一测站的测量、记录和计算,记录并计算出两点间高差。

2. 经纬仪测量实验(1)认识经纬仪的基本构造,了解各部件的功能。

(2)掌握经纬仪的使用方法,包括安置仪器、对中整平、瞄准目标、观测水平角和竖直角等。

(3)练习视距测量,计算测站点到碎部点的水平距离和高差,最后计算出碎部点的高程。

(4)练习用地形半圆仪和比例尺,根据观测和计算的数据展绘碎部点的方法,并绘制成图。

(1)认识全站仪的性能及主要部件的名称和作用。

(2)掌握全站仪的基本操作方法,包括安置仪器、对中整平、观测水平角和竖直角、水平边长观测等。

(3)按导线计算表计算各点坐标高差,取往、返观测的平均值,按高程误差配赋表计算各点高程。

四、实验步骤1. 水准仪测量实验(1)认识水准仪的基本构造,了解各部件的功能。

(2)安置仪器:将水准仪的三脚架张开,使其高度适中,架头大致水平,并将脚架踩实。

取出仪器,将其固连在三脚架上。

(3)粗略整平:双手食指和拇指各拧一只脚螺旋,同时以相反的方向转动,使圆水准器气泡向中间移动。

再拧另一只脚螺旋,使圆气泡居中。

(4)瞄准水准尺:在离仪器不远处选一点A,并在其上立一根水准尺。

转动目镜调焦螺旋,使十字丝清晰。

仪器分析实验报告

仪器分析实验报告

仪器分析实验报告仪器分析实验报告引言仪器分析是现代科学研究和工程技术中不可或缺的一部分。

通过仪器分析,我们可以了解材料的组成、结构和性质,从而为科学研究和工程设计提供有力的支持。

本实验旨在通过使用仪器分析技术,探索物质的特性和变化。

实验目的本实验的目的是通过使用光谱仪器对不同样品进行分析,了解不同样品的组成和性质,以及在不同条件下的变化。

实验方法1. 准备样品:收集不同类型的样品,包括有机物、无机物和混合物。

确保样品干净、纯净,并根据需要进行预处理。

2. 使用光谱仪器:使用光谱仪器对样品进行分析。

根据需要选择适当的光谱范围和检测方法。

记录下样品的光谱图,并进行数据处理和分析。

3. 变化条件:在实验过程中,可以通过改变温度、压力、光照等条件,观察样品的变化。

记录下不同条件下的光谱图,并进行对比分析。

实验结果与讨论通过对不同样品的分析,我们得到了一系列有关样品组成和性质的数据。

以下是一些实验结果的讨论:1. 有机物分析:我们选择了一种有机染料作为样品进行分析。

通过光谱仪器,我们得到了该有机染料的吸收光谱图。

根据光谱图的峰值位置和强度,我们可以推断该有机染料的结构和化学性质。

此外,我们还观察到在不同温度下,有机染料的吸收峰位置发生了变化,这可能与分子内部的振动和转动有关。

2. 无机物分析:我们选择了一种金属合金作为样品进行分析。

通过光谱仪器,我们得到了该金属合金的X射线衍射图谱。

根据衍射峰的位置和强度,我们可以确定该金属合金的晶体结构和成分。

此外,我们还观察到在不同压力下,金属合金的衍射峰位置发生了变化,这可能与晶体结构的压力效应有关。

3. 混合物分析:我们选择了一种复杂的环境样品作为样品进行分析。

通过光谱仪器,我们得到了该环境样品的质谱图。

根据质谱图的峰值位置和强度,我们可以推断该环境样品中的化合物种类和含量。

此外,我们还观察到在不同光照条件下,环境样品的质谱图发生了变化,这可能与光照引起的化学反应有关。

仪器分析学生设计实验报告

仪器分析学生设计实验报告

仪器分析学生设计实验报告引言仪器分析是化学分析的重要分支,它通过利用各种仪器设备,对样品中的化学成分进行定性和定量分析。

而学生设计实验则是培养学生分析和解决问题的能力的重要途径。

本实验旨在通过选取某一具体问题,设计并完成相应的仪器分析实验,提高学生的实践操作能力和仪器分析方法的应用能力。

实验设计本次实验中,选择了某食品中某特定成分的定量分析问题进行研究。

首先,我们需要明确分析目标和研究的对象。

然后,根据已有的仪器设备和分析方法,设计实验的步骤和操作流程。

最后,进行实验并对实验结果进行分析和解释。

实验目标本次实验的主要目标是通过仪器分析方法,对某食品中某特定成分进行定量分析,并确定该食品中特定成分的含量。

研究对象本次实验中,我们选取了某品牌的饼干产品作为研究对象。

我们将针对其中的某特定成分进行定量分析,并与其他品牌的饼干进行比较分析。

仪器设备和分析方法本次实验将使用以下仪器设备和分析方法来完成定量分析:1. 气相色谱仪:用于分离和定量某特定成分,具有高灵敏度和精确度。

2. 高效液相色谱仪:用于分离和定量其他成分,具有全面的分析能力。

3. 紫外可见分光光度计:用于测定某特定成分的吸收光谱,以便定量分析。

4. 标准溶液:用于构建标准曲线,确定待测样品中某特定成分的含量。

实验步骤和操作流程1. 样品的准备:选择合适的样品,并将其制备成适合分析的形式,如提取物、溶液等。

2. 标准曲线的构建:利用标准品和已知浓度的溶液,按一定比例制备不同浓度的标准溶液。

通过测定吸收光谱,制定标准曲线。

3. 仪器调试和校准:根据仪器设备的要求,对仪器进行调试和校准,以保证实验结果的准确性和可靠性。

4. 样品的分析:将样品注入气相色谱仪或高效液相色谱仪中,进行分离和定量。

5. 数据的处理和分析:根据实验结果,利用标准曲线,计算样品中特定成分的含量。

6. 结果的验证和比较:将实验结果与其他品牌的饼干进行比较,验证分析结果的准确性和可靠性。

现代仪器分析实验报告

现代仪器分析实验报告

现代仪器分析实验报告实验一双波长分光光度法测定混合样品溶液中苯甲酸钠的含量一、目的1.熟悉双波长分光光度法测定二元混合物中待测组分含量的原理和方法。

2.掌握选择测定波长(λ1)和参比波长(λ2)的方法。

二、原理混合样品溶液由苯酚和苯甲酸钠组成,在0.04mol/LHCl溶液中测得其吸收光谱,苯甲酸钠的吸收峰在229nm处,苯酚的吸收峰在210nm处。

若测定苯甲酸钠,从光谱上可知干扰组分(苯酚)在229和251nm处的吸光度相等,则ΔA=KC苯甲酸钠ΔA仅与苯甲酸钠浓度成正比,而与苯酚浓度无关,从而测得苯甲酸钠的浓度。

三、仪器与试剂紫外分光光度计苯酚苯甲酸钠蒸馏水盐酸四、操作步骤及主要结果1.样品的制备(1)标准储备液的配制精密称取苯甲酸钠0.1013g和苯酚0.1115g,分别用蒸馏水溶解,定量转移至500ml容量瓶中,用蒸馏水稀释至刻度,摇匀,即得浓度为200μg/ml的储备液,置于冰箱中保存。

(2)标准溶液的配制分别吸取标准苯酚储备液5.00ml和标准苯甲酸钠储备液5.00ml至100ml容量瓶中,用0.04mol/LHCl溶液稀释至刻度,摇匀,即得浓度为10μg/ml的标准溶液。

2.样品的测定(1)波长组合的选择于可见-紫外分光光度计上分别测定苯酚和苯甲酸钠标准溶液的吸收光谱(检测波长200~320nm),确定双波长法测定苯甲酸钠含量时的参比波长(λs=257.5nm)和测定波长(λm=231.2nm)。

(2)苯甲酸钠工作曲线的绘制配制不同浓度的l苯甲酸钠/0.04MHCl 溶液。

以0.04mol/L HCl溶液为参比溶液,测定系列浓度的苯甲酸钠/0.04M HCl溶液在λm和λs处的吸光度差值(见表1),计算其回归方程Y=0.0652X+0.0311(R2=0.999)。

(3)测定以0.04mol/L HCl溶液为参比溶液,测定混和溶液的吸光度值( n=3 ),根据回归方程计算混和溶液中苯甲酸钠的含量(X,RSD%)。

仪器分析实验报告(完整版)

仪器分析实验报告(完整版)

仪器分析实验报告(完整版)实验目的本实验旨在掌握分光光度法、电位滴定法以及气相色谱法的原理、方法及操作技能,以及利用这些分析方法对某种化合物进行定量分析。

实验原理1. 分光光度法:利用物质吸收光的特性,通过测量溶液中所吸收的光的强度来确定物质的浓度。

该方法可根据比尔-朗伯定律,即吸收光强与物质浓度成正比的关系进行浓度测定。

2. 电位滴定法:利用滴定过程中所发生的电位变化来确定滴定终点,从而计算出待分析物的浓度。

滴定过程中,滴定剂与待测溶液发生反应,产生的氧化还原反应引起电位的变化。

3. 气相色谱法:借助气相色谱仪对待测物质进行分离和定量分析。

样品被气相载气带到色谱柱中,不同组分在色谱柱内会根据其亲和性以不同速度迁移,从而实现分离。

实验仪器与试剂1. 分光光度计2. 电位滴定仪3. 气相色谱仪4. 待测溶液:某种含有未知物质的溶液5. 标准溶液:含有已知浓度物质的溶液实验步骤及结果1. 分光光度法a. 准备一系列标准溶液,测量其吸光度,建立吸光度与浓度之间的标准曲线。

b. 用分光光度计测量待测溶液的吸光度,根据标准曲线确定其浓度。

2. 电位滴定法a. 准备滴定溶液和待滴定溶液。

b. 用电位滴定仪滴定待测溶液,记录滴定过程中的电位变化,以此判断滴定终点。

c. 根据滴定所需的滴定液体积和滴定终点电位变化量,计算出待测溶液中物质的浓度。

3. 气相色谱法a. 准备样品和标准溶液。

b. 将样品和标准溶液分别注入气相色谱仪,设置合适的操作参数。

c. 通过检测样品中某种组分在色谱柱中的保留时间,并参照标准样品的保留时间,确定待测样品中该组分的含量。

实验数据处理根据实验结果,利用对应的计算公式和标准曲线,计算出待测溶液中未知物质的浓度或含量。

同时,对数据进行统计分析,包括均值、标准偏差、相关系数等,以确定实验结果的可靠性。

根据实验过程中的观察结果,可对实验方法的优缺点进行讨论,并对实验中可能出现的误差进行分析与改进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验1 仿真信号产生实验一、实验目的:1.熟悉LabVIEW中仿真信号的多种产生函数及参数设置。

2.掌握常用测试仿真信号的产生。

3.学会产生复杂的函数波形和任意波形。

二、实验内容:1.采用Express VI仿真信号发生器,产生规定的附有噪声的正弦信号,并显示波形。

2. 采用波形发生器VI,产生规定的附有噪声的多波形信号,并显示波形。

3. 产生任意波形信号,并显示和存盘。

4. 采用公式节点,产生规定的复杂函数信号。

三、实验器材:安装有LabVIEW软件的计算机1台四、实验原理:1.虚拟仪器中获得信号数据的3个途径:(1)对被测的模拟信号,使用数据采集卡或其他硬件电路,进行采样和A/D变换,送入计算机。

(2)从文件读入以前存储的波形数据,或由其他仪器采集的波形数据。

(3)在LabVIEW中的波形产生函数得到的仿真信号波形数据。

2.测试信号在LabVIEW中的表示在LabVIEW中测试信号已经是离散化的时域波形数据,表示信号的数据类型有数组、波形数据和动态数据3种。

波形数据是一种特殊的簇结构,它由时间起始值t0、两个采样点的时间间隔值dt以及采样数据一维数组Y组合成的一个簇。

它的物理意义是对一个模拟信号x(t)从时间t0开始进行采样和A/D转换,采样率为fs,对应采样时间间隔dt=1/fs ,数组Y为各个时刻的采样值。

对周期信号,1个周期的采样点数等于采样频率除以信号频率。

3.仿真信号产生函数在LabVIEW中产生一个仿真信号,相当于通过软件实现了一个信号发生器的功能。

LabVIEW提供了丰富的仿真信号,包括正弦、方波、三角波、多频信号、调制信号、随机噪声信号、任意波形等。

针对不同的数据形式(动态数据类型、波形数据和数组),LabVIEW中有3个不同层次的信号发生器(Express VI仿真信号发生器、波形发生器VI和普通信号发生器VI)。

4.公式节点产生仿真信号用公式节点可以产生能够用公式进行描述的信号,用公式节点可产生经过复杂运算生成的信号。

公式波形.Vi产生的信号是波形数据,它的途径是:模板函数→信号处理→波形生成→公式波形.vi。

五、实验步骤:1.设计一个简易的正弦波发生器,频率、幅值和直流偏值在面板上可调,还可叠加噪声信号,并显示波形。

分析:采用Express VI仿真信号发生器可以完成。

(1)前面板设计:应包括的控件有波形频率、幅度和直流偏值输入设置,噪声的标准偏差设置,显示波形的图形控件,还可用一个选择开关控制程序启动和停止。

见图1正弦波加噪声发生器前面板。

图1 正弦波加噪声发生器前面板(2)框图程序设计:图2 正弦波加噪声发生器框图程序(3)运行程序:改变以上参数,注意观察信号波形的变化。

图3 正弦波加噪声发生器程序2.设计一个简易的仿真多波形发生器,可产生频率、幅值和直流偏值可调的正弦、方波、三角波、锯齿波信号,还可叠加高斯噪声信号,并且采样率和采样点可选,显示波形。

分析:Express VI仿真信号发生器使用方便,在编程时用户可改变各种参数,并能马上演示结果。

但是有些参数(包括波形类型、采样率和采样点等)无输入端口,即运行程序后用户不能从面板改变。

而波形发生器VI提供了更多和灵活的输入端口。

所以本题目采用波形发生器VI中的函数来完成。

(1)前面板设计:在1题的前面板基础上再增加波形选择旋钮knob控件和采样率和采样点输入簇控件,并对旋钮(Knob)控件的文本列表属性进行设置,正弦波、三角波、方波、锯齿波对应数值分别为0~3。

再选用一些面板装饰控件,调整各控件的位置、大小和显示层数,把前面板设计成较美观、实用的虚拟仪器面板,参考界面如图4 仿真多波形发生器程序所示。

图4 仿真多波形发生器程序(2)框图程序设计:选用波形发生器VI中的Basic Function Generator函数产生要求的4种周期信号,它的输入参数见图5(a)。

连接波形选择knob旋钮到signal type端口,连接频率、幅度、采样参数簇端口。

选用波形发生器VI中的Gaussian White Noise Waveform函数产生标准偏差可调的高斯白噪声,用2次加法运算完成信号的直流偏值设置和叠加高斯白噪声,因为Labview中的许多运算具有多态性(即不同类型的数据可参与运算)。

然后全部放入1个While循环中,用开关控制循环的结束。

见图5 仿真多波形发生器框图程序。

(a) Basic Function Generator函数(b) Gaussian White Noise Waveform函数图5 仿真多波形发生器框图程序(3)运行程序:①分别改变信号的类型、频率、幅值和直流偏值,观察输出信号的变化。

②改变噪声的大小,观察输出信号的变化。

如图6 仿真多波形发生器程序。

图6 仿真多波形发生器程序(4)在程序中添加1个指示型波形数据簇,连接到输出波形上。

让噪声等于0,分别改变波形和改变采样频率和采样点数,观察输出信号波形变化,记录波形数据。

注意信号的频率与采样频率的关系。

如图6 仿真多波形发生器程序7图6 仿真多波形发生器程序3.产生如下图7所示的任意波形信号,显示波形,并且把波形数据存盘,存放格式为2维的电子表格文件。

图7 需产生的任意波形提示:采用Express VI中的Simulate Arbitrary Signal,打开如图8所示的对话框,根据要求从图中得到1组X和Y的值定义信号,时间间隔取1秒。

使用Waveform Graph显示波形,可使用Write To Spreadsheet File函数存盘。

需注意的是,Simulate Arbitrary Signal输出的波形数据为动态数据,只有1组Y的值,X 初始值和X间隔。

若直接存盘,只有Y的值,无X的值。

想一想,怎样得到X的值。

图8 Si8mulate Arbitrary Signal函数的信号定义对话框数据存表程序框图,及数据存表结果如下图9。

图9 数据存表程序框图,及数据存表结果此外,也可以不采用Express VI 中的Simulate Arbitrary Signal ,使用数组或表格输入,产生任意波形,只是需要自己做的事更多。

4.采用公式节点,产生信号:y(t)=sin(wt)+0.6sin(3wt)+0.2sin(5wt)+t ,信号的频率和幅值面板上可调。

提示:函数Formula Waveform 产生波形,公式中2f ωπ=,π用pi(1)表示,t 表示自变量时间,公式中不能省略乘号“*”。

还要选择合适的采样率和采样点数,才能得到需要的波形。

参考波形如图10 所示。

公式节点产生波形程序框图如图1111 公式节点产生波形程序框图六、思考题1.在实验题目2中,如何实现通过面板选择叠加不同类型的噪声信号?提示:Labview 提供了9种仿真的随机信号产生函数,但1个函数只能产生1种噪声,可采用包括9帧的CASE 结构,每帧调用1个噪声函数,用面板上的噪声类型选择控件来控制。

2.在实验题目4中,信号的公式改为从面板输入,输入什么公式可产生三角波、指数波和对数波。

实验2交流电压表仿真实验一、实验目的:1.理解交流电压的基本参量定义。

2.了解交流电压的模拟测量方法。

3.掌握交流电压的采样计算测量方法和计算公式,并且编程实现。

4.学会使用LabVIEW提供的周期信号幅值计算函数。

二、实验内容:1.设计1个交流电压表的仿真软件(包括前面板和框图程序),设计要求如下:●可以测量周期信号(正弦、方波、三角波、锯齿波)的有效值、峰值、直流分量(均值)和平均值。

●被测信号来源于LabVIEW仿真信号发生器。

●分别采用LabVIEW提供的时域处理函数和仅使用基本数学运算函数的方法。

2.使用设计的交流电压表分别测量正弦、方波、三角波、锯齿波信号,验证不同波形时有效值、峰值和平均值之间的关系。

3.研究信号频率与采样频率、采样点数和测量误差之间关系。

4.被测信号叠加噪声后,再进行测量和分析误差。

三、实验器材:安装有LabVIEW软件的计算机1台四、实验原理:1.交流电压基本参量定义表征交流电压的三个基本参量是有效值、峰值和平均值,其定义和计算公式如下表所示,2.测量方法:(1)基于AC-DC转换的模拟测量方法通过检波电路将交流电压变换为峰值、平均值或有效值的直流电压,再对直流电压进行测量。

峰值检波的基本原理是通过二极管正向快速充电达到输入电压的峰值,而二极管反向截止时“保持”该峰值。

其原理电路图及波形图如图所示。

p pVt图峰值检波原理图(a. 串联式,b. 并联式,c. 波形图)(2)模拟运算集成电路直接根据有效值的定义式,采用模拟运算的集成电路来实现,如图所示。

首先是由模拟乘法器实现平方运算,再是积分和开方运算,最后通过运算放大器的比例运算,得到有效值输出。

随着集成电路技术的发展,计算式有效值电压表得到更多应用。

图5-5 计算式有效值变换实现框图(3)热电偶有效值检波通过被测交流电压u(t)对加热丝加热,热偶的热端感应加热丝的温度,维持冷端温度T0不变,并通过连接导线连接直流微安表。

由于热端与冷端有温差,从而产生热电动势,并使热偶回路中产生直流电流I,并由该直流电流驱动微安表头,如图所示。

电流I正比于热电动势,而热电动势正比于热端与冷端的温差,而热端温度与加热功率成正比,即u(t)的有效值的平方成正比。

即表头电流I正比于有效值V的平方。

热电偶有效值电压表的缺点是,受外界环境温度的影响较大,结构复杂,价格较贵。

图热电偶有效值测量原理(4)采样-计算法直接采用高速A/D转换器,将被测交流电压波形以奈奎斯特采样频率实时采样,然后,对采样数据进行处理,根据定义计算出被测交流电压的有效值、峰值和平均值。

对模拟信号x(t)的一个周期进行采样和A/D 转换,得到有限长数字序列x(n),其中n=0,1,2…N-1,离散计算公式如表3-5所示。

在虚拟仪器中,计算机只能对离散信号进行处理,所以采用第4种方法测量交流电压,本实验正是采用此方法。

3.波峰因数和波形因数规则周期信号的有效值和平均值与峰值之间有一定的数学关系,用波峰因数和波形因数表示,不同波形有不同的因数,见表。

需要注意的是,当这些交流信号含有直流分量时,上述信号有效值和平均值与峰值之间的波峰因数和波形因数不成立。

并且有效值不等于直流分量加交流分量的有效值,从有效值的计算公式很容易理解,即RMS x x μ=。

但有时在采集信号时,波形数据附加了直流分量,或需要单独计算不含直流的交流有效值,这时需要先减去直流分量再计算,公式为:1RMS x N=流分量的平均值计算也如此。

4.在LabVIEW 中有关信号幅值特征值计算函数在LabVIEW 中实现信号幅值特征值的求取,最简单有效的方式是用Express VI 中的幅值和电平测量.VI 。

相关文档
最新文档