振动试验常用公式

合集下载

振动计算力学公式

振动计算力学公式

振动台力学公式1、 求推力(F )的公式F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N )m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg )m 2—试件(包括夹具、安装螺钉)质量(kg )A — 试验加速度(m/s2)2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2)V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz )V=ωD ×10-3 ………………………………………………公式(3) 式中:V 和ω与“”中同义D —位移(mm 0-p )单峰值A=ω2D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“”,“”中同义 公式(4)亦可简化为:A=D f 2502式中:A 和D 与“”中同义,但A 的单位为g 1g=s 2所以: A ≈D f ⨯252,这时A 的单位为m/s 2定振级扫频试验平滑交越点频率的计算公式 加速度与速度平滑交越点频率的计算公式f A-V =VA28.6 ………………………………………公式(5)式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

速度与位移平滑交越点频率的计算公式DV f DV 28.6103⨯=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。

加速度与位移平滑交越点频率的计算公式f A-D =DA ⨯⨯23)2(10π ……………………………………公式(7)式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。

根据“”,公式(7)亦可简化为:f A-D ≈5×DAA 的单位是m/s 2 4、 扫描时间和扫描速率的计算公式 线性扫描比较简单:S 1=11V f f H - ……………………………………公式(8) 式中: S1—扫描时间(s 或min )f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s )对数扫频:倍频程的计算公式n=2Lg f f LgLH ……………………………………公式(9)式中:n —倍频程(oct )f H —上限频率(Hz ) f L —下限频率(Hz )扫描速率计算公式R=TLg f f LgLH2/ ……………………………公式(10)式中:R —扫描速率(oct/min 或)f H —上限频率(Hz ) f L —下限频率(Hz ) T —扫描时间扫描时间计算公式T=n/R ……………………………………………公式(11)式中:T —扫描时间(min 或s )n —倍频程(oct )R —扫描速率(oct/min 或oct/s )5、随机振动试验常用的计算公式 频率分辨力计算公式:△f=Nf max……………………………………公式(12) 式中:△f —频率分辨力(Hz )f max —最高控制频率 N —谱线数(线数) f max 是△f 的整倍数随机振动加速度总均方根值的计算(1)利用升谱和降谱以及平直谱计算公式 PSD(g 2/Hz)功率谱密度曲线图(a )A 2=W ·△f=W ×(f 1-f b ) …………………………………平直谱计算公式A 1=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=+⎰111)(m b a b f f f f m f w dff w b ba ……………………升谱计算公式 A 1=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=-⎰121112111)(m f f ff m f w df f w ……………………降谱计算公式 式中:m=N/3 N 为谱线的斜率(dB/octive ) 若N=3则n=1时,必须采用以下降谱计算公式A3= lg12f f加速度总均方根值:g mis=321A A A ++ (g )…………………………公式(13-1)设:w=w b =w 1=Hz f a =10Hz f b =20Hz f 1=1000Hz f 2=2000Hz w a →w b 谱斜率为3dB ,w 1→w 2谱斜率为-6dB利用升谱公式计算得:A 1=5.12010111202.011111=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+++m b a b b f f m f w 利用平直谱公式计算得:A 2=w ×(f 1-f b )=×(1000-20)=196 利用降谱公式计算得:A 3=1002000100011210002.0111212111=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯-⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛----m f f m f w 利用加速度总均方根值公式计算得:g mis=321A A A ++=1001965.1++= (2) 利用平直谱计算公式:计算加速度总均方根值 PSD(g 2/Hz)功率谱密度曲线图(b )为了简便起见,往往将功率谱密度曲线图划分成若干矩形和三角形,并利用上升斜率(如3dB/oct )和下降斜率(如-6dB/oct )分别算出w a和w 2,然后求各个几何形状的面积与面积和,再开方求出加速度总均方根值g rms =53241A A A A A ++++ (g)……公式(13-2)注意:第二种计算方法的结果往往比用升降谱计算结果要大,作为大概估算可用,但要精确计算就不能用。

振动台常用公式

振动台常用公式

振动台在使用中经常运用的公式1、 求推力(F )的公式F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N )m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg )m 2—试件(包括夹具、安装螺钉)质量(kg )A — 试验加速度(m/s 2)2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2)V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz )2.2 V=ωD ×10-3………………………………………………公式(3) 式中:V 和ω与“2.1”中同义D —位移(mm 0-p )单峰值2.3 A=ω2D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“2.1”,“2.2”中同义 公式(4)亦可简化为:A=D f ⨯2502式中:A 和D 与“2.3”中同义,但A 的单位为g1g=9.8m/s 2所以: A ≈D f ⨯252,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 3.1 加速度与速度平滑交越点频率的计算公式f A-V =VA28.6 ………………………………………公式(5)式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式DV f DV 28.6103⨯=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。

3.3 加速度与位移平滑交越点频率的计算公式f A-D =DA ⨯⨯23)2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。

振动试验常用公式大全

振动试验常用公式大全

振动台常用公式1、 求推力(F )的公式F=(m 0+m 1+m 2+ ……)A …………………………公式(1)式中:F —推力(激振力)(N )m 0—振动台运动部分有效质量(kg )m 1—辅助台面质量(kg )m 2—试件(包括夹具、安装螺钉)质量(kg )A — 试验加速度(m/s 2)2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式2.1 A=ωv ……………………………………………………公式(2)式中:A —试验加速度(m/s 2)V —试验速度(m/s )ω=2πf(角速度)其中f 为试验频率(Hz)2.2 V=ωD×10-3 ………………………………………………公式(3)式中:V 和ω与“2.1”中同义D—位移(mm 0-p )单峰值2.3 A=ω2D×10-3 ………………………………………………公式(4)式中:A、D 和ω与“2.1”,“2.2”中同义公式(4)亦可简化为: A=D f ⨯2502式中:A 和D 与“2.3”中同义,但A 的单位为g1g=9.8m/s 2所以: A ≈D f ⨯252,这时A 的单位为m/s 2定振级扫频试验平滑交越点频率的计算公式3.1 加速度与速度平滑交越点频率的计算公式f A-V =V A28.6 ………………………………………公式(5)式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式D V f D V 28.6103⨯=- …………………………………公式(6)式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。

3.3 加速度与位移平滑交越点频率的计算公式f A-D =D A ⨯⨯23)2(10π ……………………………………公式(7)式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。

振动试验常用公式

振动试验常用公式

振动台在使用中经常运用的公式1、 求推力(F )的公式F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N )m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg )m 2—试件(包括夹具、安装螺钉)质量(kg )A — 试验加速度(m/s 2)2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2)V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz )2.2 V=ωD ×10-3………………………………………………公式(3) 式中:V 和ω与“2.1”中同义D —位移(mm 0-p )单峰值2.3 A=ω2D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“2.1”,“2.2”中同义 公式(4)亦可简化为:A=D f ⨯2502式中:A 和D 与“2.3”中同义,但A 的单位为g1g=9.8m/s 2所以: A ≈D f ⨯252,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 3.1 加速度与速度平滑交越点频率的计算公式f A-V =VA28.6 ………………………………………公式(5)式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式DV f DV 28.6103⨯=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。

3.3 加速度与位移平滑交越点频率的计算公式f A-D =DA ⨯⨯23)2(10π ……………………………………公式(7)式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。

振动计算力学公式

振动计算力学公式

振动计算力学公式公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]振动台力学公式1、求推力(F )的公式F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N )m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg )m 2—试件(包括夹具、安装螺钉)质量(kg )A — 试验加速度(m/s 2)2、加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2)V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz )V=ωD ×10-3 ………………………………………………公式(3) 式中:V 和ω与“”中同义D —位移(mm 0-p )单峰值A=ω2D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“”,“”中同义 公式(4)亦可简化为:A=D f ⨯2502式中:A 和D 与“”中同义,但A 的单位为g1g=s 2所以: A ≈D f ⨯252,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 加速度与速度平滑交越点频率的计算公式f A-V =VA28.6 ………………………………………公式(5) 式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

速度与位移平滑交越点频率的计算公式DV f DV 28.6103⨯=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。

加速度与位移平滑交越点频率的计算公式f A-D =DA ⨯⨯23)2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。

振动计算力学公式

振动计算力学公式

振动台力学公式1、 求推力(F )的公式F=(m 0+m 1+m 2+ ……)A …………………………公式(1)式中:F —推力(激振力)(N )m 0—振动台运动部分有效质量(kg )m 1—辅助台面质量(kg )m 2—试件(包括夹具、安装螺钉)质量(kg )A — 试验加速度(m/s 2)2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式2.1 A=ωv ……………………………………………………公式(2)式中:A —试验加速度(m/s 2)V —试验速度(m/s )ω=2πf (角速度)其中f 为试验频率(Hz )2.2 V=ωD ×10-3………………………………………………公式(3)式中:V 和ω与“2.1”中同义D —位移(mm 0-p )单峰值2.3 A=ω2D ×10-3 ………………………………………………公式(4)式中:A 、D 和ω与“2.1”,“2.2”中同义公式(4)亦可简化为: A=D f ⨯2502式中:A 和D 与“2.3”中同义,但A 的单位为g1g=9.8m/s 2所以: A ≈D f ⨯252,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式3.1 加速度与速度平滑交越点频率的计算公式f A-V =VA 28.6 ………………………………………公式(5) 式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式DV f D V 28.6103⨯=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。

3.3 加速度与位移平滑交越点频率的计算公式f A-D =DA ⨯⨯23)2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。

grms计算公式和原理

grms计算公式和原理

振动台在使用中经常运用的公式1、 求推力(F )的公式F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N )m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg )m 2—试件(包括夹具、安装螺钉)质量(kg )A — 试验加速度(m/s 2)2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2)V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz )V=ωD ×10-3 ………………………………………………公式(3) 式中:V 和ω与“”中同义D —位移(mm 0-p )单峰值2.3 A=ω2D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“”,“”中同义 公式(4)亦可简化为:A=D f ⨯2502式中:A 和D 与“”中同义,但A 的单位为g1g=9.8m/s 2所以: A ≈D f ⨯252,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 加速度与速度平滑交越点频率的计算公式f A-V =VA28.6 ………………………………………公式(5)式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

速度与位移平滑交越点频率的计算公式DV f DV 28.6103⨯=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。

加速度与位移平滑交越点频率的计算公式f A-D =DA ⨯⨯23)2(10π ……………………………………公式(7)式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。

检测振动的实验报告

检测振动的实验报告

检测振动的实验报告本实验旨在探究振动的基本特性,通过实验测量和分析,学习振动的周期、频率和振幅,并了解振动的形成原因以及振动的应用。

实验原理:振动是物体在平衡位置附近以某种规律往复运动的现象,其中的振幅、频率和周期是振动的基本特性。

振幅(A):振动最大偏离平衡位置的距离。

周期(T):一个完整的振动往复运动所需的时间。

频率(f):单位时间内所完成的振动往复运动的次数。

根据振幅与周期、频率之间的关系,可以得出以下公式:f=1/TT=1/f实验仪器与材料:1. 振动装置2. 实验电路3. 示波器4. 计时器5. 可调谐振子6. 钢球7. 尺子实验步骤:1. 将实验电路连接好,并将振动装置固定在台架上。

2. 通过调节振动装置的频率,使得振动台面上的钢球能够开始振动。

3. 用计时器记录下钢球进行一次完整的振动所需的时间,即一个周期的时间T。

4. 通过示波器观察振动过程,并记录下最大振幅的数值A。

5. 重复步骤2-4,通过调节频率,获得多组不同的T和A的数值。

数据处理与分析:根据实验记录,计算出每组数据的频率f,并计算出振幅与周期、频率之间的关系。

实验结果:试验次数周期(T)/s 频率(f)/Hz 振幅(A)/cm1 0.5 2.0 4.02 0.6 1.67 3.03 0.7 1.43 2.54 0.8 1.25 2.05 0.9 1.11 1.56 1.0 1.0 1.0根据实验数据,绘制频率f与振幅A以及周期T之间的关系图:(插入数据处理图表)根据图表分析得出结论:1. 振幅与频率成反比关系:振幅越大,频率越小;振幅越小,频率越大。

这是因为振动所需的能量是一定的,在振动过程中,能量的转化会导致振幅减小而频率增大,反之亦然。

2. 振幅与周期成正比关系:振幅越大,周期越大;振幅越小,周期越小。

这是因为振幅与物体的振动速度和动能有关,在振动过程中,能量的损耗会导致振幅减小而周期增大,反之亦然。

应用领域:振动在生活中有很多应用,例如:1. 振动传感器:用于感受和测量机械设备的振动情况,可以及时检测到设备的故障和异常,保障设备的正常运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

振动台在使用中经常运用的公式1、 求推力(F )的公式F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N )m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg )m 2—试件(包括夹具、安装螺钉)质量(kg )A — 试验加速度(m/s 2)2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2)V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz )2.2 V=ωD ×10-3………………………………………………公式(3) 式中:V 和ω与“2.1”中同义D —位移(mm 0-p )单峰值2.3 A=ω2D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“2.1”,“2.2”中同义 公式(4)亦可简化为:A=D f ⨯2502式中:A 和D 与“2.3”中同义,但A 的单位为g1g=9.8m/s 2所以: A ≈D f ⨯252,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 3.1 加速度与速度平滑交越点频率的计算公式f A-V =VA28.6 ………………………………………公式(5)式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式DV f DV 28.6103⨯=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。

3.3 加速度与位移平滑交越点频率的计算公式f A-D =DA ⨯⨯23)2(10π ……………………………………公式(7)式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。

根据“3.3”,公式(7)亦可简化为:f A-D ≈5×DA A 的单位是m/s 24、 扫描时间和扫描速率的计算公式 4.1 线性扫描比较简单:S 1=11V f f H - ……………………………………公式(8) 式中: S1—扫描时间(s 或min )f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s )4.2 对数扫频: 4.2.1 倍频程的计算公式n=2Lg f f LgLH ……………………………………公式(9)式中:n —倍频程(oct )f H —上限频率(Hz ) f L —下限频率(Hz )4.2.2 扫描速率计算公式R=TLg f f LgLH2/ ……………………………公式(10)式中:R —扫描速率(oct/min 或)f H —上限频率(Hz ) f L —下限频率(Hz ) T —扫描时间 4.2.3扫描时间计算公式T=n/R ……………………………………………公式(11)式中:T —扫描时间(min 或s )n —倍频程(oct )R —扫描速率(oct/min 或oct/s )5、随机振动试验常用的计算公式 5.1 频率分辨力计算公式:△f=Nf max……………………………………公式(12) 式中:△f —频率分辨力(Hz )f max —最高控制频率 N —谱线数(线数) f max 是△f 的整倍数5.2 随机振动加速度总均方根值的计算 (1)利用升谱和降谱以及平直谱计算公式 PSD(g 2功率谱密度曲线图(a ) A 2=W ·△f=W ×(f 1-f b ) …………………………………平直谱计算公式A 1=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=+⎰111)(m b a b f f f f m f w df f w b ba……………………升谱计算公式A 1=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=-⎰121112111)(m f f f f m f w df f w ……………………降谱计算公式 式中:m=N/3 N 为谱线的斜率(dB/octive ) 若N=3则n=1时,必须采用以下降谱计算公式A3=2.3w 1f 1 lg12f f 加速度总均方根值:g mis=321A A A ++ (g )…………………………公式(13-1)设:w=w b =w 1=0.2g 2/Hz f a =10Hz f b =20Hz f 1=1000Hz f 2=2000Hz w a →w b 谱斜率为3dB ,w 1→w 2谱斜率为-6dB利用升谱公式计算得:A 1=5.12010111202.011111=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+++m b a b b f f m f w 利用平直谱公式计算得:A 2=w ×(f 1-f b )=0.2×(1000-20)=196利用降谱公式计算得:A 3 =1002000100011210002.0111212111=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯-⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛----m f f m f w 利用加速度总均方根值公式计算得:g mis=321A A A ++=1001965.1++=17.25(2) 利用平直谱计算公式:计算加速度总均方根值 PSD(g 2功率谱密度曲线图(b )为了简便起见,往往将功率谱密度曲线图划分成若干矩形和三角形,并利用上升斜率(如3dB/oct )和下降斜率(如-6dB/oct )分别算出w a 和w 2,然后求各个几何形状的面积与面积和,再开方求出加速度总均方根值g rms =53241A A A A A ++++ (g)……公式(13-2)注意:第二种计算方法的结果往往比用升降谱计算结果要大,作为大概估算可用,但要精确计算就不能用。

例:设w=w b +w 1=0.2g 2/Hz f a =10Hz f b =20Hz f 1=1000Hz f 2=2000Hz 由于f a 的w a 升至f b 的w b 处,斜率是3dB/oct ,而w b =0.2g 2/Hz10dB w w ab3lg= 所以w a =0.1g 2/Hz 又由于f 1的w 1降至f 2的w 2处,斜率是-6dB/oct ,而w 1=0.2g 2/Hz10dB w w 6lg12-= 所以w 2=0.05g 2/Hz 将功率谱密度曲线划分成三个长方形(A 1 A 2 A 3)和两个三角形(A 4 A 5),再分别求出各几何形的面积,则A 1=w a ×(f b -f a )=0.1×(20-10)=1 A 2=w ×(f 1-f b )=0.2×(1000-20)=196 A 3=w 2×(f 2-f 1)=0.05×(2000-1000)=50()()()()5.0210201.02.024=--=--=a b a b f f w w A()()()()7521000200005.02.0212214=--=--=f f w w A加速度总均方根值g rms =54321A A A A A ++++=755.0501961++++ =17.96(g )5.3 已知加速度总均方根g (rms)值,求加速度功率谱密度公式S F =02.119802⨯rmsg ……………………………………………………公式(14) 设:加速度总均方根值为19.8g rms 求加速度功率谱密度S FS F =)/(2.002.119808.1902.11980222Hz g g rms =⨯=⨯ 5.4 求X p-p 最大的峰峰位移(mm )计算公式准确的方法应该找出位移谱密度曲线,计算出均方根位移值,再将均方根位移乘以三倍得出最大峰值位移(如果位移谱密度是曲线,则必须积分才能计算)。

在工程上往往只要估计一个大概的值。

这里介绍一个简单的估算公式X p-p =1067·32131067oo o o f w f w ⨯=⎪⎪⎭⎫⎝⎛ ……………………………………公式(15)式中:X p-p —最大的峰峰位移(mm p-p )f o —为下限频率(Hz )w o —为下限频率(f o )处的PSD 值(g 2/Hz ) 设: f o =10Hz w o =0.14g 2/Hz则: X p-p =1067·p p o o o mm fw f w -=⨯=⨯=⎪⎪⎭⎫⎝⎛6.121014.010*******3213 5.5 求加速度功率谱密度斜率(dB/oct)公式 N=10lgn w w LH/ (dB/oct)…………………………………………公式(16) 式中: n=lg2lg /LHf f (oct 倍频程) w H —频率f H 处的加速度功率谱密度值(g 2/Hz ) w L —频率f L 处的加速度功率谱密度值(g 2/Hz )Welcome !!! 欢迎您的下载,资料仅供参考!。

相关文档
最新文档