蛋白质的主要生理功能和作用

蛋白质的主要生理功能和作用
蛋白质的主要生理功能和作用

蛋白质的主要生理功能和作用

张世林外语学院日语14.1 学号:201407030120

摘要本文阐述了蛋白质的定义概念、组成特点、结构性质、生理功能以及作用。

关键词历史定义组成特点结构性质功能

正文:

在18世纪,安东尼奥·弗朗索瓦(Antoine Fourcroy)和其他一些研究者发现蛋白质是一类独特的生物分子,他们发现用酸处理一些分子能够使其凝结或絮凝。当时他们注意到的例子有来自蛋清、血液、血清白蛋白、纤维素和小麦面筋里的蛋白质。荷兰化学家格利特·马尔德(Gerhardus Johannes Mulder)对一般的蛋白质进行元素分析发现几乎所有的蛋白质都有相同的实验公式。用“蛋白质”这一名词来描述这类分子是由Mulder的合作者永斯·贝采利乌斯于1838年提出。Mulder随后鉴定出蛋白质的降解产物,并发现其中含有为氨基酸的亮氨酸,并且得到它(非常接近正确值)的分子量为131Da。

对于早期的生物化学家来说,研究蛋白质的困难在于难以纯化大量的蛋白质以用于研究。因此,早期的研究工作集中于能够容易地纯化的蛋白质,如血液、蛋清、各种毒素中的蛋白质以及消化性和代谢酶(获取自屠宰场)。1950年代后期,Armour Hot Dog Co.公司纯化了一公斤纯的牛胰腺中的核糖核酸酶A,并免费提供给全世界科学家使用。

这一构想最早是由威廉·阿斯特伯里于1933年提出。随后,Walter Kauzman在总结自己对变性的研究成果和之前Kaj

Linderstrom-Lang的研究工作的基础上,提出了蛋白质折叠是由疏水相互作用所介导的。1949年,弗雷德里克·桑格首次正确地测定了胰岛素的氨基酸序列,并验证了蛋白质是由氨基酸所形成的线性(不具有分叉或其他形式)多聚体。原子分辨率的蛋白质结构首先在1960年代通过X射线晶体学获得解析;到了1980年代,NMR也被应用于蛋白质结构的解析;近年来,冷冻电子显微学被广泛用于对于超大分子复合体的结构进行解析。截至到2008年2月,蛋白质数据库中已存有接近50,000个原子分辨率的蛋白质及其相关复合物的三维结构的坐标。

蛋白质是一种复杂的有机化合物,旧称“朊(ruǎn)”。氨基酸是组成蛋白质的基本单位,氨基酸通过脱水缩合连成肽链。蛋白质是由一条或多条多肽链组成的生物大分子,每一条多肽链有二十至数百个氨基酸残基(-R)不等;各种氨基酸残基按一定的顺序排列。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种基本氨基酸,在蛋白质中,某些氨基酸残基还可以被翻译后修饰而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,折叠或螺旋构成一定的空间结构,从而发挥某一特定功能。合成多肽的细胞器是细胞质中

糙面型内质网上的核糖体。蛋白质的不同在于其氨基酸的种类,数目,排列顺序和肽链空间结构的不同。

蛋白质是由C(碳)、H(氢)、O(氧)、N(氮)组成,一般蛋白质可能还会含有P(磷)、S(硫)、Fe(铁)、Zn(锌)、Cu (铜)、B(硼)、Mn(锰)、I(碘)、Mo(钼)等。

生理功能

1.构造人的身体:蛋白质是一切生命的物质基础,是机体细胞的重要组成部分,是人体组织更新和修补的主要原料。人体的每个组织:毛发、皮肤、肌肉、骨骼、内脏、大脑、血液、神经、内分泌等都是由蛋白质组成,所以说饮食造就人本身。蛋白质对人的生长发育非常重要。

比如大脑发育的特点是一次性完成细胞增殖,人的大脑细胞的增长有二个高峰期。第一个是胎儿三个月的时候;第二个是出生后到一岁,特别是0---6个月的婴儿是大脑细胞猛烈增长的时期。到一岁大脑细胞增殖基本完成,其数量已达成人的9/10。所以0到1岁儿童对蛋白质的摄入要求很有特色,对儿童的智力发展尤关重要。

2.结构物质:人的身体由百兆亿个细胞组成,细胞可以说是生命的最小单位,它们处于永不停息的衰老、死亡、新生的新陈代谢过程中。例如年轻人的表皮28天更新一次,而胃黏膜两三天就要全部更新。所以一个人如果蛋白质的摄入、吸收、利用都很好,那么皮肤就是光泽而又有弹性的。反之,人则经常处于亚健康状态。组织受损后,包括外伤,不能得到及时和高质量的修补,便会加速肌体衰退。

3.载体的运输:维持肌体正常的新陈代谢和各类物质在体内的输送。载体蛋白对维持人体的正常生命活动是至关重要的。可以在体内运载各种物质。比如血红蛋白—输送氧(红血球更新速率250万/秒)、脂蛋白——输送脂肪、细胞膜上的受体还有转运蛋白等。

4. 维持机体内的渗透压的平衡及体液平衡:白蛋白。5.维持体液的酸碱平衡。

6.抗体的免疫:有白细胞、淋巴细胞、巨噬细胞、抗体(免疫球蛋白)、补体、干扰素等。七天更新一次。当蛋白质充足时,这个部队就很强,在需要时,数小时内可以增加100倍。

7.酶的催化:构成人体必需的催化和调节功能的各种酶。我们身体有数千种酶,每一种只能参与一种生化反应。人体细胞里每分钟要进行一百多次生化反应。酶有促进食物的消化、吸收、利用的作用。相应的酶充足,反应就会顺利、快捷的进行,我们就会精力充沛,不易生病。否则,反应就变慢或者被阻断。

8.激素的调节:具有调节体内各器官的生理活性。胰岛素是由51

个氨基酸分子合成。生长素是由191个氨基酸分子合成。

9.构成神经递质乙酰胆碱、五羟色氨等。维持神经系统的正常功能:味觉、视觉和记忆。

10.胶原蛋白:占身体蛋白质的1/3,生成结缔组织,构成身体骨架。如骨骼、血管、韧带等,决定了皮肤的弹性,保护大脑(在大脑脑细胞中,很大一部分是胶原细胞,并且形成血脑屏障保护大脑)11.能源物质:提供生命活动的能量。

参考文献

[1] 张部昌.生物化学.合肥:安徽教育出版社,2010.6.

[2] 王镜岩,朱圣庚,徐长发.生物化学.第三版.北京:高等教育出版社,2002.

[3] 王希成.生物化学.北京:清华大学出版社,2001.

[4] 王克夷.蛋白质导论.北京:教育出版社,2007. [5] 余瑞元.生物化学.北京:北京大学出版社,2007.

[6] 王金胜,王冬梅,等.生物化学.北京:科学出版社,2007

蛋白质的生理功能

蛋白质的生理功能 1、构造人的身体:蛋白质是一切生命的物质基础,是肌体细胞的重要组成部分,是人体组织更新和修补的主要原料。人体的每个组织:毛发、皮肤、肌肉、骨骼、内脏、大脑、血液、神经、内分泌等都是由蛋白质组成,所以说饮食造就人本身。蛋白质对人的生长发育非常重要。比如大脑发育的特点是一次性完成细胞增殖,人的大脑细胞的增长有二个高峰期。第一个是胎儿三个月的时候;第二个是出生后到一岁,特别是0---6个月的婴儿是大脑细胞猛烈增长的时期。到一岁大脑细胞增殖基本完成,其数量已达成人的9/10。所以0到1岁儿童对蛋白质的摄入要求很有特色,对儿童的智力发展尤关重要。 2、修补人体组织:人的身体由百兆亿个细胞组成,细胞可以说是生命的最小单位,它们处于永不停息的衰老、死亡、新生的新陈代谢过程中。例如年轻人的表皮28天更新一次,而胃黏膜两三天就要全部更新。所以一个人如果蛋白质的摄入、吸收、利用都很好,那么皮肤就是光泽而又有弹性的。反之,人则经常处于亚健康状态。组织受损后,包括外伤,不能得到及时和高质量的修补,便会加速机体衰退。 3、维持肌体正常的新陈代谢和各类物质在体内的输送。载体蛋白对维持人体的正常生命活动是至关重要的。可以在体内运载各种物质。比如血红蛋白—输送氧(红血球更新速率250万/秒)、脂蛋白—输送脂肪、细胞膜上的受体还有转运蛋白等。 4、白蛋白:维持机体内的渗透压的平衡及体液平衡。 5、维持体液的酸碱平衡。 6、免疫细胞和免疫蛋白:有白细胞、淋巴细胞、巨噬细胞、抗体(免疫球蛋白)、补体、干扰素等。七天更新一次。当蛋白质充足时,这个部队就很强,在需要时,数小时内可以增加100倍。 7、构成人体必需的催化和调节功能的各种酶。我们身体有数千种酶,每一种只能参与一种生化反应。人体细胞里每分钟要进行一百多次生化反应。酶有促进食物的消化、吸收、利用的作用。相应的酶充足,反应就会顺利、快捷的进行,我们就会精力充沛,不易生病。否则,反应就变慢或者被阻断。 8、激素的主要原料。具有调节体内各器官的生理活性。胰岛素是由51个氨基酸分子合成。生长素是由191个氨基酸分子合成。 9、提供热能。蛋白质和健康蛋白质是荷兰科学家格里特在1838年发现的。他观察到有生命的东西离开了蛋白质就不能生存。蛋白质是生物体内一种极重要的高分子有机物,占人体干重的54%。蛋白质主要由氨基酸组成,因氨基酸的组合排列不同而组成各种类型的蛋白质。人体中估计有10万种以上的蛋白质。生命是物质运动的高级形式,这种运动方式是通过蛋白质来实现的,所以蛋白质有极其重要的生物学意义。人体的生长、发育、运动、遗传、繁殖等一切生命活动都离不开蛋白质。生命运动需要蛋白质,也离不开蛋白质。人体内的一些生理活性物质如胺类、神经递质、多肽类激素、抗体、酶、核蛋白以及细胞膜上、血液中起“载体”作用的蛋白都离不开蛋白质,它对调节生理功能,维持新陈代谢起着极其重要的作用。人体运动系统中肌肉的成分以及肌肉在收缩、作功、完成动作过程中的代谢无不与蛋白质有关,离开了蛋白质,体育锻炼就无从谈起。在生物学中,蛋白质被解释为是由氨基酸借肽键联接起来形成的多肽,然后由多肽连接起来形成的物质。通俗易懂些说,它就是构成人体组织器官的支架和主要物质。 蛋白质能供给能量。这不是蛋白质的主要功能,我们不能拿“肉”当“柴”烧。但在能量缺乏时,蛋白质也必须用于产生能量。另外,从食物中摄取的蛋白质,有些不符合人体需要,或者摄取数量过多,也会被氧化分解,释放能量。

铁蛋白结构与功能

铁蛋白结构与功能 摘要:铁元素是生物体中的半微量元素,铁元素子生物体内的平衡对生物体的健康有着很重要的作用,而作为可以调节体内铁元素平衡的铁蛋白很早就出现在学者的研究中。铁蛋白不仅直接在人体内发挥作用,也通过植物食物的铁元素积累影响着人类的健康,所以通过阅读了几篇文献后,简单概括一下目前对铁蛋白的结构和功能的研究情况。 关键词:铁蛋白结构功能 铁是生物体很重要的一种半微量元素,对生物体的健康有着极为重要的作用,铁在动物体内参与造血、运输氧气、免疫和防御等生理过程,在植物体内则参与叶绿素的形成,但是铁含量超标则会造成消化功能紊乱、生长受阻等。所以,维持生物体体内铁含量平衡至关重要。铁蛋白是生物体内的铁贮藏蛋白质,起着调节生物体铁平衡的作用。 目前,在动物、植物和微生物体内都对铁蛋白进行了大量研究[1],除了对其基因[2]、结构和功能做了大量研究之外,也在不断探索研究铁蛋白的方法[3]、铁蛋白的新作用[4-5]以及铁蛋白的作用方法等6-7]。由于铁元素在生物体内的重要作用和植物性食物的铁含量很低,甚至在某些地区有缺铁现象的发生,为了提高植物食物中的铁含量,有学者已经开始了通过转基因技术,将豌豆铁蛋白基因专人水稻[8-9]。

虽然铁蛋白对动物和植物都很重要,但是无论是存在分布、结构和功能上,动物和植物体内的铁蛋白都不同[10]。与动物铁蛋白相比,植物铁蛋白具有两个显着的特点:首先,植物铁蛋白在其N端具有一个独特的EP 肽段;其次,植物铁蛋白只含有H型亚基,且有两种不同的H型亚基组成。 1.铁蛋白的结构 铁蛋白分子通常由24个亚基形成一个中空的球状蛋白质外壳,内径通常为7~8nm,外径为12~13nm,厚度为2~。每个球状铁蛋白分子大约有4500个三价铁原子储存在其中。每两个铁蛋白亚基反向平行形成一组,再由这十二组亚基对构成一个近似正八面体,成4-3-2重轴对称的球状分子 (图1)。每个铁蛋白亚基外形成空心的柱状(长约5nm,直径约,且由一个两两成反向平行的4个α螺旋簇 (A、B和C、D)、C末端第五个较短α螺旋(E)以及N末端的伸展肽段 (EP) 构成。B和C螺旋之间由一段含18个氨基酸的BC环连接,E螺旋位于4α螺旋簇的尾端并与之成60° 夹角 (图2)。每个铁蛋白分子形成12个二重轴通道、8个三重轴通道和6个四重轴通道,这些通道被认为是铁蛋白内部与外部离子出入铁蛋白的必经之路,起着联系铁蛋白内部空腔与外部环境的作用。

蛋白质的主要生理功能和作用

蛋白质的主要生理功能和作用 张世林外语学院日语14.1 学号:201407030120 摘要本文阐述了蛋白质的定义概念、组成特点、结构性质、生理功能以及作用。 关键词历史定义组成特点结构性质功能 正文: 在18世纪,安东尼奥·弗朗索瓦(Antoine Fourcroy)和其他一些研究者发现蛋白质是一类独特的生物分子,他们发现用酸处理一些分子能够使其凝结或絮凝。当时他们注意到的例子有来自蛋清、血液、血清白蛋白、纤维素和小麦面筋里的蛋白质。荷兰化学家格利特·马尔德(Gerhardus Johannes Mulder)对一般的蛋白质进行元素分析发现几乎所有的蛋白质都有相同的实验公式。用“蛋白质”这一名词来描述这类分子是由Mulder的合作者永斯·贝采利乌斯于1838年提出。Mulder随后鉴定出蛋白质的降解产物,并发现其中含有为氨基酸的亮氨酸,并且得到它(非常接近正确值)的分子量为131Da。 对于早期的生物化学家来说,研究蛋白质的困难在于难以纯化大量的蛋白质以用于研究。因此,早期的研究工作集中于能够容易地纯化的蛋白质,如血液、蛋清、各种毒素中的蛋白质以及消化性和代谢酶(获取自屠宰场)。1950年代后期,Armour Hot Dog Co.公司纯化了一公斤纯的牛胰腺中的核糖核酸酶A,并免费提供给全世界科学家使用。

这一构想最早是由威廉·阿斯特伯里于1933年提出。随后,Walter Kauzman在总结自己对变性的研究成果和之前Kaj Linderstrom-Lang的研究工作的基础上,提出了蛋白质折叠是由疏水相互作用所介导的。1949年,弗雷德里克·桑格首次正确地测定了胰岛素的氨基酸序列,并验证了蛋白质是由氨基酸所形成的线性(不具有分叉或其他形式)多聚体。原子分辨率的蛋白质结构首先在1960年代通过X射线晶体学获得解析;到了1980年代,NMR也被应用于蛋白质结构的解析;近年来,冷冻电子显微学被广泛用于对于超大分子复合体的结构进行解析。截至到2008年2月,蛋白质数据库中已存有接近50,000个原子分辨率的蛋白质及其相关复合物的三维结构的坐标。 蛋白质是一种复杂的有机化合物,旧称“朊(ruǎn)”。氨基酸是组成蛋白质的基本单位,氨基酸通过脱水缩合连成肽链。蛋白质是由一条或多条多肽链组成的生物大分子,每一条多肽链有二十至数百个氨基酸残基(-R)不等;各种氨基酸残基按一定的顺序排列。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种基本氨基酸,在蛋白质中,某些氨基酸残基还可以被翻译后修饰而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,折叠或螺旋构成一定的空间结构,从而发挥某一特定功能。合成多肽的细胞器是细胞质中

铁的生物学作用和生理功能

3、铁 3.1 铁的生物学作用和生理功能 3.1.1 铁与酶:铁参与血红蛋白、肌红蛋白、细胞色素,细胞色素氧化酶及触媒的合成并激活琥珀脱氢酸、黄嘌呤氧化酶等活性。红血球功能是输送氧的,每个红血球含2.8亿个血红蛋白,每个血红蛋白分子又含4个铁原子,这是这些亚铁血红素中的铁原子才是真是携带和输送氧的重要成分。肌红蛋白是肌肉贮存氧的地方,每个肌红蛋白含有一个亚铁血红素,当肌肉运动时,它可以提供或补充血液输氧的不足。细胞色素酶类,是体内体内复杂的氧化还原过程所不可缺少的,有了它才能完成电子传递,并在三羧酸循环过程中使脱下氢原子与由血红蛋白从肺运来的氧生成水,以保证代谢,同时在这一过程中,释放出能量,供给肌体需要,在氧化过程中所产生的过氧化氢等有害物质,又可被含铁的触媒和过氧化物所破坏而解毒。 3.1.2 铁参与造血功能:铁影响蛋白质及去氧核糖核酸的合成及造血维生素代谢,缺铁时肝脏内合成去氧核糖核酸将收到抑制,肝脏发育减慢,肝细胞及其它细胞内的线粒体和微粒体发生异常,细胞色素C,含量减少,导致蛋白质的合成及能量运用减少,进而发生贫血及身高、体重发育不良。 3.1.3 铁与免疫:由于铁与酶的关系及铁参与造血机能就决定了缺铁可引起机体感染性增加,微生物繁殖受阻,白细胞的杀菌能力降低,淋巴细胞功能受损,因此免疫力降低。 3.1.4 铁与其它元素的关系:铅中毒时,铁利用障碍,同时肠道铁的吸收收到抑制。缺铁性贫血患者细胞内Cu、Zn浓度降低。镉可抑制肠道对铁的吸收,血清铁蛋白降低,诱发小细胞低色素性贫血。机体缺铜时,不仅铁的吸收量减少,而且铁的利用也发生困难。缺铁又影响锌的吸收。 3.2 缺铁引起的疾病: 3.2.1 缺铁性贫血:铁缺乏影响正常铁血红素合成而引起贫血,由于体内总铁量的65%存在于细胞内,因此反复多量失血引起体内总铁量显著下降,钩虫病引起肠道长期少量出血,多年肛痔出血或妇女月经过多等长期损失铁最终可使体内贮铁量枯竭,以致发生缺铁性贫血,临床表现与贫血程度有关,严重者除一般贫血症状外,可发生肝、脾、淋巴结肿大和四肢水肿。 3.2.2 溶血性贫血红细胞破坏增速,超过造些补偿能力范围发生的一种贫血,这种病人虽对铁的吸收量增多,但铁的利用率低,贮存的铁反而增多,若此时补铁,易发生继发性血色病,临床表现多为急性中毒、肢体酸痛、头痛、呕吐、寒战、高热、面色苍白、黄疸、肝、脾肿大、血尿、急性肾功能衰竭、尿毒症。 3.2.3 再生障碍性贫血由于红骨髓显著减少、造血功能衰竭而引起的一种综合症,以全血细胞减少为主要临床表现,该病有造血功能障碍、出血和感染三大特点。

蛋白质对人体的六大作用

蛋白质对人体的六大作用 2008-3-4 13:34:3 在人体中,蛋白质的主要生理作用表现在六个方面: 1)构成和修复身体各种组织细胞的材料 人的神经、肌肉、内脏、血液、骨骼等,甚至包括体外的头皮、指甲都含有蛋白质,这些组织细胞每天都在不断地更新。因此,人体必须每天摄入一定量的蛋白质,作为构成和修复组织的材料。 2)构成酶、激素和抗体 人体的新陈代谢实际上是通过化学反应来实现的,在人体化学反应的过程中,离不开酶的催化作用,如果没有酶,生命活动就无法进行,这些各具特殊功能的酶,均是由蛋白质构成。此外,一些调节生理功能的激素和胰岛素,以及提高肌体抵抗能力儿保护肌体免受致病微生物侵害的抗体,也是以蛋白质为主要原料构成的。 3)维持正常的血浆渗透压,是血浆和组织之间的物质交换保持平衡 如果膳食中长期缺乏蛋白质,血浆蛋白特别是白蛋白的含量就会降低,血液内的水分便会过多地渗入周围组织,造成临床上的营养不良性水肿。 4)供给肌体能量 在正常膳食情况下,肌体可将完成主要功能而剩余的蛋白质,氧化分解转化为能量。不过,从整个肌体而言,蛋白质的这方面功能是微不足道的。 5)维持肌体的酸碱平衡 肌体内组织细胞必须处于合适的酸碱度范围内,才能完成其正常的生理活动。肌体的这种维持酸碱平衡的能力是通过肺、肾脏以及血液缓冲系统来实现的。蛋白质缓冲体系是血液缓冲系统的重要组成部分,因此说蛋白质在维持肌体酸碱平衡方面起着十分重要的作用。 6)运输氧气及营养物质 血红蛋白可以携带氧气到身体的各个部分,供组织细胞代谢使用。体内有许多营养素必须与某种特异的蛋白质结合,将其作为载体才能运转,例如运铁蛋白、钙结合蛋白、视黄醇蛋白等都属于此类。 蛋白质是化学结构复杂的一类有机化合物,是人体的必须营养素。蛋白质的英文是protein,源于希腊文的proteios,是“头等重要”意思,表明蛋白质是生命活动中头等重要物质。蛋白质是细胞组分中含量最为丰富、功能最多的高分子物质,在生命活动过程中起着各种生命功能执行者的作用,几乎没有一种生命活动能离 开蛋白质,多以没有蛋白质就没有生命。 发现历史 人们对蛋白质重要性的认识经历了一个漫长的历程。1742年Beccari将面粉团不断用水洗去淀粉,分离出 麦麸,实际上就是谷蛋白之一。1841年Liebig发表了分析蛋白质的文章。此后于1883年John Kjedahl 发明了一个准确测定氮进而测定蛋白质含量的分析方法,至今仍被广为应用。随后,氨基酸也被发现。1902 年E.Fischer测定了氨基酸的化学结构,还测定了肽键的性质。大约在1927年,J.B.Summer证明了酶是

肿瘤标志物铁蛋白指标解读

一、铁蛋白简介 铁蛋白是一种结合铁的高分子蛋白,其具有一个含45000个铁原子的内核,因而具有重要的储铁和调节铁吸收的生理功能。铁胆边在人体肝脏、脾脏及骨髓等组织中广泛存在,在其他组织中也有分布。铁蛋白能反映肌体的营养状态,因而对缺铁性贫血的诊断具有重要提示作用。正常状态下,人体血清中具有稳定微量的铁蛋白。进来研究显示,某些恶性肿瘤细胞能合成并分泌铁蛋白,因而血清铁蛋白浓度相应升高。 二、血清铁蛋白与原发性肝癌 血清铁蛋白指标异常与原发性肝癌的发生以及肝硬化等密切相关。在原发性肝癌中,SF水平显著升高,故可作为原发性肝癌的特异性肿瘤标志物。引起SF水平升高的机制大致为:一、肝细胞的损伤降低了铁存储量和铁的转移能力;二、癌细胞自身合成的肿瘤特异性的酸性铁蛋白,加速分泌释放。大量文献报道了SF作为HCC肿瘤标志物的有效应用。如Kew 等在58例的原发性肝癌中检出76.3%的SF阳性。张景等的研究中,肝癌的SF阳性率也达到了66.6%。 在原发性肝癌的诊断中,血清铁蛋白是对AFP很好的补充。原因在于:虽然AFP是用于原发性肝癌诊断最常被使用的指标,然而AFP对HCC检出的灵敏度为50%-95%不等,因此存在着一部分AFP阴性的HCC患者。梁仁等对AFP阴性的原发性肝癌患者的SF进行了测定,结果阳性率为76%(cutoff值为100 ng/ml)。张满达等的研究显示,肝癌组中铁蛋白和AFP均阳性占47.5%,均阴性为9.9%,单一阳性为42.6%,故铁蛋白和AFP阳性率分离,呈交叉覆盖现象,联合检测阳性率达90%以上。可见SF在原发性肝癌的诊断,尤其是AFP 阴性的疑似病例中具有重要的作用,对于增加结果的准确性、减少漏诊率效果显著。 在孟宪镛等的研究中,其他活动性肝病中也有半数SF水平超出正常,但与HCC具有显著性差异。Chapman等的研究中,肝癌组和肝硬化组的SF阳性分别为63%和33%。通过联合转氨酶的检测可进一步提高SF对肝癌的检出特异性。在活动性肝炎中,SF和转氨酶水平的增长具有同步性,而在HCC中则无明显相关,因而通过测定转氨酶和SF比值可提高SF的诊断价值。 三、血清铁蛋白的其他应用 血清铁蛋白指标异常还与其他疾病相关,临床上也常见被应用于以下几类疾病的诊断: 1.缺铁性贫血 SF浓度也是临床上诊断缺铁性贫血常用的手段之一。缺铁性贫血是临床上较常见的贫血,缺铁是这类贫血的主要原因。在早期并未表现出血红蛋白减少,因而此阶段为隐性缺铁性贫血。此时主要表现为铁缺乏,因此SF水平低于正常值。欧阳富维的研究中,SF对缺铁性贫血的敏感性为85.1%,特异性为80.2%,阳性和阴性预测值分别为为71.2%和 90.4%。在王彦华等的研究中,SF的灵敏度和特异性最高分别达到84.6%和96%。 2.白血病

铁元素的生理功能

铁元素的生理功能 由于缺铁性贫血对人类健康(特别是对于女青年和妊娠妇女)造成危害,所以很早以前,人们就通过对这种病的观察研究而认识到铁对健康的重要性。铁作为一种药物用于治疗人类的疾病已有数百年的历史,我国古代劳动人民早就发现中药皂矾可以治疗“血虚萎黄”,而皂矾的主要成分就是硫酸铁。在l664年Sydenham就曾用含铁的酒类治疗缺铁性贫血(那时称青春期萎黄病)。人们还知道用铸铁锅烹饪的食物可以增进健康、防治贫血。1831年Blaud首先用二价铁治疗单纯性贫血。同年Frodisch证明萎黄病患者血液里铁含量比健康人低。至此,有关铁对生物体的重要生理作用的研究达到了较高水平。二十世纪五十到六十年代,随着血液、组织中含铁量的精密测定方法和同位素示踪技术的应用,人们才开始研究铁的吸收代谢机制,而且发展迅速。随着科学技术的进步,人们对于铁的认识已从感性阶段进入理性阶段,从更深层次上即分子生物学水平上认识到铁的功能。众多营养学者认识到:饲料营养素作为动物的外部环境因子与其基因表达存在着广泛的互作,使得通过改变日粮中的组分来控制个体的基因表达,获得人们理想的动物变得日益可行。 1、机体对铁的吸收和分布近端小肠(十二指肠和空肠)是铁吸收的主要部位,也是调节铁平衡的一个关键环节。动物消化道的其它部位如胃、回肠、盲肠也能吸收少量的铁。Darrell 于1965年利用结扎小肠段技术,研究得到大鼠不同消化道部位吸收铁的能力依次为:十二指肠>回肠>小肠中段>胃。由此可见,动物整个消化道都可以吸收铁,但主要吸收部位在十二指肠。虽然整个消化道都可吸收铁,但动物采食的铁仅有很少部分(5%~8%)被吸收,其余的则通过肠道随粪便排出。大约有三分之二的机体铁存在于红细胞的血红蛋白和肌肉的肌红蛋白中,20%的铁以不同形式存在于肝、脾和其他组织中,剩余的以不可利用形式存在于肌球蛋白、肌纤凝蛋白和金属结合酶中。机体内铁的稳定态主要受肠道对铁的吸收率的控制。 虽然过去的几十年已经投入了相当大的努力,各种假说,如载体转运、离子通道等机制已相继提出,但小肠粘膜铁吸收的机制一直是不清楚的。一般认为,铁在许多组织细胞被吸收(或摄取)都是通过经典的转铁蛋白(transferrin,TO和转铁蛋白受体(transferrin receptor,TfR)的途径。即三价铁首先与Tf 结合,两者的结合物再与细胞表面的TfR 结合,之后经过内吞、

蛋白质的生理作用.

《食品化学与健康》电子教材 蛋白质的生理作用 一、是人体最重要的组成成分 人体中所有重要组织都有蛋白质参与如神经、肌肉、内脏、血液等都含有蛋白质。蛋白质是构成细胞和组织的“建筑材料”,在人体细胞中的含量仅次于水,占细胞干重的50%以上。一切生物膜,如细胞膜、细胞内各种细胞器的膜,几乎都是由蛋白质和脂类等物质组成。蛋白质是生命活动的重要物质基础。在体内多种重要生理活性物质的成分是蛋白质,蛋白质参与调节生理功能,如构成细胞核的核蛋白能影响细胞功能;促进食物消化、吸收和利用作用的是酶蛋白;维持机体免疫功能作用的是免疫蛋白;具有调节肌肉收缩的功能的是肌球蛋白;具有运送营养素的作用的是血液中的脂蛋白、运铁蛋白、视黄醇结合蛋白质;具有携带、运送氧气功能的是血红蛋白;具有调节渗透压、维持体液平衡的作用(肝癌) 是白蛋白;由蛋白质或蛋白质衍生物构成的某些激素,如垂体激素、甲状腺激素、胰岛素及肾上腺素等等都是机体的重要调节物质。蛋白质能向机体提供能量,大约占总热能的14%,每克蛋白质在体内代谢,能产生4千卡左右的能量。 二、蛋白质的生理作用表现为 1.参与生理活动和劳动做功 心脏跳动、呼吸运动、胃肠蠕动以及日常各种劳动做功等,都离不开肌肉的收缩,而骨肉的收缩又离不开具有骨肉收缩功能的蛋白质。 2.参与氧和二氧化碳的运输 在生命活动中,将氧气供给全身组织,同时将新陈代谢所产生的二氧化碳排出体外的运输工具就是血红蛋白。血红蛋白是红细胞的主要成分,也是红细胞行使其功能的物质基础。 3.参与维持人体的渗透压

血浆中有多种蛋白质,对维持血液的渗透压、维持细胞内外的压力平衡起着重要作用。 4.具有防御功能 血浆中含有的抗体,主要是丙种球蛋白,这是一种具有防御功能的蛋白质。 5.参与调节人体内物质的代谢 在物质代谢中,都需要酶系统的催化或调节,而酶的本质就是蛋白质。在调节代谢过程中,蛋白质以酶和激素的形式出现,发挥了生命活动中“指挥员”的作用。

蛋白质的营养生理作用

“蛋白质”一词,源于希腊字“Proteios”,其意是“最初的”、“第一重要的”;蛋白质是细胞的重要组成成份,在生命过程中起着重要的作用, 涉及动物代谢的大部分与生命攸关的化学反应。不同种类动物都有自己特定的、多种不同的蛋白质。在器官、体液和其它组织中,没有两种蛋白质的生理功能是完全一样的。这些差异是由于组成蛋白质的氨基酸种类、数量和结合方式不同的必然结果。 动物在组织器官的生长和更新过程中,必须从食物中不断获取蛋白质等含氮物质。因此,把食物中的含氮化合物转变为机体蛋白质是一个重要的营养过程。 蛋白质在动物的生命活动中的重要营养作用: (一)蛋白质是构建机体组织细胞的主要原料 动物的肌肉、神经、结缔组织、腺体、精液、皮肤、血液、毛发、角、喙等都以蛋白质为主要成份,起着传导、运输、支持、保护、连接、运动等多种功能。肌肉、肝、脾等组织器官的干物质含蛋白质80%以上。蛋白质也是乳、蛋、毛的主要组成成份。除反刍动物外,食物蛋白质几乎是唯一可用以形成动物体蛋白质的氮来源。 (二)蛋白质是机体内功能物质的主要成份 在动物的生命和代谢活动中起催化作用的酶、某些起调节作用的激素、具有免疫和防御机能的抗体(免疫球蛋白)都是以蛋白质为主要成分。另外,蛋白质对维持体内的渗透压和水分的正常分布,也起着重要的作用。 (三) 蛋白质是组织更新、修补的主要原料 在动物的新陈代谢过程中,组织和器官的蛋白质的更新、损伤组织的修补都需要蛋白质。据同位素测定,全身蛋白质6-7个月可更新一半。 (四)蛋白质可供能和转化为糖、脂肪 在机体能量供应不足时,蛋白质也可分解供能,维持机体的代谢活动。当摄入蛋白质过多或氨基酸不平衡时,多余的部分也可能转化成糖、脂肪或分解产热。正常条件下,鱼等水生动物体内亦有相当数量的蛋白质参与供能作用。 “蛋白质”一词,源于希腊字“Proteios”,其意是“最初的”、“第一重要的”;蛋白质是细胞的重要组成成份,在生命过程中起着重要的作用, 涉及动物代谢的大部分与生命攸关的化学反应。不同种类动物都有自己特定的、多种不同的蛋白质。在器官、体液和其它组织中,没有两种蛋白质的生理功能是完全一样的。这些差异是由于组成蛋白质的氨基酸种类、数量和结合方式不同的必然结果。 动物在组织器官的生长和更新过程中,必须从食物中不断获取蛋白质等含氮物质。因此,把食物中的含氮化合物转变为机体蛋白质是一个重要的营养过程。 蛋白质在动物的生命活动中的重要营养作用: (一)蛋白质是构建机体组织细胞的主要原料 动物的肌肉、神经、结缔组织、腺体、精液、皮肤、血液、毛发、角、喙等都以蛋白质为主要成份,起着传导、运输、支持、保护、连接、运动等多种功能。肌肉、肝、脾等组织器官的干物质含蛋白质80%以上。蛋白质也是乳、蛋、毛的主要组成成份。除反刍动物外,食物蛋白质几乎是唯一可用以形成动物体蛋白质的氮来源。 (二)蛋白质是机体内功能物质的主要成份 在动物的生命和代谢活动中起催化作用的酶、某些起调节作用的激素、具有免疫和防御机能的抗体(免疫球蛋白)都是以蛋白质为主要成分。另外,蛋白质对维持体内的渗透压和水分的正常分布,也起着重要的作用。 (三) 蛋白质是组织更新、修补的主要原料 在动物的新陈代谢过程中,组织和器官的蛋白质的更新、损伤组织的修补都需要蛋白质。据同位素测定,全身蛋白质6-7个月可更新一半。

铁蛋白测定方法及临床意义

铁蛋白测定方法及临床意义 铁蛋白广泛分布于人体组织细胞内和体液中。是一种贮铁蛋白质。1972年Addison等人建立血清铁蛋白放射免疫测定方法后,相继对外周血细胞及体液中铁蛋白也能测定。其定义为机体内一种贮存铁的可溶组织蛋白,正常人血清中含有少量铁蛋白,但不同的检测法有不同的正常值,一般正常均值男性约80- 130ug/L(80-130ng/ml)女性约35-55ug/L (35-55ng/ml),血清铁水平在妊娠期 及急性贫血时降低,急慢性肝脏损害和肝癌时升高,国内报道肝癌患者阳性率高达90%。 一、铁蛋白的分子结构和功能 铁蛋白分子量为450000,由24个多肽亚单位组成一个中间空心的球形蛋白质。其外壳即为去铁铁蛋白。中空核心部分是贮存铁胶体分子团(羟基磷酸化高铁)的地,核心中铁原子含量不等。平均2000个,最多可达4500个。去铁铁蛋白可摄取Fe++,经其6个通道进入核心,氧化成Fe+++沉积下来,铁原子释放时要经还原剂的作用。铁本身又可刺激去铁铁蛋白的合成。 铁蛋白存在于体内各组织和细胞,特别在肝、脾、骨髓中含量高,脑组织中也含有,外周血细胞包括红细胞、白细胞和血小板都含有铁蛋白。不同组织来源的铁蛋白有明显的异质性。人体的铁蛋白达20种以上。总称为异铁蛋白(isoferritin).它由两种不同的亚单位(L和H).按不同比例构成,L和H亚单位的分子量和所带电荷量不同,前者分子量为19000.后者为21000,心型铁蛋白为酸性铁蛋白,主要由H亚单位组成,等电点4.8~5.2.与心肌铁蛋白抗体结合力强;脾型铁蛋白为碱性铁蛋白,主要由L亚单位组成。等电点5.3~5.8, 与睥铁蛋白抗体结合力强:肾铁蛋白介于两者之闻。碱性铁蛋白存在于正常成人肝细胞厦肝、脾、骨髓等网状内皮细胞中。酸性铁蛋白见于正常成人心肌,肾,胰及胎肝中。血清铁蛋白主要由网状内皮系统的吞噬细胞释放出来。由碱性铁蛋白和微量酸性铁蛋白所组成。在血循环中半寿期为27~30小时。为肝实质细胞所清除。正常人外周血细饱内铁蛋白含量甚微,红细咆内铁蛋白台量碱性铁蛋白为0.025fg/细胞。酸性铁蛋白比前者高10倍;白细胞碱性铁蛋白;多形核粒 细胞6.6fg/细胞,淋巴细胞为8.0fg/细胞单核细胞含量最高为54.6fg/细胞。血小板中含量甚微。 铁蛋白的生理功能:(1)作为铁的贮存库用于血红蛋白合成:(2)将铁保存在中空的球形蛋白内,防止细胞内游离铁过多而产生有害作用。成熟红细胞内铁蛋白是幼红细胞铁蛋白残留下来的。其碱性铁蛋白和持存有关,酸性铁蛋白则起铁转运作用。 二、血清铁蛋白测定 (一)血清铁蛋白(SF)测定方法有多种,如放射免疫双抗体法,放射免疫标记抗体法,碱性磷酸酶或辣根过氧化酶标记抗体酶联免疫法及直接乳胶凝集法。

蛋白质的作用及功能

(1)氨基酸、蛋白质的生理功能 蛋白质是人体必需的主要营养物质。蛋白质的分解产物是氨基酸;氨基酸的重要生理功能之一是作为蛋白质、多肽合成的原料,是蛋白质或多肽的基本组成单位。 蛋白质的生理功能: ①维持组织的生长、更新和修复:膳食中必须提供足够质和量的蛋白质,才能维持组织、细胞的生长、更新和修复。 ②参与多种重要的生理功能:如催化功能、调节功能、运输功能、储存功能、保护功能和维持体液胶体渗透压(如清蛋白)等。 ③氧化供能:体内蛋白质、多肽分解成氨基酸后,产生(17.19kJ/g)能量,成人每日约有18%的能量来自蛋白质。 ④转变为糖类和脂肪。 (2)营养必需氨基酸的概念和种类 体内需要而不能自身合成、或合成量不能满足机体需要,必须由食物供应的氨基酸称为营养必需氨基酸。营养必需氨基酸包括赖氨酸、色氨酸、苯丙氨酸、甲硫氨酸、苏氨酸、亮氨酸、异亮氨酸和缬氨酸。 蛋白质的功能和对人体的作用 人体的所有组织器官都会有蛋白质,蛋白质是生命的物质基础。蛋白质是人体的主要“建筑材料”。婴幼儿靠它形成肌肉、血液、骨骼、神经、毛发等;成年人需要它更新组织,修补损伤、老化的机体。没有蛋白质的供给,人就不可能从3~4千克的新生儿长成50~60千克重的成年人,所以说蛋白质是人体生命得以延续的主要物质基础。它在人体内的功能共有6 个方面: ◎ 结构功能与催化调节功能 蛋白质是构成体内各组织的主要成分,蛋白质在人体内的主要功能是构成组织和修补组织。人的大脑、神经、肌肉、内脏、血液、皮肤乃至指甲、头发等都是以蛋白质为主要成分构成的。人体发育成长后,随着机体内新陈代谢的不断进行,部分蛋白质分解,组织衰老更新以及损伤后的组织修补等都需要不断补充蛋白质。所以,人每天都要补充一定量的蛋白质,以满足身体的正常需要。人体内的化学变化几乎都是在酶的催化下不断进行的。激素对代谢的调节作用也具有重要意义,而酶和激素都直接或间接来自于蛋白质。 ◎ 防御功能与运动功能 机体抵抗力的强弱,取决于抵抗疾病的抗体的多少,抗体的生成与蛋白质有密切关系。近年来被誉为抑制病毒的法宝和抗癌生力军的干扰素,也是一种复合蛋白质(糖和蛋白质结合而成)。肌肉收缩依赖于肌球蛋白和肌动蛋白,有肌肉收缩才有躯体运动、呼吸、消化及血液循环等生理活动。 ◎ 供给热能与运输和存储功能 人体每日需要的能量,主要来自于糖类及脂肪。当蛋白质的量超过人体的需要,或者饮食中的糖类、脂肪供给不足时,蛋白质亦可作为热量的来源。另外,在人体新陈代谢过程中,被更新的组织蛋白亦可氧化产生热能,供给人体的需要。不论是营养素的吸收、运输和储存以及其他物质的运输和储存,都有特殊蛋白质作为载体。如氧和二氧化碳在血液中的运输、脂类的运输、铁的运输和储存都与蛋白质有密切的关系。

铁蛋白与肿瘤

铁蛋白与肿瘤 【摘要】铁蛋白,作为重要的铁贮存蛋白,对于铁内环境的稳定非常重要,并参与许多生理和病理过程。过量的铁负荷可以破坏机体对肿瘤细胞的免疫监视。多种实体恶性肿瘤的细胞可以合成或分泌铁蛋白,所以铁蛋白不仅是贮铁指标,而且也是恶性肿瘤的标志物之一。铁蛋白和铁蛋白受体蛋白水平在乳腺癌组织中含量较高。血清铁近来被认为是异基因骨髓移植患者预后的标志物。过多的铁负荷将降低移植的存活率。过多的铁负荷似乎可以增加治疗相关的死亡率,而不是增加疾病的侵袭性和复发率。 【关键词】铁蛋白;铁;恶性肿瘤 【中图分类号】R73 【文献标识码】A 【文章编

号】1005-0019(2014)03-0501-01 铁是人体重要的不可或缺的金属元素,它广泛参与许多重要的生命代谢过程,例如在氧的运送、电子的传递、DNA的合成等过程中均有铁的参与。另外,参与三羧酸循环的酶和辅酶中有半数均需要铁的存在。铁含量的增加,即铁的超负荷也是肿瘤形成的危险因素。 1 铁 几乎所有细胞都需要铁作为基本生化活动的辅助因子,然而,铁也有潜在的毒性,它能够催化ROS (活性氧簇)并产生高反应基团。铁的摄入、利用和解毒对细胞和组织非常重要。 人体铁的大部分分布于血红蛋白和红系细胞并作为氧的载体,哺乳动物通过出血等丢失铁,但是没有任何释放铁的调解机制。因此平衡的维持需要十二指

肠对于铁吸收的严密控制。营养铁的摄取包括小肠通过还原酶对于三价铁的还原,以及随之在肠上皮细胞的顶膜通过二价金属载体进行的二价铁的转运。 2 铁蛋白(Ferritin) 2.1 铁蛋白的结构:铁蛋白是广泛存在于动植物体内的一类贮存铁的蛋白,主要存在于肝脏和脾脏中。铁蛋白的外径约12~14nm,其外壳(即脱铁铁蛋白)由24个亚基组成,每个亚基约含有163个氨基酸残基,每个分子最多结合4500个铁原子。其分子量比较大,约为450kd。结合铁的铁蛋白是可“溶”于水的,血浆铁蛋白的浓度与体内储存的铁量成正比。 2.2 铁蛋白的生理作用:铁蛋白为机体内一种贮存铁的可溶性的组织蛋白,正常人群血清中含有少量的铁蛋白,在正常条件下,其含量稳定。它的主要的生理功能是储存铁元素,同时在机体合成含铁的物质

蛋白质的结构和功能

第二章蛋白质的结构和功能 蛋白质(protein)在生物体内具有广泛和重要的生理功能,它不仅是各器官、组织的主要化学组成,且生命活动中各种生理功能的完成大多是通过蛋白质来实现的,而且蛋白质在其中还起着关键的作用,所以蛋白质是生物化学学科中传统、基础的内容,在分子生物学学科中又是发展最快、最重要的部分之一,protein一词就是来自1938年Jons J Berzelius创造的希腊单词protios,意为第一或最重要的意思。 第一节蛋白质在生命活动中的重要功能 蛋白质是生命的物质基础,一切生命活动离不开蛋白质。 蛋白质普遍存在于生物界,从病毒、细菌到动、植物都含有蛋白质,病毒除核酸外几乎都由蛋白质组成,甚至朊病毒(prion)就只含蛋白质而不含核酸。蛋白质也是各种生物体内含量最多的有机物质(表2-1)。人体内蛋白质含量就约占其干重的45%左右。 体内一些蛋白质的重要生理功能: (一)催化功能 (二)调节功能 (三)保护和支持功能 (四)运输功能 (五)储存和营养功能 (六)收缩和运动功能 (七)防御功能 (八)识别功能 (九)信息传递功能 (十)基因表达调控功能 (十一)凝血功能 (十二)蛋白质的其他众多生理功能 1

2 第二节 蛋白质的分子组成 一、 蛋白质的元素组成和分子量 蛋白质是大分子化合物,相对分子质量(Mr )一般上万,结构十分复杂,但都是由 C 、H 、O 、N 、S 等基本元素组成,有些蛋白质分子中还含有少量Fe 、P 、Zn 、Mn 、Cu 、I 等元素,而其中氮的含量相对恒定,占13%~19%,平均为16%,因此通过样品中含氮量的测定,乘以6.25,即可推算出其中蛋白质的含量。 二、 蛋白质的氨基酸组成 大分子蛋白质的基本组成单位或构件分子(building-block molecule )是氨基酸(amino acid ,AA )(表2-2)。在种类上,虽然自然界中存在着300多种氨基酸,但构成蛋白质的只有20种氨基酸,且都是L,α-氨基酸,在蛋白质生物合成时它们受遗传密码控制。另外,组成蛋白质的氨基酸,不存在种族差异和个体差异。 在20种氨基酸中,除甘氨酸不具有不对称碳原子和脯氨酰是亚氨基酸外,其余 均为L,α-氨基酸。氨基酸分子的结构通式为:R H | C | COOH N H 2-- (一) 氨基酸的分类 20种氨基酸按其侧链R 结构的不同,在化学中可分为脂肪族、芳香族和杂环氨基酸三大类,分别含15种、2种和3种氨基酸。在脂肪族氨基酸中,3种是支链氨基酸,而大多是直链氨基酸。在20种氨基酸中,有2种是含硫氨基酸和3种是含羟基的氨基酸。在生物化学中,氨基酸是根据其酸性基团(羧基)和碱性基团(氨基、胍基、咪唑基)的多寡而分为酸性氨基酸、碱性氨基酸和中性氨基酸三类,其中酸性氨基酸含2个羧基和1个氨基,碱性氨基酸含2个或2个以上碱性基团和一个羧基,都属于含有可解离基团的极性氨基酸,而中性氨基酸只含有1个羧基和1个氨基,在形成蛋白质分子时都被

8.1 蛋白质的生理功能和营养价值

8.1 蛋白质的生理功能和营养价值维持细胞组织的生长、更新和修补 参与体内多种重要的生理活动 氧化供能 蛋白质 生理功能physiological function of protein 催化(酶)、调节(激素)、免疫(抗原及抗体)、运动(肌肉)、物质转运(载体)、凝血(凝血系统)等。 人体每日18%能量由蛋白质提供。 蛋白质占人体重量的16%~20%。 不可替代

?体内蛋白质的代谢状况可用氮平衡描述 氮平衡(nitrogen balance)指每日氮的摄入量与排出量之间的关系。粪便尿液 氮正平衡氮负平衡正常成人 饥饿、严重烧伤、出血、消耗性疾病患者 氮总平衡 儿童、孕妇、恢复期病人

食物蛋白质的营养需求 ?量:蛋白质的生理需要量 ●成人每日蛋白质最低生理需 要量为30g-50g ●我国营养学会推荐成人每日 蛋白质需要量为80g ?质:蛋白质的营养价值 营养必需氨基酸(nutritional essential amino acid)指体内需要而又不能自身合成,必须由食物供给的氨基酸。 通常认为有8种必需氨基酸,分别是亮氨酸、异亮氨酸、苏氨酸、缬氨酸、赖氨酸、甲硫氨酸、苯丙氨酸和色氨酸。现在认为,组氨酸也是一种必需氨基酸。

蛋白质的营养价值(nutrition value ) 蛋白质的营养价值是指食物蛋白质在体内的利用率,取决于必需氨基酸的数量、种类、量质比。 动物性蛋白质所含必需氨基酸的种类和比例与人体需要接近,所以营养 价值较高。 蛋白质的互补作用指营养价值较低的蛋白质混合食用,其必需氨基酸可以互相补充而提高营养价值。 Complementary 鱼和豆腐同吃,提高营养价值

乳铁蛋白生物学功能及其作用机理

乳铁蛋白生物学功能及其作用机理 近十几年来,世界各地的实验室对乳铁蛋白功能,特别是生物学功能进行了广泛研究,许多新的功能正不断被发现,许多体内、外试验证明,乳铁蛋白确实具有抗微生物、免疫调节、抗感染和抑制肿瘤生长等功能,乳铁蛋白可能具有的生物学功能见下图。 目前已被证实的生物学功能可归纳为以下几方面: 一、参与铁代谢,促进铁吸收 乳铁蛋白可提高肠细胞对铁的生物利用率,并稳定还原状态的铁离子,减少铁离子对胃肠道的刺激作用。乳铁蛋白能根据机体对铁的需求,通过调节肠黏膜细胞对铁的吸收,保持体内铁的平衡状态。 1.运载及促进铁离子吸收。在生理pH条件下形成的三价铁离子(Fe3+)不溶于水,很难被动物和其他生物体利用,乳铁蛋白通过结合Fe3+,改变其化学形式促进机体细胞对Fe3+吸收,乳铁蛋白促进Fe3+吸收的作用,主要与其结合铁的高溶解性和肠绒毛细胞对Fe-LF中铁的特殊吸收机制有关。 2.提高铁的生物利用率,减轻补铁负面效应。在补充铁时,结合使用乳铁蛋白可明显减缓铁离子对动物肠道的刺激作用。这是因为乳铁蛋白螯合了铁,避免了铁离子对肠道的直接刺激作用;同时,进食乳铁蛋白可以减少无机铁离子的摄人量,从而增强铁的实际吸收量和生物利用率,有效降低铁的使用量,减少铁离子对机体造成的不利影响。因此,乳铁蛋白可作为一种很好的补铁剂。 二、抗微生物功能 在乳铁蛋白的诸多生物学功能中,抗微生物活性最引人注目,乳铁蛋白对许多微生物,包括G+和G-需氧菌和厌氧菌及一些真菌,都具有不同程度的抑制和杀伤作用。其作用机制主要有以下几点: (1) 不饱和乳铁蛋白极强的铁结合性,通过夺去微生物生长环境中的铁离子,使细菌因失去生长所需的基本元素铁而停止生长甚至死亡,或使微生物由于缺乏铁离子而不能形成致病性生物膜,降低细菌浓度,减少发病率。乳铁蛋白属于广谱抑菌剂,既抑制革兰氏阴性菌如大肠菌群、克雷白氏杆菌、沙门氏菌和志贺氏菌等,也抑制革兰氏阳性菌,如金黄色葡萄球菌、杆菌和产单细胞李斯特菌,对引起胃炎或胃溃疡等上消化道疾病的幽门螺旋杆菌也具有抗菌作用。

1蛋白质的结构与功能习题

第一章蛋白质的结构与功能 一、名词解释 1、氨基酸的等电点 2、肽键 3、肽单位 4、蛋白质一级结构 5、蛋白质二级结构 6、α-螺旋 7、β-折叠 8、超二级结构(模体) 9、结构域10、蛋白质变性11、蛋白质复性12、蛋白质三级结构13、蛋白质四级结构14、别构效应 二、填空题 1.组成蛋白质的氨基酸分子结构中含有羟基的有______________、______________、______________。2.氨基酸在等电点(pI)时,以______________离子形式存在,在pH>pI时以______________离子形式存在,在pH

相关文档
最新文档