湖北省黄冈市罗田一中2020年自主招生考试数学试卷

合集下载

湖北省罗田县一2019-2020学年高一入学考试数学试卷附答案(推广版)

湖北省罗田县一2019-2020学年高一入学考试数学试卷附答案(推广版)

1 47 10 13 16 19 22 25 28 31 34 37 40 43 …… ……
则第 20 行第 19 个数 _____________________
三、解答题(本题共 9 小题,共 72 分)
是 17.
18.先化简,再求值:2x − 6 5 − x − 2,其中x = −1.
3 4
3
即恰好选中一名男生和一名女生的概率是 2 .................8 分 3
23、【详解】(1)设当走路慢的人再走 600 步时,走路快的人的走 x 步, 由题意得 x:600=100:60, ∴x=1000,
添加于龙老师微信号yulong5160,留言“资料”二字,加入资料群
八千万中学生家庭,人人分享,人人受益(资料来源于网络)
9.分解因式:
_________________
10.分式方程:
的解为__________________
11.如图,在平面直角坐标系中,边长为 2 的正方形 的边 在 轴上, 边的中点是坐 标原点 ,将正方形绕点 按逆时针方向旋转 90°后,点 的对应点 的坐标是
________________
12.已知反比例函数 的图象分别位于第二、第四象限,
添加于龙老师微信号yulong5160,留言“资料”二字,加入资料群
八千万中学生家庭,人人分享,人人受益(资料来源于网络)
在 Rt△ACE 中,∵∠CAE=30°, ∴tan30°= CE
AE
即 3= x , 3 x + 40
解得,x=20 3 +20≈20×1.732+20=54.64(m)
∴CD=CE+ED=54.65+1.5=56.15≈56(m) 答:该建筑物的高度约为 56m........................8 分

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题五(pdf版,含解析)

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题五(pdf版,含解析)

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题五一、选择题(共5小题,每题4分,满分20分)1.(4分)下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B. C. D.2.(4分)如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2πB.4πC.2D.43.(4分)如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4 B.5 C.6 D.84.(4分)小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15 B.20 C.25 D.305.(4分)已知BD是△ABC的中线,AC=6,且∠ADB=45°,∠C=30°,则AB=()A.B.2C.3D.6二、填空题(共6题,每小题5分,满分30分)6.(5分)满足方程|x+2|+|x﹣3|=5的x的取值范围是.7.(5分)已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b ﹣7c,则m的最小值为.8.(5分)如图所示,设M是△ABC的重心,过M的直线分别交边AB,AC于P,Q两点,且=m,=n,则+=.9.(5分)在平面直角坐标系中,横坐标与纵坐标都是整数的点(x,y)称为整点,如果将二次函数的图象与x轴所围成的封闭图形染成红色,则此红色区域内部及其边界上的整点个数有个.10.(5分)如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A (0,),∠OCB=60°,∠COB=45°,则OC=.(第10题图) (第11题图)11.(5分)如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是.三、简答题(共4小题,满分50分)12.(12分)九年级(1)、(2)、(3)班各派4名代表参加射击比赛,每队每人打两枪,射中内环得50分,射中中环得35分,射中外环得25分,脱靶得0分.统计比赛结果,(1)班8枪全中,(2)班1枪脱靶,(3)班2枪脱靶,但三个班的积分完全相同,都是255分.请将三个班分别射中内环、中环、外环的次数填入下表并简要说明理由:班级内环中环外环(1)班(2)班(3)班13.(12分)设二次函数y=ax2+bx+c的开口向下,顶点落在第二象限.(1)确定a,b,b2﹣4ac的符号,简述理由.(2)若此二次函数图象经过原点,且顶点在直线x+y=0上,顶点与原点的距离为3,求抛物线的解析式.14.(12分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD=60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).15.(14分)在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转.旋转过程中,AB边交直线y=x 于点M,BC边交x轴于点N(如图1).(1)求边AB在旋转过程中所扫过的面积;(2)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论;(3)设MN=m,当m为何值时△OMN的面积最小,最小值是多少?并直接写出此时△BMN内切圆的半径.2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题五参考答案与试题解析一、选择题(共5小题,每题4分,满分20分)1.(4分)下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B.C.D.【分析】先把算式的值求出,然后根据函数的性质分别求出四个图中的阴影部分面积,看是否与算式的值相同,如相同,则是要选的选项.【解答】解:原式=++==.A、作TE⊥X轴,TG⊥Y轴,易得,△GTF≌△ETD,故阴影部分面积为1×1=1;B、当x=1时,y=3,阴影部分面积1×3×=;C、当y=0时,x=±1,当x=0时,y=﹣1.阴影部分面积为[1﹣(﹣1)]×1×=1;D、阴影部分面积为xy=×2=1.故选B.【点评】解答A时运用了全等三角形的性质,B、C、D都运用了函数图象和坐标的关系,转化为三角形的面积公式来解答.2.(4分)如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2πB.4πC.2D.4【分析】连接O′C,O′B,O′D,OO′,则O′D⊥BC.因为O′D=O′B,O′C平分∠ACB,可得∠O′CB=∠ACB=×60°=30°,由勾股定理得BC=2.【解答】解:当滚动到⊙O′与CA也相切时,切点为D,连接O′C,O′B,O′D,OO′,∵O′D⊥AC,∴O′D=O′B.∵O′C平分∠ACB,∴∠O′CB=∠ACB=×60°=30°.∵O′C=2O′B=2×2=4,∴BC===2.故选:C.【点评】此题主要考查切线及角平分线的性质,勾股定理等知识点,属中等难度题.3.(4分)如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4 B.5 C.6 D.8【分析】先把12分成2个因数的积的形式,共有6总情况,所以对应的p值也有6种情况.【解答】解:设12可分成m•n,则p=m+n(m,n同号),∵m=±1,±2,±3,n=±12,±6,±4,∴p=±13,±8,±7,共6个值.故选C.【点评】主要考查了分解因式的定义,要熟知二次三项式的一般形式与分解因式之间的关系:x2+(m+n)x+mn=(x+m)(x+n),即常数项与一次项系数之间的等量关系.4.(4分)小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15 B.20 C.25 D.30【分析】设容易题有x道,中档题有y道,难题有z道,然后根据题目数量和三人解答的题目数量列出方程组,然后根据系数的特点整理即可得解.【解答】解:设容易题有x道,中档题有y道,难题有z道,由题意得,,①×2﹣②得,z﹣x=20,所以,难题比容易题多20道.故选B.【点评】此类题注意运用方程的知识进行求解,观察系数的特点巧妙求解更简便.5.(4分)已知BD是△ABC的中线,AC=6,且∠ADB=45°,∠C=30°,则AB=()A.B.2C.3D.6【分析】根据题中所给的条件,在直角三角形中解题.根据角的正切值与三角形边的关系,结合勾股定理求解.【解答】解:过点B作BE⊥AC交AC于点E.如下图设BE=x,∵∠BDA=45°,∠C=30°,∴DE=x,BC=2x,∵tan∠C=,∴=tan30°,∴3x=(3+x),解得x=,在Rt△ABE中,AE=DE﹣AD=﹣3=,由勾股定理得:AB2=BE2+AE2,AB==3.故选C.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.二、填空题(共6题,每小题5分,满分30分)6.(5分)满足方程|x+2|+|x﹣3|=5的x的取值范围是﹣2≤x≤3.【分析】分别讨论①x≥3,②﹣2<x<3,③x≤﹣2,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.【解答】解:从三种情况考虑:第一种:当x≥3时,原方程就可化简为:x+2+x﹣3=5,解得:x=3;第二种:当﹣2<x<3时,原方程就可化简为:x+2﹣x+3=5,恒成立;第三种:当x≤﹣2时,原方程就可化简为:﹣x﹣2+3﹣x=5,解得:x=﹣2;所以x的取值范围是:﹣2≤x≤3.【点评】解一元一次方程,注意最后的解可以联合起来,难度很大.7.(5分)已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b ﹣7c,则m的最小值为﹣.【分析】解方程组,用含m的式子表示出a,b,c的值,根据a≥0,b≥0,c≥0,求得m的取值范围而求得m的最小值.【解答】解:由题意可得,解得a=﹣3,b=7﹣,c=,由于a,b,c是三个非负实数,∴a≥0,b≥0,c≥0,∴﹣≥m≥﹣.=﹣.所以m最小值故本题答案为:﹣.【点评】本题考查了三元一次方程组和一元一次不等式的解法.8.(5分)如图所示,设M是△ABC的重心,过M的直线分别交边AB,AC 于P,Q两点,且=m,=n,则+=1.【分析】根据三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.可以分别过点B,C作BE∥AD,CF∥AD,交PQ 于点E,F,根据平行线等分线段定理和梯形中位线定理可得到两个等式,代入所求代数式整理即可得到答案.【解答】解:分别过点B,C作BE∥AD,CF∥AD,交PQ于点E,F,则BE ∥AD∥CF,∵点D是BC的中点,∴MD是梯形的中位线,∴BE+CF=2MD,∴+==+===1.【点评】此题考查了重心的概念和性质,能够熟练运用平行线分线段成比例定理、平行线等分线段定理以及梯形的中位线定理.9.(5分)在平面直角坐标系中,横坐标与纵坐标都是整数的点(x,y)称为整点,如果将二次函数的图象与x轴所围成的封闭图形染成红色,则此红色区域内部及其边界上的整点个数有25个.【分析】找到函数图象与x轴的交点,那么就找到了相应的x的整数值,代入函数求得y的值,那么就求得了y的范围.【解答】解:将该二次函数化简得,y=﹣[(x﹣4)2﹣],令y=0得,x=或.则在红色区域内部及其边界上的整点为(2,0),(3,0),(4,0),(5,0),(6,0),(2,1),(2,2),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(6,1),(6,2)共25个,故答案为:25.【点评】本题涉及二次函数的图象性质,解决本题的关键是得到相对应的x的值.10.(5分)如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A (0,),∠OCB=60°,∠COB=45°,则OC=1+.【分析】连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.【解答】解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为:1+.【点评】此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.11.(5分)如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是16+12.【分析】此题首先能够把问题转化到三角形中进行分析.根据锐角三角函数的概念可以证明三角形的面积等于相邻两边的乘积乘以夹角的正弦值,根据这一公式分析面积的最大值的情况.然后运用勾股定理以及直角三角形的斜边上的高等于两条直角边的乘积除以斜边求得长方形的长和宽,进一步求得其周长.【解答】解:连接OA,OD,作OP⊥AB于P,OM⊥AD于M,ON⊥CD于N.根据矩形的面积以及三角形的面积公式发现:矩形的面积是三角形AOD的面积的4倍.因为OA,OD的长是定值,则∠AOD的正弦值最大时,三角形的面积最大,即∠AOD=90°,则AD=6,根据三角形的面积公式求得OM=4,即AB=8.则矩形ABCD的周长是16+12.【点评】本题考查的是矩形的定理以及垂径的性质,考生应注意运用勾股定理来求得边长继而才能求出周长.三、简答题(共4小题,满分50分)12.(12分)九年级(1)、(2)、(3)班各派4名代表参加射击比赛,每队每人打两枪,射中内环得50分,射中中环得35分,射中外环得25分,脱靶得0分.统计比赛结果,(1)班8枪全中,(2)班1枪脱靶,(3)班2枪脱靶,但三个班的积分完全相同,都是255分.请将三个班分别射中内环、中环、外环的次数填入下表并简要说明理由:班级内环中环外环(1)班(2)班(3)班【分析】本题可以通过设出内环、中环、外环射中的枪数为x,y,z;设脱靶数为t,根据等量关系“总得分=内环得分+中环得分+外环得分”列出函数方程进行分析,从而确定出各中枪数.【解答】解:填表如下:班级内环中环外环(1)班134(2)班232(3)班330理由如下:可设t枪脱靶,x枪射中内环,y枪射中中环,则有(8﹣x﹣y﹣t)枪射中外环,所以50x+35y+25(8﹣x﹣y﹣t)=255化简得y=5+2(t﹣x)+(1+t﹣x)对于(1)班,t=0,y=5﹣2x+(1﹣x),x为奇数,只能取x=1,得y=3;对于(2)班,t=1,y=7﹣2x+(2﹣x),x为偶数,只能取x=2,得y=3;对于(3)班,t=2,y=9﹣2x+(3﹣x),x为奇数,只能取x=3,得y=3;【点评】此题考查的是学生对函数方程的分析讨论并对某些值确定,同学们要注意细心分析.13.(12分)设二次函数y=ax2+bx+c的开口向下,顶点落在第二象限.(1)确定a,b,b2﹣4ac的符号,简述理由.(2)若此二次函数图象经过原点,且顶点在直线x+y=0上,顶点与原点的距离为3,求抛物线的解析式.【分析】(1)根据抛物线的开口向下判断a的符号,再根据第二象限点的坐标特点及二次函数的顶点坐标列出不等式组,确定出解答a,b,b2﹣4ac的符号即可.(2)根据抛物线过原点及顶点在直线x+y=0上求出其顶点坐标及一次项系数,再根据顶点与原点的距离为3求出二次项系数,进而求出其解析式.【解答】解:(1)∵抛物线开口向下,∴a<0;∵顶点在第二象限,∴,∴b<0,b2﹣4ac>0.(2)由题意可得c=0,此时顶点坐标为(﹣,﹣),因顶点在直线x+y=0上,所以﹣﹣=0,b=﹣2.此时顶点坐标为(,﹣),由+=18,a=﹣,则抛物线的解析式为y=﹣x2﹣2x.【点评】本题考查的是二次函数的图象与系数的关系及用待定系数法求二次函数的解析式,掌握二次函数的特点是解题的关键.14.(12分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD=60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).【分析】(1)根据圆内接四边形的性质和三角形的内角和定理进行证明;(2)根据三角形的外心到三角形的三个顶点的距离相等的性质只需证明AB=AF=AE,根据等腰三角形的性质和判定进行证明.【解答】证明:(1)∠ABF=∠ADC=120°﹣∠ACD=120°﹣∠DEC=120°﹣(60°+∠ADE)=60°﹣∠ADE,(4分)而∠F=60°﹣∠ACF,(6分)因为∠ACF=∠ADE,(7分)所以∠ABF=∠F,所以AB=AF.(8分)(2)四边形ABCD内接于圆,所以∠ABD=∠ACD,(10分)又DE=DC,所以∠DCE=∠DEC=∠AEB,(12分)所以∠ABD=∠AEB,所以AB=AE.(14分)∵AB=AF,∴AB=AF=AE,即A是三角形BEF的外心.(16分)【点评】综合运用了圆内接四边形的性质、三角形的内角和定理以及三角形的外心的性质.15.(14分)在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转.旋转过程中,AB边交直线y=x 于点M,BC边交x轴于点N(如图1).(1)求边AB在旋转过程中所扫过的面积;(2)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论;(3)设MN=m,当m为何值时△OMN的面积最小,最小值是多少?并直接写出此时△BMN内切圆的半径.【分析】(1)S阴=S△OAB+S扇形OBB′﹣S△OAA′﹣S扇形OAA′,根据公式即可求解.(2)延长BA交y轴于E点,可以证明:△OAE≌△OCN,△OME≌△OMN 证得:OE=ON,AE=CN,MN=ME=AM+AE=AM+CN.从而求得:P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2.即可求解.(3)Rt△BMN中,BM2+BN2=MN2,所以(1﹣n)2+(1﹣m+n)2=m2⇒m2﹣mn+2﹣m=0.把这个方程看作关于n的方程,根据一元二次方程有解得条件,即可求得.【解答】解:(1)如图,S阴=S△OAB+S扇形OBB'﹣S△OA'B′﹣S扇形OAA'=S扇形OBB′﹣S扇形OAA′=π﹣π×12=(2)p值无变化证明:延长BA交y轴于E点,在△OAE与△OCN中,∴△OAE≌△OCN(AAS)∴OE=ON,AE=CN在△OME与△OMN中,∴△OME≌△OMN(SAS)∴MN=ME=AM+AE=AM+CN∴P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2;(3)设AM=n,则BM=1﹣n,CN=m﹣n,BN=1﹣m+n,∵△OME≌△OMN,=S△MOE=OA×EM=m∴S△MON在Rt△BMN中,BM2+BN2=MN2∴(1﹣n)2+(1﹣m+n)2=m2⇒n2﹣mn+1﹣m=0∴△=m2﹣4(1﹣m)≥0⇒m≥2﹣2或m≤﹣2﹣2,∴当m=2﹣2时,△OMN的面积最小,为﹣1.此时n=﹣1,则BM=1﹣n=2﹣,BN=1﹣m+n=2﹣,∴Rt△BMN的内切圆半径为=3﹣2.【点评】本题综合运用了扇形的面积公式,全等三角形的判定,三角形的面积公式以及勾股定理的综合应用,难度较大.。

2020年黄冈中学自主招生考试数学试题(含答案)

2020年黄冈中学自主招生考试数学试题(含答案)

第1页共11页数学试题试卷满分120分,考试时间120分钟一、选择题(本大题8小题,每小题4分,共32分)在每小题列出的四个选项中,只有一个是正确的,请选出正确选项,在答题卡上相应位置用2B 铅笔涂黑.1.2020年的春天至今,一种被称为新型冠状病毒肺炎的肺部疾病在全球爆发,这次突如其来的疫情给世界各国人民生命安全和身体健康带来严重威胁,对世界经济社会发展带来严重冲击.疫情严重,请尽量不要聚会,避免出入公共场所.截止7月10日,全球大约有12300000人感染新冠肺炎.12300000用科学计数法表示为()A .612.310⨯B .512310⨯C .80.12310⨯D .71.2310⨯2.一把直尺和一块三角板ABC (含45︒角)按如图1所示摆放,直尺一边与三角板的两直角边分别交于点D 和点E ,另一边与三角板的两直角边分别交于点F 和点A ,25CED ∠=︒,则BFA ∠的大小为()A .115︒B .110︒C .105︒D .120︒3.已知a ,b 两数在数轴上的位置如图2所示,则化简222b a a b ab a b -++--的结果是()A .1a b --B .1a b -++C .1a b +-D .1a b --+4.假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A .8分钟B .7分钟C .6分钟D .5分钟5.构建几何图形解决代数问题体现了“数形结合”的重要思想.在计算tan15︒时,如图3,在Rt ACB ∆中,90C ∠=︒,30ABC ∠=︒,延长CB 使BD AB =,连接AD ,得15D ∠=︒,所以123tan152323(23)(23)AC CD -︒====-++-.类比这种方法,计算tan 22.5︒的值为()A .21+B .21-C .2D .126.设,,a b c 分别是ABC ∆的三条边,对应的角分别为,,A B C ,若3,2,30b c C === ,则可以作出符合条图2图3图1第2页共11页件的三角形的个数为()A .0B .1C .2D .不确定7.如图4,有一电路连着三个开关,每个开关闭合与断开是等可能的,若不考虑元件的故障因素,则电灯点亮的概率为()A .12B .34C .23D .388.数独是源自18世纪瑞士的一种数学游戏.如图5是数独的一个简化版,由3行3列9个单元格构成.玩该游戏时,需要将数字1,2,3(各3个)全部填入单元格,每个单元格填一个数字,要求每一行、每一列均有1,2,3这三个数字,则不同的填法有()A .12种B .24种C .72种D .216种二、填空题(本大题8小题,每小题4分,共32分)请把下列各题正确的答案填写在答题卡的相应的位置上.9.若函数6xy x =-在实数范围内有意义,则函数x 的取值范围是_____________.10.某商场销售额4月份为25万元,6月份为36万元,该商场5、6两个月销售额的平均增长率是%.11.已知3232x -=+,3232y +=-,则22x y x y ++=_____________.12.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,则222ab bc ca a b c ++++的值为.13.若[]x 表示不超过x 的最大整数(例如[2.3]=2),{}[]x x x =-,方程2{}3[]x x x +=的解为.14.如图6,ABC ∆的顶点是正方形网格的格点,则sin A 的值为________.15.如图7,在锐角三角形ABC 中,8AB =,ABC ∆的面积为40,BD 平分ABC ∠,若M 、N 分别是BD 、BC 上的动点,则CM MN +的最小值为________.16.n 个单位小立方体叠放在桌面上,所得几何体的主视图和俯视图均如图8所示.那么n 的最大值与最小值的积是.三、解答题(一)(本大题4小题,每小题8分,共32分).图5图6图7图4图8。

2020年黄冈中学重点高中自主招生考试数学模拟试卷八及答案解析

2020年黄冈中学重点高中自主招生考试数学模拟试卷八及答案解析

O x y A B C DM N (第3题图) 2020年黄冈中学重点高中自主招生考试数学模拟试卷八一、填空题(共5题,每题5分,共25分)1.设532x -=,则代数式(1)(2)(3)x x x x +++的值是( ) (A) -1 (B) 0 (C) 1 (D)22. 程序框图如图所示.当E =0.96时,则输出的k =( ) (A)20 (B)22 (C)24 (D)253. 如图,矩形ABCD 的对角线BD 经过坐标原点O ,矩形的边分别平行于坐标轴,反比例函数ky x=(k >0)的图象分别与BC 、CD 交于点M 、N .若点A(-2,-2),且△OMN 的面积为32,则k =( )(A)2.5 (B)2 (C)1.5 (D)14. 如图,AB 是⊙O 的直径,弦CD⊥AB 于点G ,点F 是CD 上一点,且满足13CF FD =,连接AF 并延长交⊙O 于点E ,连接AD 、DE ,若CF =2,AF =3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=52; ④S △DEF =45.其中正确的是结论的个数是( ) (A)1 (B)2 (C)3 (D)45.如图,点D 、E 分别在AB 、AC 上,BE 、CD 相交于点F ,设S 四边形EADF =S1,S △BDF =S2, S △BCF =S3,S △CEF =S 4,则S 1S 3与S 2S 4的大小关系是( )(A) 不能确定 (B) S 1S 3<S 2S 4 (C) S 1S 3=S 2S 4 (D) S 1S 3>S 2S 4开始k=1,S=01(1)S S k k =++S ≥E ?输出kk=k+1否是(第2题图)(第4题图) (第5题图)二、填空题(共4题,每题5分,共20分)6. 关于x 的分式方程11mx =-+的解是负数,则m 的取值范围是__________.7.一枚质地均匀的正方形骰子的六个面上的数字分别是1、2、2、3、3、4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1、3、4、5、6、8.同时掷这两枚骰子,则其朝上的面两数字之和为5的概率是_______.8.如图,在Rt△ABC 两直角边AC 、BC 上分别作正方形ACDE 、正方形CBFG ,连结DG .线段AB 、BF 、FG 、GD 、DE 、EA 的中点依次为P 、L 、K 、I 、H 、Q .若AC =14,BC =28,则六边形HIKLPQ 的面积为_______.9.如图,已知菱形ABCD 的顶点D 、C 在直线y =x 上,且顶点A 、B 在抛物线y =x 2上,DA 平行于y 轴,则S 菱形ABCD =_______.(第8题图)ABCDEF GIH LKPQ(第9题图)OxyABCD三、解答题(共2题,第10题15分,第11题15分)10.如图①,梯形ABCD 中,AB∥CD,∠C=90°,AB =BC =4, CD =6.(1)点E 是BC 边上的点,EF∥AD 交CD 于点F ,FG∥EA 交AD 边于点G .若四边形AEFG 是矩形,求BE 的长;(2)在(1)的条件下,将∠AEF 绕着点E 逆时针旋转为∠A'EF',交CD 边于点F'(与D 不重合),射线EA'交AB 边于点M ,作F'N∥EA'交AD 边于点N ,如图②.设BM =x ,△NF'D 的F'D 边上的高为y .求y 与x 的函数关系式,并直接写出y 的最大值.(图①)ABC DEFG(图②)AB C DEF ’NMA ’11.已知,如图,二次函数2y ax bx c =++的图象经过点(1,0)A ,(3,0)B ,(0,3)C . ⑴求该二次函数的解析式;⑵在该抛物线对称轴上一点P ,使得三条线段PA 、PB 、PC 与一个等边三角形的三条边对应相等(即这三条线段能构成等边三角形),请求出点P 的坐标. ⑶若线段DE 两端点的坐标分别为3(3,)2D 、3(4,)2E .将线段DE 向左平移t 个单位后,在平移后的像''D E 上都存在点P ,使得三条线段PA 、PB 、PC 能与某个等腰三角形的三条边对应相等.请直接写出t 的取值范围.(第11题图)(备用图)2020年黄冈中学重点高中自主招生考试数学模拟试卷八答题卡第Ⅰ部分 数学题号 一 二 三 总分 10 11 得分一、填空题(共5题,每题5分,共25分)1 2 3 4 5二、填空题(共4题,每题5分,共20分)6 7 8 9三、解答题(共2题,第10题15分,第11题15分)10.(图①)ABC DEFG(图②)ABC DEF ’NMA ’11.(第11题图)(备用图)2020年黄冈中学重点高中自主招生考试 数学模拟试卷八参考答案及评分标准一、填空题(共5题,每题5分,共25分) 1 2 3 4 5 ACBCD二、填空题(共4题,每题5分,共20分) 678 9 m>-1且m ≠0191004.517224-三、解答题(共2题,第10题15分,第11题15分) 10.(1)作AH ⊥CD 于H ,则AH=BC=AB=4,HD=2. ∵∠AEB+∠CEF=90°,∠EFC+∠CEF=90° ∴∠AEB=∠EFC 同理∠EFC=∠D ∴∠AEB=∠D∴Rt △ABE ≌Rt △AHD ∴BE=HD=2---------5'(2)∵∠BEM=∠CF'E ,∠B=∠C=90° ∴△BEM ∽△CF'E 作NP ⊥CD 于P ,同理△CF'E ∽△PNF'∴''BM CE PF BE CF PN ==∴CF'=4x ,PF'=2xy 由(1)知tanD=2y PD = ∴PD=2y∵CD=CF'+PF'+PD=422xy yx++=6 ∴2128x y x x-=+--------------------------10' y 最大值=28810--------------------15' 11. ⑴2343333y x x =-+;------------5' ⑵(2,3)P ---------------------10' ⑶712t ≤≤------------------------15。

黄冈中学自主招生预录数学模拟试题

黄冈中学自主招生预录数学模拟试题

黄冈中学自主招生预录数学试题一、 选择题(每小题5分,共20分)1. 方程023x =+-x x 实根个数为( )A 1B 2C 3D 4 2.=+++=-=6,231,23122b a b a 则( ) A 3 B 4 C 5 D 63.已知一个六边形六个内角都是1200,连续四条边长依次是1,3,3,2则该六边形的周长是( )A 13B 15C 14D 164.实数a,b 满足()()111a 22=----b b a ,说法:(1)a=b, (2)a=-b, (3)ab=1,(4)ab=-1中正确的有( )个A 1B 2C 3D 4 二、填空题(每小题5分,共40分)5.若a,b 都是正实数,0111=+--b a b a ,则=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛33b a a b 6.不论m 为任何实数,抛物线1222-+++=m m mx x y 的顶点都在一条直线上,则这条直线的解析式是7.甲从A 地到B 地,乙从B 地到A 地,甲,乙同时出发相向匀速而行,经t 小时相遇于C 地,相遇后二人继续前进,甲又用了4小时到达B 地,乙又用了9小时到达A 地,则t= 8.75+的小数部分是a ,75-的小数部分是b ,则ab-2a+3b-12=9.设a ax -=1,则24x x += 10.如果一个三位数,百位数字与个位数字都大于十位数字,则称这个三位数为“凹数”,从所有三位数中任取一个三位数是“凹数”的概率是11.化简:=++⎪⎪⎭⎫ ⎝⎛+--+-+-b a ab ab a a ab b b b ab a 21b 12.同心圆半径分别为6,8,AB 为小圆的弦,CD 为大圆的弦,且ABCD 为矩形,圆心在矩形ABCD 内,当矩形ABCD 面积最大时,矩形ABCD 的周长为三、解答题(13、14题各13分,15题14分)13.一号列车从甲站开往乙站,一小时后二号列车从乙站开往甲站,二号列车每小时比一号列车多行10千米,两列车刚好在甲乙两站中点处相遇。

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题一(pdf版,含答案)

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题一(pdf版,含答案)

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题一一、选择题(每小题3分,共30分)1.在直角坐标系中,若一点的横坐标与纵坐标互为相反数,则该点一定不在( ) A .直线y =﹣x 上 B .抛物线y =x 2上 C .直线y =x 上 D .双曲线xy =1上 2.以等速度行驶的城际列车,若将速度提高25%,则相同距离的行车时间可节省k %,那么k 的值是( ) A .35 B .30C .25D .203.若﹣1<a <0,则a ,a ³,3a ,1a一定是( ) A .1a最小,a 3最大 B .3a 最小,a 最大 C .1a 最小,a 最大 D .1a最小,3a 最大4.如图,菱形ABCD 的边AB =20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO =10,则⊙O 的半径长等于( ) A .25 B .5 C .6 D .325.将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x +b |(b 为常数)的图象.若该图象在直线y =2下方的点的横坐标x 满足0<x <3,则b 的取值范围为( )A . -4≤b ≤-2 B. -6≤b ≤2 C.-4≤b ≤2 D. -8≤b ≤-26.设a ,b 是实数,定义@的一种运算如下:a @b =(a +b )2﹣(a ﹣b )2,则下列结论:①若a @b =0,则a =0或b =0 ②a @(b +c )=a @b +a @c③不存在实数a ,b ,满足a @b =a 2+5b 2④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时,a @b 最大. 其中正确的有( )第4题图 第5题图xOyC 1D 1A 1B 1E 1 E 2 E 3 E 4 C 2 D 2 A 2B 2C 3D 3A 3B 3第7题图A .②③④B .①②④C .①③④D .①②③7.一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1,E 1,E 2,C 2,E 3,E 4,C 3……在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3……则正方形A 2018B 2018C 2018D 2018的边长是( )A .201712()B .201812()C .201733()D .201833()8. 如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣2,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a ﹣b =0;②c <0;③﹣3a +c >0;④4a ﹣2b >at 2+bt (t 为实数);⑤点(﹣29,y 1),(﹣25,y 2),(﹣21,y 3)是该抛物线上的点,则y 1<y 2<y 3. 其中说法正确的有( )A .4个B .3个C .2个D .1个9.若关于x 的方程22240224x x x ax x x +-+++=-+-只有一个实数根,则符合条件的所有实数a 的值的总和为( )A .6-B .30-C .32-D .38-10.如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE =FD ,连接BE ,CF . BD ,CF 与BD 交于点G ,连接AG 交BE 于点H ,连接DH ,下列结论正确的个数是( )第8题图①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE④S △HDG :S △HBG =tan ∠DAG ;⑤线段DH 的最小值是25﹣2. A .2 B .3C .4D .5二、填空题(每小题4分,共20分)11.在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P '(﹣y +1,x +2),我们把点P '(﹣y +1,x +2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 2018的坐标为 . 12. 如图, 点A ,C 都在函数的图象上,点B ,D 都在轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为 .13.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是 .14. 已知有理数x 满足:31752233x x x -+-≥-,若32x x --+的最小值为a ,最大值为b ,则ab = . 15.如图,在三角形纸片ABC 中,∠A =90°,∠C =30°,AC =30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),减去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为 cm .33(0)y x x=>x 第12题图 第13题图第15题图三、解答题(每题10分,共50分) 16. (本题满分10分)已知非零实数a ,b 满足a b a b a a =++-+-++-4)1)(5(316822,求1-b a 的值17. (本题满分10分)如果把一个自然数各数位上数字从最高位到个位依次排出一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是:6、4、7、4、6,从个位到最高排出的一串数字也是:6、4、7、4、6,所64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”. (1)请你直接写出3个四位“和谐数”;(2)猜想任意一个四位“和谐数”能否被11整除,并说明理由;(3) 已知一个能被11整除的三位“和谐数”,设个位上的数字为x (,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.14x ≤≤18. (本题满分10分)边长为22的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;3(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=8 BC;(3)猜想PF与EQ的数量关系,证明你的结论.第18题图18备用图1 18备用图219. (本题满分10分)如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE(1)求证:AC2=AE•AB;(2)过点B作⊙O的切线交EC的延长线于点P,试判断PB与PE是否相等,并说明理由;(3)在(2)的条件下,设⊙O半径为4,点N为OC中点,点Q在⊙O上,求线段PQ 的最小值.第19题图19备用图1 19备用图220. (本题满分10分)如图,已知抛物线y =ax 2+bx 经过点A (10,0)和B (8,4).点P 是x 轴正半轴上的一个动点,过点P 作x 轴的垂线段,与直线OB 交于点C ,延长PC 到Q ,使QC =PC .过点Q 的直线分别与x 轴、y 轴相交于点D 、E ,且OD =OE ,直线DE 与直线OB 相交于点F .设OP =t . (1)请直接写出抛物线和直线OB 的函数解析式; (2)当点Q 落在抛物线上时,求t 的值; (3)连结BD :①请用含t 的代数式表示点F 的坐标;②当以点B 、D 、F 为顶点的三角形与△OEF 相似时, 求t 的值.OA Bx ByP Q C ED F第20题图2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题一答案一、 选择题(每题3分,共30分)1.D2.D3.A4.A5.A6.B7.C8.B9.D 10.C 二、填空题(每题4分,共20分) 11. (1,4);12. (,0);13. 11133y x =-+;14. 5;15. 40或三、解答题(每小题10分,共50分) 16. (本题满分10分)由题意得:5,0)1)(5(2≥≥+-a b a ………………………………………. 2分44)4(16822-=-=-=+-a a a a a ……………………………… 3分)1)(5(3)1)(5(34)1)(5(344)1)(5(316822222=+-+-=+-+-+=++-+-+-=++-+-++-b a b a b a b a b a b a b a b a a……………6分又因为03≥-b ,0)1)(5(2≥+-b a 故0)1)(5(32=+-=-b a b ……… 8分则5,3==a b , ………………………………… 9分故1-b a =25 .............................. .............................. (10)分17.(本题满分10分)解:⑴、四位“和谐数”:1221,1331,1111,6666…(答案不唯一)……………………2分(2)任意一个四位“和谐数”都能被11整数,理由如下: 设任意四位“和谐数”形式为:abcd ,则满足:最高位到个位排列:a ,b ,c ,d 个位到最高位排列:d,c,b,a26由题意,可得两组数据相同,则:a =d ,b =c 则1000100101000100101001110911011111111abcd a b c d a b b a a ba b +++++++====+为正整数∴ 四位“和谐数” abcd 能被11整数 又∵a ,b ,c ,d 为任意自然数, ∴任意四位“和谐数”都可以被11整除…………………………………………5分 (3)设能被11整除的三位“和谐数”为,zyx ,则满足:个位到最高位排列:x,y,z 最高位到各位排列:z,y,x .由题意得,两组数据相同,则:x =z .故10110zyx xyx x y ==+10110991122911111111zyx x y x y x y x y x y +++--===++为正整数 ∴y =2x ()……………………………………………………8分 18. (本题满分10分)(1)证明:如图1,∵线段BP 绕点B 顺时针旋转90°得到线段BQ , ∴BP =BQ ,∠PBQ =90°. ∵四边形ABCD 是正方形, ∴BA =BC ,∠ABC =90°. ∴∠ABC =∠PBQ .∴∠ABC ﹣∠PBC =∠PBQ ﹣∠PBC ,即∠ABP =∠CBQ . 在△BAP 和△BCQ 中, ∵,∴△BAP ≌△BCQ (SAS ).∴CQ =AP ;………………………………………………………………………………3分(2)解:如图1,∵四边形ABCD 是正方形, ∴∠BAC =∠BAD =45°,∠BCA =∠BCD =45°,∴∠APB +∠ABP =180°﹣45°=135°, ∵DC =AD =2,14x ≤≤由勾股定理得:AC==4,∵AP=x,∴PC=4﹣x,∵△PBQ是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP,………………………………………………………………………………5分∴,∴,∴y=x(4﹣x)=﹣x(0<x<4),由CE=BC==,∴y=﹣x=,……………………………………………………6分x2﹣4x=3=0,(x﹣3)(x﹣1)=0,x=3或1,∴当x=3或1时,CE=BC;……………………………………………………7分(3)解:结论:PF=EQ,…………………………………………………………8分理由是:如图2,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠FAP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.…………………………………9分当F在AD的延长线上时,如图3,同理可得:PF=PG=EQ.…………………………………10分19. (本题满分10分)证明:(1)如图1,连接BC,∵CD为⊙O的直径,AB⊥CD,∴=,∴∠A=∠ABC,∵EC=AE,∴∠A=∠ACE,∴∠ABC=∠ACE,∵∠A=∠A,∴△AEC∽△ACB,∴,∴AC2=AE•AB;………………………………………………………………………………3分(2)PB=PE,……………………………………………………………………………4分理由是:如图2,连接OB,∵PB为⊙O的切线,∴OB⊥PB,∴∠OBP=90°,∴∠PBN+∠OBN=90°,∵∠OBN+∠COB=90°,∴∠PBN=∠COB,∵∠PEB=∠A+∠ACE=2∠A,∠COB=2∠A,∴∠PEB=∠COB,∴∠PEB=∠PBN,∴PB=PE; (7)分(3)如图3,∵N为OC的中点,∴ON=OC=OB,R t△OBN中,∠OBN=30°,∴∠COB=60°,∵OC=OB,∴△OCB为等边三角形,∵Q为⊙O任意一点,连接PQ、OQ,因为O Q为半径,是定值4,则PQ +OQ 的值最小时,PQ 最小, 当P 、Q 、O 三点共线时,PQ 最小, ∴Q 为OP 与⊙O 的交点时,PQ 最小, ∠A =∠COB =30°, ∴∠PEB =2∠A =60°, ∠ABP =90°﹣30°=60°, ∴△PBE 是等边三角形, Rt △OBN 中,BN ==2,∴AB =2BN =4,设AE =x ,则CE =x ,EN =2﹣x , Rt △CNE 中,x 2=22+(2﹣x )2, x =,∴BE=PB=4﹣=, Rt △OPB 中,OP ===,∴PQ =﹣4=.则线段PQ 的最小值是.……………………………………………………10分20. (本题满分10分) 解:(1)抛物线的函数解析式是21542y x x =-+,………………………2分 直线OB 的函数解析式是12y x =; ………………3分By E(2)∵OP =t ,PC ⊥x 轴于点P ,交直线OB 于点C , ∴PC =12t ,∴PQ =t ,即Q (t ,t ),………………4分 当点Q 落在抛物线上时,21542t t t =-+,解得:6t =; -…………………………………………6分(3)①作FG ⊥x 轴于点G ,设FG =n , 由(2)得:PQ =t ,∵OD =OE ,OD ⊥OE , ∴45ODE ∠=︒,∴△PDQ 是等腰直角三角形∴PD = PQ =t ,∴OD =2t ,同理可得:FG = DG =n ,∴OG =2t n -, 将x =2t n -,y=n 代入12y x =得:23n t =,∴OG =43t ,∴F (43t ,23t ); ………………………………………8分 ②由(3)①得:OF =22253FG OG t +=,22223FD FG DG t =+=, ∵22ED t =,45OB =, ∴BF =25453OB OF t -=-,423EF ED FD t =-=, Ⅰ.当点F 在射线OB 的点B 的右侧时:∠BFD >90°,而△OEF 中无钝角,故此时△OEF 与△DBF 不相似; Ⅱ.当点F 在线段OB 上时:∵∠OFE =∠BFD ,∴OE 和BD 是对应边,当△OEF ∽△DBF 时,OF EF DF BF =,即25423322254533t tt t =-,解得:103t =,当△OEF ∽△BDF 时,OF EF BF DF =,即25423325224533t tt t=-,解得:4t =. ∴103t =或4. …………………………………10分。

2020年黄冈中学重点高中自主招生考试数学模拟试卷二及答案解析(PDF版)

2020年黄冈中学重点高中自主招生考试数学模拟试卷二及答案解析(PDF版)

2020年黄冈中学重点高中自主招生考试数学模拟试卷二一.选择题(共10小题,满分40分,每小题4分)1.是整数,正整数n的最小值是()A.0 B.2 C.3 D.42.如图,点P在以AB为直径的半圆内,连接AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法一定正确的是()①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.A.①③B.①④C.②④D.③④3.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则折痕MN的长是()A.4cm B.4cm C.4cm D.4cm4.已知﹣=5,则分式的值为()A.1 B.5 C.D.5.已知一次函数y=﹣x+b,过点(﹣8,﹣2),那么一次函数的解析式为()A.y=﹣x﹣2 B.y=﹣x﹣6 C.y=﹣x﹣10 D.y=﹣x﹣16.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣4x2+3=5x,下列叙述正确的是()A.a=﹣4,b=5,c=3 B.a=﹣4,b=﹣5,c=3C.a=4,b=5,c=3 D.a=4,b=﹣5,c=﹣37.已知α为锐角,则m=sinα+cosα的值()A.m>1 B.m=1 C.m<1 D.m≥18.已知二次函数y=2x2+8x+7的图象上有点A(﹣2,y1),B(﹣5,y2),C(﹣1,y3),则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y2>y19.如图,直线y=﹣x+3与x轴,y轴交于A,B两点.点P是线段OB上的一动点(能与点O,B重合),若能在斜边AB上找到一点C,使∠OCP=90°.设点P的坐标为(m,0),则m的取值范围是()A.3≤m≤4 B.2≤m≤4 C.0≤m≤D.0≤m≤310.二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a﹣1时,函数值()A.y<0 B.0<y<m C.y>m D.y=m二.填空题(共6小题,满分30分,每小题5分)11.若a﹣b=1,ab=﹣2,则(a﹣2)(b+2)=.若二次三项式x2﹣(m﹣2)x+16是一个完全平方式,则字母m的值是.12.若a,b为实数,且|a+1|+=0,则(ab)2014的值为.13.如图,正方形ABDE、CDFI、EFGH的面积分别为25、9、16,△AEH、△BDC、△GFI的面积分别为S1、S2、S3,则S1+S2+S3=.14.反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1>y2,则m的取值范围是.15.已知抛物线y=﹣4x2+4mx﹣4m﹣m2(m是常数),若0≤x≤1时,函数y有最大值﹣5,则m的值为.16.如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆弧上.①若正方形的顶点F也在半圆弧上,则半圆的半径与正方形边长的比是;②若正方形DEFG的面积为100,且△ABC的内切圆半径r=4,则半圆的直径AB=.三.解答题(共5小题,满分50分)17.(10分)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.18.(8分)已知二次函数y=ax2﹣4ax+3a.(Ⅰ)求该二次函数的对称轴;(Ⅱ)若该二次函数的图象开口向下,当1≤x≤4时,y的最大值是2,且当1≤x≤4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;(Ⅲ)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥5时,均满足y1≥y2,请结合图象,直接写出t的最大值.19.(8分)在Rt△ABC中,∠C=90°,∠A=60°,BC=6,等边三角形DEF从初始位置(点E与点B重合,EF落在BC上,如图1所示)在线段BC上沿BC方向以每秒1个单位的速度平移,DE、DF分别与AB相交于点M、N.当点F运动到点C 时,△DEF终止运动,此时点D恰好落在AB上,设△DEF平移的时间为x.(1)求△DEF的边长;(2)求M点、N点在BA上的移动速度;(3)在△DEF开始运动的同时,如果点P以每秒2个单位的速度从D点出发沿DE⇒EF运动,最终运动到F点.若设△PMN的面积为y,求y与x的函数关系式,写出它的定义域;并说明当P点在何处时,△PMN的面积最大?20.(12分)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=﹣+c且过顶点C(0,5)(长度单位:m)(1)直接写出c的值;(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角∠GEF的度数.(精确到0.1°)21.(12分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.2020年黄冈中学重点高中自主招生考试数学模拟试卷二参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:∵是整数,∴正整数n的最小值为2,故选:B.2.证明:①∵AB为直径,∴∠ACB=90°,∴AC垂直BF,但不能得出AC平分BF,故①错误,②如图1,连结CD,∵AB为直径,∴∠ADB=90°,∴∠BDF=90°,假设AC平分∠BAF成立,则有DC=BC,∴在RT△FDB中,DC=BC=FC,∴AC⊥BF,且平分BF,∴AC垂直BF,但不能得出AC平分BF,与①中的AC垂直BF,但不能得出AC平分BF相矛盾,故②错误,③如图2:∵AB为直径,∴∠ACB=90°,∠ADB=90°,∴D、P、C、F四点共圆,∴∠CFP和∠CDB都对应,∴∠CFP=∠CDB,∵∠CDB=∠CAB,∴∠CFP=∠CAB,又∵∠FPC=∠APM,∴△AMP∽△FCP,∠ACF=90°,∴∠AMP=90°,∴FP⊥AB,故③正确,④∵AB为直径,∴∠ADB=90°,∴BD⊥AF.故④正确,综上所述只有③④正确.故选:D.3.解:如图,连接DE.由题意,在Rt△DCE中,CE=4cm,CD=8cm,由勾股定理得:DE===cm.过点M作MG⊥CD于点G,则由题意可知MG=BC=CD.连接DE,交MG于点I.由折叠可知,DE⊥MN,∴∠NMG+MIE=90°,∵∠DIG+∠EDC=90°,∠MIE=∠DIG(对顶角相等),∴∠NMG=∠EDC.在△MNG与△DEC中,∴△MNG≌△DEC(ASA).∴MN=DE=cm.故选:D.4.解:已知等式整理得:=5,即x﹣y=﹣5xy,则原式===1,故选:A.5.解:把(﹣8,﹣2)代入y=﹣x+b得:﹣2=8+b,解得:b=﹣10,则一次函数解析式为y=﹣x﹣10,故选:C.6.解:∵﹣4x2+3=5x∴﹣4x2﹣5x+3=0,或4x2+5x﹣3=0∴a=﹣4,b=﹣5,c=3或a=4,b=5,c=﹣3.故选:B.【点评】此题考查了公式法解一元二次方程的应用条件,首先要把方程化为一般形式.7.解:设在直角三角形ABC中,∠A=α,∠C=90°,故sinα=,cosα=;则m=sinα+cosα=>1.故选:A.8.解:∵二次函数y=2x2+8x+7中a=2>0,∴开口向上,对称轴为x=﹣=﹣=﹣2,∵A(﹣2,y1)中x=﹣2,y1最小,B(﹣5,y2),点B关于对称轴的对称点B′横坐标是2×(﹣2)﹣(﹣5)=1,则有B′(1,y2),因为在对称轴得右侧,y随x得增大而增大,故y2>y3.∴y2>y3>y1.故选:C.9.解:令y=0,则﹣x+3=0,解得x=4,所以,点B的坐标为(4,0),过点C作CD⊥x轴于D,设点C的坐标横坐标为a,则OD=a,PD=m﹣a,∵∠OCP=90°,∴△OCD∽△CPD,∴=,∴CD2=OD•DP,∴(﹣a+3)2=a(m﹣a),整理得,m=a+﹣,所以,m≥2﹣=3,∵点P是线段OB上的一动点(能与点O,B重合),∴OC⊥AB时,点P、B重合,m最大,∴m的取值范围是3≤m≤4.故选:A.10.解:∵对称轴是x=,0<x1<故由对称性<x2<1当x=a时,y<0,则a的范围是x1<a<x2,所以a﹣1<0,当x时y随x的增大而减小,当x=0时函数值是m.因而当x=a﹣1<0时,函数值y一定大于m.故选:C.二.填空题(共6小题,满分30分,每小题5分)11.解:(1)(a﹣2)(b+2)=ab+2a﹣2b﹣4=ab+2(a﹣b)﹣4=﹣2+2﹣4=﹣4(2)∵(x±4)2=x2±8x+16,∴﹣(m﹣2)=±8,∴m=10或m=﹣6故答案为:﹣4;10或﹣612.解:∵|a+1|+=0,又∵|a+1|≥0,≥0,∴a+1=0,b﹣1=0,∴a=﹣1,b=1,ab=﹣1,∴(ab)2014=(﹣1)2014=1.故答案为1.13.解:∵DF=DC,DE=DB,且∠EDF+∠BDC=180°,过点A作AI⊥EH,交HE的延长线于点I,∴∠I=∠DFE=90°,∵∠AEI+∠DEI=∠DEI+∠DEF=90°,∴∠AEI=∠DEF,∵AE=DE,∴△AEI≌△DEF(AAS),∴AI=DF,∵EH=EF,=S△DEF,∴S△AHE=S△GFI=S△DEF,同理:S△BDCS△AHE+S△BDC+S△GFI=S1+S2+S3=3×S△DEF,S△DEF=×3×4=6,∴S1+S2+S3=18.故答案为:18.14.解:∵x1<0<x2,∴A(x1,y1),B(x2,y2)不同象限,y1>y2,∴点A在第二象限,B在第四象限,∴1﹣2m<0,m>.故答案为m>.15.解:∵y=﹣4x2+4mx﹣4m﹣m2=﹣4(x﹣)2﹣4m,∴抛物线开口向下,对称轴为直线x=.当<0,即m<0时,x=0时y取最大值(如图1所示),∴﹣4m﹣m2=﹣5,解得:m1=﹣5,m2=1(不合题意,舍去);当0≤≤1,即0≤m≤2时,x=时y取最大值(如图2所示),∴﹣4m=﹣5,解得:m3=;当>1,即m>2时,x=1时y取最大值(如图3所示),∴﹣4+4m﹣4m﹣m2=﹣5,解得:m4=﹣1(不合题意,舍去),m5=1(不合题意,舍去).综上所述,m的值为﹣5或.故答案为:﹣5或.16.解:①如图,根据圆和正方形的对称性可知:GH=DG=GF,H为半圆的圆心,不妨设GH=a,则GF=2a,在直角三角形FGH中,由勾股定理可得HF=.由此可得,半圆的半径为a,正方形边长为2a,所以半圆的半径与正方形边长的比是a:2a=:2;②因为正方形DEFG的面积为100,所以正方形DEFG边长为10.切点分别为I,J,连接EB、AE,OI、OJ,∵AC、BC是⊙O的切线,∴CJ=CI,∠OJC=∠OIC=90°,∵∠ACB=90°,∴四边形OICJ是正方形,且边长是4,设BD=x,AD=y,则BD=BI=x,AD=AJ=y,在直角三角形ABC中,由勾股定理得(x+4)2+(y+4)2=(x+y)2①;在直角三角形AEB中,∵∠AEB=90°,ED⊥AB,∴△ADE∽△BDE∽△ABE,于是得到ED2=AD•BD,即102=x•y②.解①式和②式,得x+y=21,即半圆的直径AB=21.三.解答题(共5小题,满分50分,每小题10分)17.解:(1)△ABC的面积=3×3﹣×2×1﹣×3×1﹣×2×3,=9﹣1﹣1.5﹣3,=9﹣5.5,=3.5;(2)△DEF如图2所示;面积=2×4﹣×1×2﹣×2×2﹣×1×4,=8﹣1﹣2﹣2,=8﹣5,=3;(3)∵△ABE是等腰直角三角形,∴AB=AE,∠BAE=90°,∴∠PAE+∠BAG=180°﹣90°=90°,又∵∠AEP+∠PAE=90°,∴∠BAG=∠AEP,在△ABG和△EAP中,,∴△ABG≌△EAP(AAS),同理可证,△ACG≌△FAQ,∴EP=AG=FQ;(4)如图4,过R作RH⊥PQ于H,设RH=h,在Rt△PRH中,PH==,在Rt△RQH中,QH==,∴PQ=+=6,=6﹣,两边平方得,25﹣h2=36﹣12+13﹣h2,整理得,=2,两边平方得,13﹣h2=4,解得h=3,=×6×3=9,∴S△PQR∴六边形花坛ABCDEF的面积=25+13+36+4×9=74+36=110m2.故答案为:(1)3.5;(2)3;(4)110.18.解:(Ⅰ)对称轴x=﹣=2.(Ⅱ)∵该二次函数的图象开口向下,且对称轴为直线x=2,∴当x=2时,y取到在1≤x≤4上的最大值为2,即P(2,2),∴4a﹣8a+3a=2,∴a=﹣2,∴y=﹣2x2+8x﹣6,∵当1≤x≤2时,y随x的增大而增大,∴当x=1时,y取到在1≤x≤2上的最小值0.∵当2≤x≤4时,y随x的增大而减小,∴当x=4时,y取到在2≤x≤4上的最小值﹣6.∴当1≤x≤4时,y的最小值为﹣6,即Q(4,﹣6).∴△OPQ的面积为4×(2+6)﹣2×2÷2﹣4×6÷2﹣(4﹣2)×(2+6)÷2=10;(Ⅲ)∵当t≤x1≤t+1,x2≥5时,均满足y1≥y2,∴当抛物线开口向下,点P在点Q左边或重合时,满足条件,∴t+1≤5,∴t≤4,∴t的最大值为4.19.解:(1)当F点与C点重合时,如图1所示:∵△DEF为等边三角形,∴∠DFE=60°∵∠B=30°,∴∠BDF=90°∴FD=BC=3;(2)过E点作EG⊥AB,∵∠DEF=60°,∠B=30°,∴∠BME=30°,∴EB=EM在Rt△EBG中,BG=x×cos30°=x,∴BM=2BG=x,∴M点在BA上的移动速度为=,F点作FH⊥F1D1,在Rt△FF1H中,FH=x×cos30°=x,点N在BA上的移动速度为=;(3)在Rt△DMN中,DM=3﹣x,MN=(3﹣x)×cos30°==(3﹣x),当P点运动到M点时,有2x+x=3,∴x=1①当P点在DM之间运动时,过P点作PP1⊥AB,垂足为P1在Rt△PMP1中,PM=3﹣x﹣2x=3﹣3x,∴PP1=(3﹣3x)=(1﹣x),∴y与x的函数关系式为:y=×(3﹣x)×(1﹣x)=(x2﹣4x+3)(0≤x≤1),②当P点在ME之间运动时,过P点作PP2⊥AB,垂足为P2,在Rt△PMP2中,PM=x﹣(3﹣2x)=3(x﹣1),∴PP2=(1﹣x),∴y与x的函数关系式为:y=×(3﹣x)×(1﹣x),=﹣(x2﹣4x+3)(1<x≤).③当P点在EF之间运动时,过P点作PP3⊥AB,垂足为P3,在Rt△PMP3中,PB=x+(2x﹣3)=3(x﹣1),∴PP3=(x﹣1),∴y与x的函数关系式为:y=×(3﹣x)×(x﹣1),=﹣(x2﹣4x+3)(≤x≤3),∴y=﹣(x﹣2)2+,=,∴当x=2时,y最大而当P点在D点时,y=×3××=,∵>,∴当P点在D点时,△PMN的面积最大.20.解:(1)抛物线的解析式为y=﹣+c,∵点(0,5)在抛物线上∴c=5;(2)由(1)知,OC=5,令y=0,即﹣+5=0,解得x1=10,x2=﹣10;∴地毯的总长度为:AB+2OC=20+2×5=30,∴30×1.5×20=900答:购买地毯需要900元.(3)可设G的坐标为(m,﹣+5)其中m>0则EF=2m,GF=﹣+5,由已知得:2(EF+GF)=27.5,即2(2m﹣+5)=27.5,解得:m1=5,m2=35(不合题意,舍去),把m1=5代入,﹣+5=﹣×52+5=3.75,∴点G的坐标是(5,3.75),∴EF=10,GF=3.75,在Rt△EFG中,tan∠GEF===0.375,∴∠GEF≈20.6°.21.解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.。

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题二及答案解析

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题二及答案解析

则点 P 到点 M 与到边 OA 的距离之和的最小值是

三、解答题(共 78 分)
19.(10 分)(1)计算:(
)-1+(π﹣3.14)0﹣2sin60°﹣ +|1﹣3 |;
(2)先化简,再求值:(a+1﹣
)÷(
),其中 a=2+ .
20.(10 分)如图,直立于地面上的电线杆 AB,在阳光下落在水平地面和坡面上的影子分别 是 BC、CD,测得 BC=6 米,CD=4 米,∠BCD=150°,在 D 处测得电线杆顶端 A 的仰角为 30°,试求电线杆的高度(结果保留根号)
13. 若关于 x 的方程
+
=3 的解为正数,则 m 的取值范围是___________
14. 如图,正五边形 ABCDE 放入某平面直角坐标系后,若顶点 A,B,C,D 的坐标分 别是 (0,a),(﹣3,2),(b,m),(c,m),则点 E 的坐标是_________
第 14 题图
第 15 题图
第 16 题图
第 17 题图
15. 如图,△ABC 是等边三角形,AB=2,分别以 A,B,C 为圆心,以 2 为半径作弧,则图
中阴影部分的面积是

16. 如图,在平面直角坐标系中,函数 y=2x 和 y=﹣x 的图象分别为直线 l1,l2,过点(1,0)
作 x 轴的垂线交 l1 于点 A1,过点 A1 作 y 轴的垂线交 l2 于点 A2,过点 A2 作 x 轴的垂线交 l1
A.k<1
B.k≤1 C.k>﹣1 D.k>1
4. 《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十
五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为 8 步,股(长
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省黄冈市罗田一中2020年自主招生考试数学试卷一、填空题(4085=⨯分)1、方程组⎪⎩⎪⎨⎧=+=-++2621133y x y x 的解是2、若对任意实数x 不等式b ax >都成立,那么a 、b 的取值范围为3、设21≤≤-x ,则2212++--x x x 的最大值与最小值之差为 4、两个反比例函数x y 3=,x y 6=在第一象限内的图象点1P 、2P 、3P 、…、2007P 在反比例函数xy 6=上,它们的横坐标分别为1x 、2x 、3x 、…、2007x ,纵坐标分别是1、3、5…共2007个连续奇数,过1P 、2P 、3P 、…、2007P 分别作y 轴的平行线,与xy 3=的图象交点依次为)','(111y x Q 、)','(222y x Q 、…、),('2007'20072007y x Q , 则=20072007Q P5、如右图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是6、有一张矩形纸片ABCD ,9=AD ,12=AB ,将纸片折叠使A 、C 两点重合,那么折痕长是7、已知3、a 、4、b 、5这五个数据,其中a 、b 是方程0232=+-x x 的两个根,则这五个数据的标准差是8、若抛物线1422++-=p px x y 中不管p 取何值时都通过定点,则定点坐标为 二、选择题(4085=⨯分)9、如图,ABC ∆中,D 、E 是BC 边上的点,1:2:3::=EC DE BD ,M 在AC 边上,2:1:=MA CM ,BM 交AD 、AE 于H 、G ,则GM HG BH ::等于 ( )A 、1:2:3B 、1:3:5C 、5:12:25D 、10:24:5110、若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A 、r c r 2+πB 、r c r +πC 、r c r +2πD 、22rc r +π 11、抛物线2ax y =与直线1=x ,2=x ,1=y ,2=y 围成的正方形有公共点,则实数a 的取值范围是 ( )A 、141≤≤a B 、221≤≤a C 、121≤≤a D 、241≤≤a 12、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需15.3元;若购铅笔4支,练习本10本,圆珠笔1支共需2.4元,那么,购铅笔、练习本、圆珠笔各1件共需 ( ) A 、2.1元 B 、05.1元 C 、95.0元 D 、9.0元13、设关于x 的方程09)2(2=+++a x a ax ,有两个不相等的实数根1x 、2x ,且1x <<12x ,那么实数a 的取值范围是 ( )A 、112-<a B 、5272<<-a C 、52>a D 、0112<<-a14、如图,正方形ABCD 的边1=AB ,和都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是 ( )A 、12-πB 、41π- C 、13-π D 、61π-15、已知锐角三角形的边长是2、3、x ,那么第三边x 的取值范围是 ( )A 、51<<x B 、135<<x C 、513<<x D 、155<<x16、某工厂第二季度的产值比第一季度的产值增长了%x ,第三季度的产值又比第二季度的产值增长了%x ,则第三季度的产值比第一季度增长了 ( ) A 、%2x B 、%21x + C 、%%)1(x x •+ D 、%%)2(x x •+ 三、解答题17、(15分)设m 是不小于1-的实数,关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x ,(1)若21x 622=+x ,求m r 值;(2)求22212111x mx x mx -+-的最大值。

18、(15分)如图,开口向下的抛物线a ax ax y 1282+-=与x 轴交于A 、B 两点,抛物线上另有一点C 在第一象限,且使OCA ∆∽OBC ∆,(1)求OC 的长及ACBC的值;(2)设直线BC 与y 轴交于P 点,点C 是BP 的中点时,求直线BP 和抛物线的解析式。

19、(15分)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表家电名称 空调彩电冰箱工 时 2131 41 产值(千元)4 3 2位)?20、(10分)一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率。

21、(15分)如图,已知⊙O 和⊙'O 相交于A 、B 两点,过点A 作⊙'O 的切线交⊙O 于点C ,过点B 作两圆的割线分别交⊙O 、⊙'O 于E 、F ,EF 与AC 相交于点P ,(1)求证:PF PC PE PA •=•;(2)求证:PB PFPCPE =22;(3)当⊙O 与⊙'O 为等圆时,且5:4:3::=EP CE PC 时,求PEC ∆与FAP ∆的面积的比值。

[参考答案]一、 1、⎩⎨⎧==02611y x 或 ⎩⎨⎧=-=28222y x 2、0=a 0<b3、14、240135、336、4457、2 8、)33,4(二、9~16 DBDB DABD三、 17、(15分)解:Θ方程有两个不相等的实数根∴044)33(4)2(422>+-=+---=∆m m m m 1<∴m由题意知:11<≤-m(1)610102)33(2)2(42)(222212212221=+-=+---=-+=+m m m m m x x x x x x Θ2175±=∴m 11≤≤-m Θ 2175-=∴m (2)22212111x mx x mx -+-mm m m m m x x x x x x x x m --+-=--+-+=2232121212221)2882()1)(1()]([ 25)23(2)13(2)1()13)(1(2222--=+-=-+--=m m m m m m m m m )11(<≤-m1-=∴m y 取最大值为1018、(15分)解:(1)由题设知0<a ,且方程01282=+-a ax ax 有两二根6,221==x x 于是6,2==OB OAΘOCA ∆∽OBC ∆ 122=•=∴OB OA OC 即32=OC而322===∆∆OC OBS S ACBC OCA OBC 故 3=AC BC (2)因为C 是BP 的中点 BC OC =∴ 从而C 点的横坐标为3又32=OC )3,3(C ∴设直线BP 的解析式为b kx y +=,因其过点)0,6(B ,)3,3(C ,则有⎩⎨⎧+=+=b k b k 3360⎪⎩⎪⎨⎧=-=∴3233b k 3233+-=∴x y 又点)3,3(C 在抛物线上 a a a 122493+-=∴ 33-=∴a ∴抛物线解析式为:34338332-+-=x x y 19、(15分)解:设每周应生产空调、彩电、冰箱的数量分别为x 台、y 台、z 台,则有⎪⎪⎩⎪⎪⎨⎧≥++==++=++60)3(12190120413121360z y x z y x z y x总产值x x y x y x z y x z y x A -=-++=++++=++=1080)3(720)2()(223460≥z Θ 300≤+∴y x 而3603=+y x 3003360≤-+∴x x 30≥∴x1050≤∴A 即 30=x 270=y 60=z20、(10分)解:用B 和G 分别代表男孩和女孩,用“树状图”列出所有结果为:∴这个家庭有2个男孩和1个女孩的概率为83。

这个家庭至少有一个男孩的概率87。

21、(15分)解:(1)证明:连结AB CA Θ切⊙'O 于A ∴F CAB ∠=∠ ΘE CAB ∠=∠ ∴F E ∠=∠ CE AF //∴PAPCPF PE =∴PF PC PE PA •=•∴ ① (2)证明:在⊙O 中,PC PA PE PB •=• ②①×②得 PF PC PA PB PE PA ••=••22PBPF PC PE =∴22 (3)连结AE ,由(1)知PEC ∆∽PFA ∆,而5:4:3::=EP CE PC5:4:3::=∴PF FA PA 设x EP x CE x PC 5,4,3===222CE PC EP +=∴ 222FA PA PF += 090=∠=∠∴CAF C AE ∴为⊙O 的直径,AF 为⊙'O 的直径 Θ⊙O 与⊙'O 等圆 y AF AE 4==∴222AE CE AC =+Θ 222)4()4()33(y x y x =++∴ 即07182522=-+y xy x 即0))(725(=+-y x y x257=∴y x 62549:22==∴∆∆yx S S FAP ECP。

相关文档
最新文档