钙钛矿太阳能电池材料

合集下载

钙钛矿太阳能电池制备完整

钙钛矿太阳能电池制备完整

钙钛矿太阳能电池制备完整下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!钙钛矿太阳能电池是一种新型的光伏技术,具有高效率、低成本和环保的特点。

钙钛矿电池吸光材料的组成

钙钛矿电池吸光材料的组成

钙钛矿电池吸光材料的组成钙钛矿电池(perovskite solar cell)是一种新型的太阳能电池,采用钙钛矿(perovskite)作为吸光材料,具有高效转换率和低成本的优势。

钙钛矿电池的吸光材料由特定的化学元素组成,这些元素在晶体结构中的排列对电池的性能有重要影响。

钙钛矿晶体具有ABX3的结构,其中A和B是金属离子,X是卤素离子。

吸光材料的化学元素选择对于钙钛矿电池的性能至关重要。

钙钛矿电池最常用的吸光材料是甲胺铅(methylammonium lead,MAPbI3)。

它由甲胺阳离子(CH3NH3+)和铅离子(Pb2+)以及碘离子(I-)组成。

甲胺铅具有良好的光吸收能力和电子传输特性,使得钙钛矿电池具有高效的光电转换效率。

除了甲胺铅以外,钙钛矿电池还可以使用其他吸光材料,如甲胺锡钙钛矿(methylammonium tin perovskite,MASnI3)和甲胺银钙钛矿(methylammonium silver perovskite,MASPbI3)。

这些吸光材料的组成与甲胺铅相似,但是替代了铅离子或碘离子,以实现更好的性能。

此外,还可以使用其他有机-无机钙钛矿材料,如有机铅钙钛矿(organic lead perovskite)和有机非铅钙钛矿(organic non-lead perovskite)。

这些材料的组成包括有机阳离子和金属离子以及卤素离子,如有机阳离子甲胺(methylammonium,MA)、乙酰胺(ethylammonium,EA)和金属离子锡(tin,Sn)、铅(lead,Pb)等。

在实际应用中,钙钛矿电池的吸光材料通常以薄膜形式存在,通过溶剂处理、离子交换、涂布等方法制备。

这些吸光材料的组成和制备工艺对于钙钛矿电池的性能和稳定性具有重要影响,因此需要进行细致的研究和优化。

总之,钙钛矿电池的吸光材料是由特定的化学元素组成的,包括金属离子、卤素离子和有机阳离子等。

钙钛矿太阳能电池组成

钙钛矿太阳能电池组成

钙钛矿太阳能电池组成
钙钛矿太阳能电池是一种新型的太阳能电池,具有高效、便宜和可持续等优点。

它主要由以下几个部分组成:
1. 正电极:一般采用透明导电氧化物(如氧化铟锡)作为导电层,以提供电荷收集和传输功能。

2. 钙钛矿吸收层:钙钛矿材料(一般采用钙钛矿晶体结构的有机无机杂化物)是太阳能电池的主要光电转换层,能够吸收太阳光并将其转化为电能。

3. 电解质层:电解质层位于钙钛矿吸收层和电子传输层之间,起到电子传输和离子迁移的作用。

4. 电子传输层:电子传输层通常采用导电高分子材料(如聚咔唑或聚苯胺)或金属导电氧化物(如二氧化钛)作为电子传输层,用于收集和传导从钙钛矿吸收层释放出的电子。

5. 反电极:反电极通常使用金属(如金或银)或碳纳米管等导电材料,用于电子回流并与正电极形成闭合电路。

以上是钙钛矿太阳能电池的主要组成部分,不同的产品可能有微小的差异,但整体结构相似。

这种新型太阳能电池通过钙钛矿材料的光电转换效应,可以实现更高的光电转换效率,对于太阳能的应用具有重要的意义。

钙钛矿结构及相关功能材料

钙钛矿结构及相关功能材料

钙钛矿结构及相关功能材料
钙钛矿是一种特殊的晶体结构,具有广泛的应用潜力。

它的晶格结构是由钙离子和钛离子组成的,具体化学式为ABX3,其中A代表一种正离子,B代表一种过渡金属离子,X代表一种阴离子。

钙钛矿结构可以被描述为一个由组成晶体的大量离子构成的三维网格,这些离子通过离子键连接在一起。

1.光电材料:钙钛矿晶体具有较高的光吸收效率和较低的载流子再复合率,这使得它们成为太阳能电池中的理想材料。

其中最著名的是有机无机杂化钙钛矿材料,如甲基铅溴钙钛矿(CH3NH3PbBr3)。

这些材料具有高效的光吸收和转换效率,可以用于制造高效能太阳能电池。

2.光催化材料:一些钙钛矿材料具有良好的光催化性能。

例如,钙钛矿材料钙钛矿-氮化铟(CaTiO3-InN)复合材料在可见光下具有较高的光催化活性,可用于光催化水分解产生氢气。

3.电子器件:钙钛矿材料被广泛应用于各种电子器件中,如传感器、电容器和电阻器。

由于其良好的电子导电性和介电性,钙钛矿材料可以用于制备高性能的电子器件。

4.光学材料:钙钛矿晶体具有优异的光学性能,如高折射率和较低的吸收率。

因此,它们被广泛应用于光学镜片、光学纤维和光学传感器等领域。

5.荧光材料:一些钙钛矿材料具有良好的荧光性能,可用于制备荧光标记物、显示屏和发光二极管(LED)等。

6.超导材料:一些钙钛矿材料在低温下表现出超导性质。

例如,镍酒石酸钙钛矿(Bi2Ca2Mn2O4)是一种高温超导材料。

总而言之,钙钛矿结构具有丰富的性质和广泛的应用潜力。

通过对其结构和特性的深入研究,人们可以发现和设计出更多具有新颖功能和应用的钙钛矿材料。

钙钛矿太阳能电池及其制备方法,用电设备

钙钛矿太阳能电池及其制备方法,用电设备

钙钛矿太阳能电池及其制备方法,用电设备
钙钛矿太阳能电池是一种新型的高效率薄膜太阳能电池,具有优异的光电转换效率。

下面是钙钛矿太阳能电池的制备方法:
1. 基材准备:选择透明导电氧化物(如氧化锡)作为导电玻璃基板,并进行表面清洗和处理。

2. 膜层制备:首先制备钙钛矿预体液体溶液,通常采用辛酸铅和溴化铅作为前驱体材料。

将这些材料溶解在有机溶剂中,形成钙钛矿溶液。

3. 薄膜沉积:将钙钛矿溶液通过旋涂、溅射、蒸镀等方法沉积在导电玻璃基板上,形成薄膜。

薄膜的厚度通常控制在几十纳米至几百纳米之间。

4. 热处理:将薄膜在高温下进行热处理,通过化学反应使钙钛矿结晶生长并形成稳定的结构。

5. 电极制备:将导电玻璃基板上的钙钛矿薄膜涂覆电极材料(如碳纳米管或金属网格),形成正负电极。

6. 封装与测试:将制备好的钙钛矿太阳能电池进行封装,保护薄膜免受湿氧等环境的侵蚀,并进行电性能测试。

钙钛矿太阳能电池可以广泛应用于各种电子设备和电力系统。

常见的用电设备包括家庭电器(如电视机、冰箱等)、移动设备(如手机、平板电脑等)、照明设备、交通信号灯、农业灌
溉等。

随着钙钛矿太阳能电池技术的不断发展,其应用领域将会更加广泛,为人们的生活和工作带来更多便利。

钙钛矿太阳能电池材料

钙钛矿太阳能电池材料

钙钛矿太阳能电池材料
钙钛矿太阳能电池是一种基于钙钛矿材料的太阳能电池。

钙钛矿材料具有优良的光吸收和电荷传输性能,因此被广泛研究和应用于太阳能电池领域。

钙钛矿材料的化学式一般为ABX3,其中A可以是有机阳离子、有机和金属离子的混合,B通常是铅、锡等金属离子,X
是氯、溴、碘等阴离子。

钙钛矿太阳能电池的工作原理是光子照射到钙钛矿材料上,激发电子从价带跃迁到导带,形成光生载流子,随后在电场作用下产生电流。

该电池具有高光电转换效率、低成本和易于制备等优点。

然而,钙钛矿太阳能电池也存在一些挑战,如材料稳定性、有机阳离子的易挥发等。

目前,研究者正在努力改进钙钛矿材料的稳定性和制备工艺,以提高钙钛矿太阳能电池的性能和寿命。

钙钛矿电池上游原材料

钙钛矿电池上游原材料

钙钛矿电池上游原材料一、引言钙钛矿电池是一种新型的太阳能电池,具有高效能转换和低制造成本的优势。

而钙钛矿电池的制造过程离不开关键的上游原材料。

本文将详细介绍钙钛矿电池的上游原材料,包括钙钛矿材料、阳极材料、阴极材料和电解液等。

二、钙钛矿材料钙钛矿材料是钙钛矿电池最为重要的组成部分之一。

钙钛矿晶体结构特殊,能够吸收太阳能并将其转换为电能。

常用的钙钛矿材料有有机钙钛矿和无机钙钛矿两种。

有机钙钛矿是近年来的研发热点,具有可调控性好、制备工艺简单等优点。

而无机钙钛矿则具有更高的光电转换效率和稳定性。

在钙钛矿电池的制造中,选择合适的钙钛矿材料对最终电池性能起着重要的影响。

三、阳极材料阳极材料作为钙钛矿电池的另一个重要组成部分,承担着电荷传输和电化学反应的功能。

常用的阳极材料有氧化钛、钛硅氧化物等。

氧化钛是一种广泛应用于太阳能电池领域的材料,它具有良好的光电特性和稳定性。

而钛硅氧化物则是近年来的研究热点,具有更高的光吸收能力和导电性能。

阳极材料的选择对电池的能量转换效率和稳定性具有重要影响。

四、阴极材料阴极材料在钙钛矿电池中起到接受电子并参与电化学反应的作用。

常用的阴极材料有氧化钛、氧化镉等。

氧化钛具有良好的导电性和稳定性,是一种常用的阴极材料。

而氧化镉则具有更高的光电转换效率,但由于其对环境的污染性,近年来在钙钛矿电池中的应用逐渐减少。

在选择阴极材料时,需要综合考虑其电化学性能和环境友好性。

五、电解液电解液是钙钛矿电池中负责离子传输的重要组成部分。

通常使用有机溶剂作为电解液的基质,并掺入适量的离子盐。

常用的电解液有多种,如甲醇溶液、乙二醇溶液等。

电解液的选择需要考虑其对钙钛矿材料和电池性能的兼容性,同时也要注意其稳定性和安全性。

六、总结钙钛矿电池的上游原材料对电池性能至关重要。

钙钛矿材料作为太阳能吸收和能量转换的核心,阳极材料和阴极材料分别在电荷传输和电化学反应中发挥作用,而电解液则是确保离子传输的关键。

钙钛矿太阳能电池材料

钙钛矿太阳能电池材料

背景在能源紧缺的现代社会,为了维持人类的可持续发展,科学家们一直致力于新能源的研究,其中至少在几十亿年内都取之不尽的太阳能便成了热门的研究对象。

太阳能电池大家都不陌生,它通过光电效应或者光化学效应直接把光能转化成电能。

钙钛矿材料我们也很熟悉,就是一类有着与钛酸钙(CaTiO3)相同晶体结构的材料,其结构式一般为ABX3,其中A和B是两种阳离子,X是阴离子。

但钙钛矿太阳能电池却是一个比较新的概念。

2009年日本桐荫横滨大学的宫坂力教授将碘化铅甲胺和溴化铅甲胺应用于染料敏化太阳能电池,获得了最高 3.8%的光电转化效率,此为钙钛矿光伏技术的起点但它直到2014年左右才被人们重视起来。

是因为在短短几年间其效率一直在显著提升,这是NREL上实验室最高电池效率的图,我们可以看出钙钛矿材料的效率上升速率远远超过了其他同类型材料。

钙钛矿材料被认为是最有可能取代硅晶材料作为太阳能电池的材料概述钙钛矿太阳电池一般采用有机无机混合结晶材料——如有机金属三卤化物CH3NH3PbX3(X=Cl, Br, I)作为光吸收材料。

该材料具有合适的能带结构,其禁带宽度为1.5eV,因与太阳光谱匹配而具有良好的光吸收性能,很薄的厚度就能够吸收几乎全部的可见光并用于光电转换。

如图所示,这是钙钛矿太阳能电池的一般结构结构,由上到下分别为玻璃、FTO、电子传输层(ETM)、钙钛矿光敏层、空穴传输层(HTM)和金属电极。

其中电子传输层常常用TiO2钙钛矿电池一个显著的特点是IV曲线(伏安曲线)的滞后(I-V hysteresis)(通常叫滞后现象或迟滞现象),一般从反向扫描(开路电压-短路电流)得到的曲线比正向扫描(短路电流-开路电压)看起来好很多。

现在对钙钛矿的这种现象还没有一个很好的解释,目前比较合理的解释是:钙钛矿材料具有很强的铁电性能(ferroelectricity)以及巨大的介电常数,导致电池的低频电容很大,比其他任何一种光伏电池都显著。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

背景在能源紧缺的现代社会,为了维持人类的可持续发展,科学家们一直致力于新能源的研究,其中至少在几十亿年内都取之不尽的太阳能便成了热门的研究对象。

太阳能电池大家都不陌生,它通过光电效应或者光化学效应直接把光能转化成电能。

钙钛矿材料我们也很熟悉,就是一类有着与钛酸钙(CaTiO3)相同晶体结构的材料,其结构式一般为ABX3,其中A和B是两种阳离子,X是阴离子。

但钙钛矿太阳能电池却是一个比较新的概念。

2009年日本桐荫横滨大学的宫坂力教授将碘化铅甲胺和溴化铅甲胺应用于染料敏化太阳能电池,获得了最高%的光电转化效率,此为钙钛矿光伏技术的起点但它直到2014年左右才被人们重视起来。

是因为在短短几年间其效率一直在显著提升,这是NREL上实验室最高电池效率的图,我们可以看出钙钛矿材料的效率上升速率远远超过了其他同类型材料。

钙钛矿材料被认为是最有可能取代硅晶材料作为太阳能电池的材料概述钙钛矿太阳电池一般采用有机无机混合结晶材料——如有机金属三卤化物CH3NH3PbX3(X=Cl, Br, I)作为光吸收材料。

该材料具有合适的能带结构,其禁带宽度为,因与太阳光谱匹配而具有良好的光吸收性能,很薄的厚度就能够吸收几乎全部的可见光并用于光电转换。

如图所示,这是钙钛矿太阳能电池的一般结构结构,由上到下分别为玻璃、FTO、电子传输层(ETM)、钙钛矿光敏层、空穴传输层(HTM)和金属电极。

其中电子传输层常常用TiO2钙钛矿电池一个显著的特点是IV曲线(伏安曲线)的滞后(I-V hysteresis)(通常叫滞后现象或迟滞现象),一般从反向扫描(开路电压-短路电流)得到的曲线比正向扫描(短路电流-开路电压)看起来好很多。

现在对钙钛矿的这种现象还没有一个很好的解释,目前比较合理的解释是:钙钛矿材料具有很强的铁电性能(ferroelectricity)以及巨大的介电常数,导致电池的低频电容很大,比其他任何一种光伏电池都显著。

文献我选取了五篇有关钙钛矿太阳能电池的文献,第一篇是篇综述,主要内容是现在有机夹层在有机-无机杂化钙钛矿太阳能电池中的研究进展;第二三篇分别从滞后现象以及离子移动的机理上进行分析;第四五篇主要从介绍了的某个钙钛矿太阳能电池材料。

1有机-无机杂化钙钛矿太阳能电池(PSC)是最有希望的第三代太阳能电池。

它们具有良好的功率转换效率(PCE)且能耗更低。

为了提高PSC的效率和长期稳定性,有机分子经常用作“夹层”。

以改变太阳能电池中特定界面提高性能。

该篇文献回顾了使用夹层来优化PSC性能的最新进展。

本文分为三个部分。

第一部分着重于介绍为什么有机分子夹层能够提高太阳能电池的性能;第二部分讨论常用的分子中间层;在最后一部分,讨论了制作薄均匀夹层的方法。

这张图展现了在有机-无机杂化钙钛矿太阳能电池中四种可能加入夹层的位置而作为夹层的材料可能是有机小分子,高聚物,金属氧化物等文献中提到通过控制薄膜的结晶度、厚度和粗糙度,钙钛矿型吸收层的形态是生产高效率PSC的关键。

图二a,b是表面改性引起的形貌变化的扫描电镜图像。

氧化锌的表面能可以通过改变亲水基团(- NH2)和疏水基团(- CH3)的混合比例进行有效地调整。

随基质表面能的减小有机夹层的表面的缺陷也有所减少,从而导致了电池性能的提升。

图二c,d表现了(c3-sam)自组装单分子层作为ch3nh3pbi3钙钛矿层和ZnO电子选择层间夹层的影响。

最终结果是,所制备的电池的PCE增加了31%,从提高到%。

同时,该分子的氨基末端还参与了钙钛矿的结晶,改善了薄膜的形貌有机分子夹层作用机制(图三,图四)在PSC中,晶体结构的缺陷和化学杂质会产生陷阱态从而增加电子与空穴的重新复合(导带与价带的能量差减小了),导致电压下降。

而有机分子可以使表面钝化以减少在表面的陷阱态/缺陷。

小分子通过发生化学反应,可以与表面非键原子或表面的悬挂键结合,降低表面缺陷数以减小陷阱态的作用。

可以自组装的分子,通过自组装在金属氧化物上形成单分子膜,也可以改变表面能。

由于表面复合的减少和形态的改善,电池的性能可以得到改善。

X-和Pb2+可以形成陷阱态而作为复合中心(卤素阴离子作为空穴陷阱和铅离子作为电子陷阱),可以分别用路易斯酸和路易斯碱结合。

如图所示,在表面上未饱和成键的I-用路易斯酸结合,未饱和成键的Pb2+用路易斯碱结合实验证明,用噻吩和吡啶处理钙钛矿层后,效率从13%提高到%和%。

文献第二部分主要介绍了常用的一些有机分子夹层,其中PCE较高的有对氯苯甲酸,β-氨基丙酸,乙醇胺等小分子,这里具体的细节就不过多叙述。

文献第三部分介绍了制作夹层的方法夹层可以通过溶液处理或气相沉积来制备。

所选择的方法取决于所沉积材料的性质和沉积的表面。

图五说明了用于制备薄层的三种最常用的方法,即浸涂、旋涂和热蒸发。

值得注意的是,当使用溶液处理的方法时,需要考虑溶剂对层间形态的影响。

夹层在沉积层的溶剂中的稳定性也很重要。

图六展现了通过缓慢从液体中提取底物,可以得到均匀的分子层的过程。

第一个运用了朗格缪尔-布洛杰特技术,基层侵入两亲分子溶液中,亲水的基团在基质的表面聚集并结合,经过冲洗干燥后可以得到单分子层。

第二个是自组装分子,用于固定的头部基团与基质的表面结合,尾部的功能基团还可以和下一个分子的头部基团结合,从而可以得到单分子或多分子层。

这篇文献主要调查了最近在PSC上使用有机分子进行界面改性的进展。

有很多例子证明了有机分子层可以增加PCE以及钙钛矿太阳能电池装置的长期稳定性。

文章最后总结到低成本、易于设计、修饰和纯化的小分子使它们成为进行界面工程的理想候选者。

但分子需要慎重选择,要确保他们在长时间内能保持稳定,以保持设备的稳定运行。

2选取的第二篇文献研究了可调控的滞后效应IV曲线的滞后是钙钛矿太阳能电池(PSCs)一大特点,他将导致设备效率的计算不准确。

目前已经有许多对迟滞效应出现的机理的研究。

普遍认为离子迁移,电荷捕获/逃脱和电荷积累是解释迟滞效应的理论基础。

然而,迟滞效应的真正起因却仍未明晰。

该文献作者通过调整c-TiO2(致密TiO2)层的喷涂沉积次数并用紫外臭氧处理,实现了正常滞后效应,无滞后效应,反转滞后效应的PSCs。

下图为典型介观钙钛矿电池的结构及工作机理。

(a)FTO (掺杂氟的SnO2透明导电玻璃)/ C -tio2/ mp-tio2 (介孔二氧化钛层)/氧化锆/碳/钙钛矿设备的结构。

钙钛矿通过简单的滴注法渗透到mp-tio2,氧化锆和碳的介孔层间。

(b)图b显示了钙钛矿电池的工作机理。

钙钛矿吸收电子并输送到mp-tio2和C-Tio2层,而产生的空穴转移到孔碳层从而实现电子空穴对的分离。

这是调整c-TiO2(致密TiO2)层的喷涂沉积次数得到的钙钛矿太阳能电池的不同迟滞效应的J-V曲线。

(a)当C-TiO2层喷涂次数为三次或四次时,可以观察到典型迟滞效应器件的J-V 曲线,反扫的性能优于正扫性能;(b)当减少两个喷涂次数的时候,观察到无迟滞效应器件的J-V曲线,正反扫性能一致;(c)当只有一个喷涂次数的时候,观察到反转迟滞效应器件的J-V曲线,反扫性能低于正扫性能。

除了扫描方向,作者还改变了扫描速率图3:不同迟滞效应器件的性能随扫速的变化关系(a)典型迟滞效应器件;(b)无迟滞效应器件;(c)反转迟滞效应器件。

从图中可以看到,扫描速率也对滞后效应一定的影响,其中在某些数值上约有10%的变化,但总体上说,扫描速率的影响不大(VOC 开路电压,Jsc:短路电流,FF:填充因子,pce功率转换效率)下面的两张图很清楚的总结了滞后效应指数与c-TiO2喷涂次数以及扫描速率的关系,c-TiO2喷涂次数减少导致滞后效应指数下降,但扫描速率基本无影响。

(a)迟滞效应指数与c-TiO2喷涂次数的关系曲线;(b)迟滞效应指数与扫描速率的关系曲线。

图7提供了界面处电荷积累和偏振特征的图像。

(a)无偏压下c-TiO2/钙钛矿界面层的能带图;(b)小偏压下c-TiO2/钙钛矿界面层的能带图;(c)大偏压下c-TiO2/钙钛矿界面层的能带图。

表现了能带及电荷复合的过程。

偏压增大的情况下,界面因为极化逐渐向相反的方向弯曲,同时导致了空穴的积累,这种在C-tio2 /钙钛矿型界面稳定积累的阳离子和电子空穴,提高了V OC。

同时这些空穴和阳离子会与来自接触面的二氧化钛的电子在表面结合。

作者认为这种电荷积累缓慢的动态变化导致了所观察到的不同的滞后效应。

由于较薄的C-tio2表面能增大,有着更大的功函数,使得在给定的正向扫描电压下可以有更多的电荷积累,因此电压可以继续增大,而反扫电压是逐渐减小的,就没有这样的表现,反应在伏安特性曲线上就是反转的滞后效应通过对这种可调的滞后效应的研究,作者认为是TiO2/钙钛矿界面的极化导致这种可调节滞后现象,这种极化可以可逆地累积正电荷。

对滞后效应成功地调整,证明了C -TiO2/钙钛矿界面在控制滞后趋势的重要性。

为钙钛矿电池的迟滞效应提供了重要的见解。

3第三篇文献离子移动是有机无机杂化钙钛矿中的热门话题。

它和钙钛矿太阳能电池的反常光伏效应,钙钛矿材料的巨介电常数等特殊性能密切相关。

在钙钛矿太阳能电池中,一般认为离子应该去除,因为大量离子移动会带来材料相分离和电池稳定性差的问题。

很少有人关注离子移动带来的优点。

本篇文献的作者通过在钙钛矿骨架中引入少量小的锂离子和外来碘离子,借助于外电场中外来离子的移动,阐明一定的离子移动/聚集在钙钛矿材料中形成了外来的n/p型掺杂。

这种外来非本征掺杂有助于电池内建电场的提高以及载流子的迅速抽取。

离子移动示意图及电化学性能测试。

(a)外来离子在钙钛矿骨架中移动;(b)钙钛矿离子电导随锂离子增多而增大;(c)反式钙钛矿太阳能电池中NiO/钙钛矿界面电子抽取,含离子的抽取变快实验表明,LiI添加剂不会改变钙钛矿晶型。

Li+最可能在钙钛矿结构的空隙中转移并停留,而I−通常组成八面体的结构形成空隙。

这个曲线表明随着钙钛矿中锂离子的增多,钙钛矿的电导随之增大因为LiI掺杂使导电性增加,从而会加快从钙钛矿到NiO的界面电荷转移,使反式钙钛矿太阳能电池中NiO/钙钛矿界面电子抽取,含Li2+离子的抽取速率变快图2.能级测量原理及掺杂类型。

(a)这是设计的使用原子力显微镜表面电势测试钙钛矿/FTO以及钙钛矿界面的能级的装置(一半涂有FTO,巴拉巴拉)(b)通过对FTO加不同偏压,在界面形成离子聚集,测试得到表面电势在没有偏压的情况下,含Li+2%掺杂的电势差要小于不含Li掺杂的,ΔVN的减小意味着在界面所损耗的能量会减少,从而促进电子从li+2%进入FTO。

由图所示,的偏压下LI2 %的表面电位比li-0低约40 mV,而的偏压下LI2 %的表面电位比li-0高约50 mV。

相关文档
最新文档