第4讲 多项式与符号运算
七年级上册数学同步讲义第4讲:幂的运算(一) - 教师版

辅导教案学员姓名:学科教师:周乔乔年级:七年级辅导科目:数学授课日期时间主题幂的运算(一)教学内容《整式的乘除》是整式加减的延续和发展,也是后续学习因式分解、分式运算的基础.整式的乘法运算包含单项式乘法、单项式与多项式乘法和多项式乘法,它们最后都转化为单项式乘法.单项式的乘法又以幂的运算为基础.“整式的乘法”的内容和逻辑线索是:同底数幂的乘法——幂的乘方——积的乘方——单项式乘单项式——单项式乘多项式——多项式乘多项式——乘法公式(特例).由此可见,同底数幂的乘法、幂的乘方、积的乘方是整式乘法的逻辑起点,是该章的起始课.作为章节起始课,承载着单元知识以及学习方法、路径的引领作用.幂的运算(一)知识结构模块一:同底数幂的乘法知识精讲内容分析1、幂的运算概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在n a 中,a 叫做底数,n 叫做指数.含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘. 例如:53表示33333⨯⨯⨯⨯,()53-表示()()()()()33333-⨯-⨯-⨯-⨯-,53-表示()33333-⨯⨯⨯⨯,527⎛⎫⎪⎝⎭表示2222277777⨯⨯⨯⨯,527表示222227⨯⨯⨯⨯.特别注意负数及分数的乘方,应把底数加上括号. 2、“奇负偶正”口诀的应用:口诀“奇负偶正”在多处知识点中均提到过,它具体的应用有如下几点:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:[](3)3---=-;[](3)3-+-=. (2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号. (3)有理数乘方,这里奇、偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正.例如:()239-=,()3327-=-.特别地:当n 为奇数时,()n n a a -=-;而当n 为偶数时,()nn a a -=. 负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,1的任何次幂都是1,任何不为0的数的0次幂都是“1”. 3、同底数幂相乘同底数的幂相乘,底数不变,指数相加.用式子表示为: m n m n a a a +⋅=(,m n 都是正整数).【例1】 下列各式正确吗?不正确的请加以改正. (1)347()()x x x -⋅-=-; (2)246()()x x x --=-; (3)()()121m m m a a a ++--=;(4)5552b b b ⋅=;(5)4610b b b +=; (6)55102x x x ⋅=;(7)5525x x x ⋅=;(8)33c c c ⋅=.【难度】★【答案】(1)正确;(2)不正确,正确为:()()4626x x x x --=-=--;(3)不正确,正确为:()()()12121m m m m a a a a +++--=-=-;(4)不正确,正确为:5510b b b ⋅=;(5)不正确,不能计算;(6)不正确,正确为:5510x x x ⋅=;(7)不正确,正确为:5510x x x ⋅=; (8)不正确,正确为:34c c c ⋅=. 例题解析【解析】同底数幂相乘,底数不变,指数相加.【总结】本题主要考查同底数幂的乘法运算,同时一定要注意确保是在同底数幂乘法运算时才可以应用,注意算式中的符号.【例2】 计算下列各式,结果用幂的形式表示: (1)567(2)(2)(2)-⨯-⨯-; (2)23a a a ⋅⋅;(3)24()()a b a b +⋅+;(4)235()()()x y x y x y -⋅-⋅-.【难度】★【答案】(1)182;(2)6a ;(3)()6a b +;(4)()10x y -. 【解析】本题主要考查同底数幂相乘的计算,底数不变,指数相加.【例3】 计算下列各式,结果用幂的形式表示. (1)()()334333x x x x x x x x ⋅+⋅⋅+-⋅-⋅;(2)()()()()()3224a a a a a ---+--;(3)12211m n m n m n a a a a a a -++-+⋅+⋅+⋅. 【难度】★【答案】(1)73x ;(2)0;(3)13m n a ++.【解析】(1)原式77773x x x x =++=; (2)原式660a a =-=;(3)原式11113m n m n m n m n a a a a ++++++++=++=.【总结】本题主要考查同底数幂相乘的计算和合并同类项相关知识概念,同底数幂相乘,底数不变,指数相加,然后进行合并同类项的运算.【例4】 计算下列各式,结果用幂的形式表示.(1)()()()332a a a --⋅--;(2)()()23x y y x --;(3)()()()212222m m x y x y x y -+---.【难度】★★【答案】(1)8a ;(2)()5y x -;(3)()232m x y +-.【解析】(1)原式358a a a =⋅=; (2)原式235()()()y x y x y x =-⋅-=-;(3)原式21223(2)m m m x y a +-+++=-=.【总结】本题主要考查同底数幂相乘的计算,底数不变,指数相加;同时涉及到多重负号的化简,看“-”号的个数决定运算结果的符号,奇负偶正.【例5】 如果2111m n n x x x -+⋅=,且145m n y y y --⋅=,试求m 、n 的值. 【难度】★★【答案】64m n ==,.【解析】根据同底数幂的计算法则,可得2111145m n n m n -++=⎧⎨-+-=⎩,解方程组得64m n =⎧⎨=⎩.【总结】考查同底数幂相乘的运算法则.【例6】 求值: (1)已知:29m n n m x x x +-⋅=,求()59n-+的值.(2)已知:()4233x +-=,求x 的值.【难度】★★【答案】(1)116-;(2)2-.【解析】(1)由同底数幂乘法法则,可得29m n n m ++-=,解得3n =,()359116-+=-;(2)()()422333x +-==-,可得42x +=,解得2x =-.【总结】本题主要考查同底数幂相乘的运算法则,注意一定要让底数相等的前提下保证幂相等.【例7】 若2216m n ⋅=,求48m n m n ++⋅的值. 【难度】★★★ 【答案】432.【解析】由同底数幂的乘法计算,可得422m n +=,由此4m n +=,原式=4444832⨯=. 【总结】本题主要考查同底数幂计算中整体思想的应用.【例8】 解关于x 的方程: (1)21134151294x x x x ++⋅=-⋅; (2)已知351327648x x ++-=. 【难度】★★★ 【答案】(1)32x =;(2)13x =.【解析】(1)22223321512324x x x x ⋅⋅=-⋅⋅ (2)3333393648x x ++⋅-= 2671512x ⋅= 3338648x +⋅= 2362166x == 3343813x +== 32x =13x =【总结】解此种类型的方程主要根据乘方的定义把含有未知数的项变作相同的项,再根据相互之间的关系转化求解.【例9】 若312x y z==,且99xy yz xz ++=,求2222129x y z ++的值. 【难度】★★★ 【答案】594. 【解析】由312x y z==,可得32x y z y ==,,22223261199xy yz xz y y y y ++=++==,则有29y =,所以()()2222222212923129266594x y z y y y y ++=⨯++⨯==.【总结】考查整体思想的应用,等量代换的方法.1、幂的乘方定义:幂的乘方是指几个相同的幂相乘.2、幂的乘方法则:幂的乘方,底数不变,指数相乘.即()m n mn a a =(m 、n 都是正整数)【例10】计算下列各式,结果用幂的形式表示.(1)()42a -;(2)24()a -; (3)2()n n a ; (4)()832;(5)()432⎡⎤-⎣⎦; (6)()33b -;(7)()43x -;(8)323()()x y x y ⎡⎤⎡⎤++⎣⎦⎣⎦.【难度】★【答案】(1)8a -;(2)8a ;(3)22n a ;(4)242;(5)122;(6)9b -;(7)12x ;(8)()9x y +.【解析】幂的乘方,底数不变,指数相乘. 【总结】本题主要考查幂的乘方的运算.【例11】 当正整数n 分别满足什么条件时,()(),n nn n a a a a -=-=-?【难度】★【答案】n 为偶数时,()nn a a -=;n 为奇数时,()nn a a -=-.【解析】幂的运算中,奇负偶正.【例12】已知:2n a =(n 为正整数),求()()2223nn a a -的值.【难度】★★【答案】48-.【解析】原式=()()4646462248n n n n a a a a -=-=-=-.【总结】本题主要考查幂的乘方的运算,以及运算中整体思想的应用. 知识精讲例题解析模块二:幂的乘方【例13】 计算(1)()2122n n n a a a +++;(2)()()()3834222632x x x x x ⎡⎤-+⎢⎥⎣⎦.【难度】★★【答案】(1)223n a +;(2)0【解析】(1)原式22222223n n n a a a +++=+=; (2)原式18181820x x x =-+=. 【总结】本题考查幂的乘方和同底数幂的乘法运算.【例14】计算:(1)()()()22121n n n a b b a a b -+⎡⎤⎡⎤---⎣⎦⎣⎦;(2)()()3223a b b a ⎡⎤⎡⎤---⎣⎦⎣⎦. 【难度】★★ 【答案】(1)()61n a b --;(2)0.【解析】(1)原式2222161()()()()n n n n a b a b a b a b -+-=-⋅-⋅-=-;(2)原式66()()0a b a b =---=.【总结】本题考查幂的乘方和同底数幂的乘法运算.【例15】已知23m n a a ==,,求23m n a +的值.【难度】★★ 【答案】108.【解析】()()2323232323108m n m n m n a a a a a +=⋅=⋅=⨯=.【总结】本题注意考查幂的乘方运算中整体思想的应用.【例16】 已知2673x x y m m a a a b a b ++⋅⋅⋅=(x 、y 、m 都是正整数),且y 不大于3,求2x y m +-的值. 【难度】★★★ 【答案】3-.【解析】依题意有221673x y m m a b a b +++=,由此可得()217x y ++=,63m m +=,解得3x y +=, 3m =,由此23x y m +-=-.【总结】本题主要考查同底数幂相乘的法则的运用.【例17】比较大小:(1)比较下列一组数的大小:在552,443,334,225; (2)比较下列一组数的大小:31416181279,,; (3)比较下列一组数的大小:4488,5366,6244. 【难度】★★★【答案】(1)443355223425>>>;(2)31416181279>>;(3)488366244456>>. 【解析】(1)()()()()11111111555114441133311222112232338144645525========,,,,可得:443355223425>>>;(2)()()()31416131412441312361212281332733933======,,,可得:31416181279>>; (3)()()()11211211248841123663112244211244256551256636======,,,可得:488366244456>>.【总结】本题中,指数幂运算结果都是很大的数,不可能直接算出来,采用间接法,利用幂的乘方运算法则,要么化作指数相同,比较底数大小,要么化作底数相同,比较指数大小.【例18】已知()()2222221123451216n n n n ++++++=++L ,求222224650++++L 的值.【难度】★★★ 【答案】22100.【解析】原式=()()()()()222222222212223225212325⨯+⨯+⨯+⋅⋅⋅+⨯=⨯+++⋅⋅⋅+,代入公式,可得:()()14252512251221006⨯⨯⨯+⨯⨯+=.【总结】本题主要考查对相关公式的变形运用. 模块三:积的乘方1、积的乘方定义:积的乘方指的是乘积形式的乘方.2、积的乘方法则:积的乘方,等于把积中的每个因式分别乘方,再把所得的幂相乘: ()nn n ab a b =(n 是正整数)3、积的乘方的逆用:()n n n a b ab =.【例19】计算:(1)()333m n -;(2)43213a b ⎛⎫- ⎪⎝⎭;(3)()32242a b--;(4)541103⎛⎫-⨯ ⎪⎝⎭.【难度】★【答案】(1)9327m n -;(2)128181a b ;(3)61264a b ;(4)2010243-.【解析】本题考查积的乘方的运算法则,把积中的每个因式分别乘方,注意正负.【例20】计算:(1)342(-)a b ;(2)3532()4x y ;(3)23[()]a b -+.【难度】★【答案】(1)68a b ;(2)91518x y ;(3)()6a b -+.【解析】本题考查积的乘方的运算法则,把积中的每个因式分别乘方,注意正负.【例21】计算:(1)()()233232x x +;(2)()()32223332x y x y -;例题解析知识精讲(3)()()433648a b a b -+-;(4)232()[()]a b b a -⋅-.【难度】★【答案】(1)617x ;(2)66x y ;(3)0;(4)()8a b -. 【解析】(1)原式6669817x x x =+=;(2)原式66666632x y x y x y =-=; (3)原式122412240a b a b =-=;(4)原式268()()()a b a b a b =-⋅-=-.【总结】本题考查同底数幂的乘法,幂的乘方,积的乘方综合运算,熟练运算法则.【例22】计算:(1)32332()()y y y ⋅⋅;(2)2323[()]a a a -⋅⋅-;(3)()()3222632x y x y ⎡⎤⎡⎤---+-⎣⎦⎢⎥⎣⎦.【难度】★★【答案】(1)15y ;(2)11a -;(3)12665x y . 【解析】(1)原式26615y y y y =⋅⋅=;(2)原式5611a a a =-⋅=-;(3)原式1261261266465x y x y x y =+=.【总结】本题考查同底数幂的乘法,幂的乘方,积的乘方综合运算,熟练运算法则.【例23】用简便方法计算:(1)818139⎛⎫⨯- ⎪⎝⎭;(2)()66720030.1252-⨯;(3)128184⎛⎫⨯- ⎪⎝⎭;(4)61245⨯.【难度】★★【答案】(1)9;(2)4-;(3)1;(4)1210. 【解析】(1)原式=()888928111399999999⎛⎫⎛⎫⎛⎫⨯=⨯⨯=⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)原式=()()()()6676676676672001230.125220.125240.125844-⨯⨯=-⨯⨯=-⨯⨯=-;(3)原式=()()1212121281232421111222414444⎛⎫⎛⎫⎛⎫⎛⎫⨯=⨯=⨯=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(4)原式=()()61221212121225252510⨯=⨯=⨯=.【总结】主要根据积的乘方逆运算法则和同底数幂的乘法,将底数变成易于计算的数字.【例24】简便计算:(1)()()16170.1258⨯-;(2)20022001513135⎛⎫⎛⎫⨯ ⎪⎪⎝⎭⎝⎭;(3)()()315150.1252⨯.【难度】★★【答案】(1)8-;(2)513;(3)1. 【解析】(1)原式=()()()()()1616160.125880.125888⨯-⨯-=⨯-⨯-=-⎡⎤⎣⎦;(2) 原式=200120012001551355135131351313513⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯=⨯⨯=⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (3) 原式=()()()151515330.12520.12521⨯=⨯=.【总结】考查积的乘方简便运算,把握好乘方的定义,同时注意一定指数相同时才能进行积的乘方的逆运算.【例25】已知57,19m n m x x +==,求3n x 的值.【难度】★★★ 【答案】27.【解析】57m n m n x x x +=⋅=,由19m x =,可得3n x =,则()333327n n x x ===.【总结】本题主要是幂的运算中整体思想的应用.【例26】已知:1123326x x x ++-⋅=,求x 的值.【难度】★★★ 【答案】4.【解析】由题目条件,根据积的乘方逆运用,()11233266x x x ++-⨯==,可得123x x +=-,解方程得:4x =.【总结】本题主要考查积的乘方的逆用.【例27】计算:()99991111...1123 (98991009998)32⎛⎫⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯ ⎪⎝⎭.【难度】★★★ 【答案】99100.【解析】原式=999911112398991001009998⎛⎫⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯= ⎪⎝⎭.【总结】本题主要考查积的乘方的逆用.【例28】2009201025⨯的积有多少个0?是几位数?【难度】★★★【答案】有2009个0,是2010位数. 【解析】()20092009201020092009200925255255105⨯=⨯⨯=⨯⨯=⨯,可知式子乘积有2009个0, 是2010位数.【总结】本题主要考查积的乘方的逆用,注意指数的变化.【习题1】 计算:(1)()3523124m m ⎛⎫-⋅- ⎪⎝⎭;(2)322373127y y y ⎛⎫⎛⎫⋅⋅- ⎪⎪⎝⎭⎝⎭;随堂检测(3)431()()4x y x y ⎡⎤++⎢⎥⎣⎦.【难度】★【答案】(1)2112m ;(2)137192y ;(3)()71256x y +【解析】(1)原式6152111(32)642m m m =-⋅-=; (2)原式3661337971249192y y y y =⋅⋅=;(3)原式43711()()()256256x y x y x y =+⋅+=+.【总结】本题主要考查幂的运算,注意运算法则的准确运用以及计算过程中的符号.【习题2】 计算:(1)()()842263x x x x ⋅+⋅;(2)()()()()224252232a a a a ⋅-⋅;(3)()()()33252352123y y y y y ⎛⎫⋅⋅+-⋅- ⎪⎝⎭. 【难度】★【答案】(1)182x ;(2)14a ;(3)25132127y ⎛⎫+ ⎪⎝⎭.【解析】(1)原式216612182x x x x x =⋅+⋅=; (2)原式10486142a a a a a =⋅-⋅=;(3)原式252566325101313131222(1)272727y y y y y y y y =⋅⋅+⋅=+⋅=+.【总结】本题主要考查幂的运算,注意运算法则的准确运用以及计算后注意合并同类项.【习题3】 计算:()()()()213325m m ma b b a a b b a ++⎡⎤⎡⎤-⋅--⋅-⋅--⎣⎦⎣⎦. 【难度】★ 【答案】()620m a b +--.【解析】原式=()()()()34215m m m a b a b a b a b ++⎡⎤-⋅--⋅-⋅-⎣⎦()34215m m m a b +++++=--()620m a b +=--.【总结】本题主要考查幂的运算,计算过程中注意符号的变化.【习题4】 填空题:(1)n 为自然数,那么()1n-=______;()21n-=_______;()211n +-=________;(2)当n 为____________数时,()()2110n n-+-=; (3)当n 为____________数时,()()2112nn-+-=. 【难度】★★【答案】(1)111±-,,;(2)奇;(3)偶. 【解析】主要考查幂的运算中的符号,奇负偶正.【习题5】 若n 是自然数,并且有理数,a b 满足10a b+=,则必有( )A .210nna b ⎛⎫+= ⎪⎝⎭;B .21210n nab +⎛⎫+= ⎪⎝⎭;C .2210nnab ⎛⎫+= ⎪⎝⎭;D .212110n n ab ++⎛⎫+= ⎪⎝⎭.【难度】★★ 【答案】B 【解析】a 和1b互为相反数,则必为一正一负,根据“奇负偶正”可知两幂运算指数必为一 奇一偶. 【总结】本题主要考查积的乘方以及相反数的相关概念.【习题6】 填空:(1)计算:()()5333a b b a --=__________; (2)计算:43()()()m n n m n m ---=__________;(3)计算:()()222x y y x ⎡⎤--⋅-⎣⎦=__________. 【难度】★★【答案】(1)()83a b --;(2)()8m n -;(3)()6x y -. 【解析】(1)原式538(3)[(3)](3)a b a b a b =-⋅--=--; (2)原式448()()()m n n m m n =-⋅-=-; (3)原式426()()()x y x y x y =-⋅-=-.【总结】本题主要考查幂的综合运算,计算过程中注意符号.【习题7】 用简便方法计算: (1)()()2200320030.045⎡⎤⨯-⎣⎦;(2)200720072 1.53⎛⎫-⨯ ⎪⎝⎭;(3)1111127331982⎛⎫⎛⎫⎛⎫-⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【难度】★★【答案】(1)1;(2)1-;(3)32-【解析】(1)原式=()()()200320032003220.0450.0451⨯=⨯=;(2)原式=20072 1.513⎛⎫-⨯=- ⎪⎝⎭;(3)原式=1111111173337333311982298222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯⨯-⨯-=-⨯⨯-⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.【总结】考查幂的运算的应用,一般将指数化作相同,用积的乘方逆运算应用计算.【习题8】 如果2228162n n ⋅⋅=,求n 的值. 【难度】★★ 【答案】3.【解析】将式子两边化作等底数幂,即有()()347122281622222nnn n n +⋅⋅=⨯⨯==,故7122n +=,解得3n =.【总结】本题主要考查同底数幂相乘的法则的运用.【习题9】 已知a 、b 互为负倒数,a 、c 互为相反数,d 的绝对值为1,则()()20152016201412ab a c d ++-=__________. 【难度】★★【答案】32-.【解析】依题意有101ab a c d =-+==,,,代入可得:()2015201620141310122⨯-+-=-. 【总结】本题中注意d 的取值以及负倒数的概念.【习题10】 已知有理数x ,y ,z 满足()2|2|367|334|0x z x y y z --+--++-=,求3314n n n x y z x --的值. 【难度】★★ 【答案】0.【解析】依题意有2036703340x z x y y z --=⎧⎪--=⎨⎪+-=⎩,可解得:3131x y z =⎧⎪⎪=⎨⎪⎪=⎩,代入可得:313134311131333333033n n nn n ---⎛⎫⎛⎫⋅⋅-=⋅⨯-=-= ⎪⎪⎝⎭⎝⎭.【总结】当几个非负数的和为零时,则这几个数分别为零.【习题11】 已知2326212a b c ===,,,求a b c ,,之间的一个数量关系. 【难度】★★ 【答案】2a c b +=.【解析】由3×12=36=6×6,根据题意代换可得:2222a c b b ⋅=⋅,即为222a c b +=.由此可得:2a c b +=.【总结】本题主要考查同底数幂相乘的法则的运用.【习题12】 小杰在学习幂的乘法时,发现()32236a a a ⨯==,()23326a a a ⨯==,两者的结果是相同的,他觉得这是由于在进行指数相乘时,乘法具有交换律,所以是相同的,于是他在计算()32a -与()23a -时,认为结果也应是相同的,你同意他的观点吗?说说你 的理由. 【难度】★★ 【答案】不同意.【解析】这两个幂的乘法运算可视作积的乘方运算,积的乘方运算的结果是积中的每个因式 分别乘方,会产生类似()1n-的运算,n 分别为奇偶时会产生不同的运算结果,奇负偶正, 即要注意好运算符号,两个式子计算结果不相等.【总结】负数的偶次幂为正,负数的奇次幂为负.【习题13】 三个互不相等的有理数,既可表示为1,a b +,a 的形式,又可表示为0,ba, b 的形式,则19921993a b += .【难度】★★★ 【答案】2.【解析】三个有理数互不相等,则1ba≠,可得1b =,进而可得01a b a +==-,,代入可得:()19921993112-+=.【总结】本题主要考查对题目条件的理解,以及幂的运算的考查.【习题14】 已知:3982ba ==,求22211125525a b a b b a b ⎛⎫⎛⎫⎛⎫-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.【难度】★★★ 【答案】64-.【解析】由已知,即得()333998222b a ====,由此29a b ==,,对代数式化简,结果为:2222a a b -,代入数值计算得:222222964⨯-⨯⨯=-.【总结】本题中注意要先根据已知条件将等式转化为底数相同的幂,再根据指数相同求出相应的字母的值,最后再求出代数式的值.【作业1】 下列计算正确的是( )课后作业A .234235a a a +=B .()32528a a =C .3252()2a a a -=-D .226212m m a a a ⋅=【难度】★ 【答案】C【解析】考查幂的运算法则,熟练计算.【作业2】 计算: (1)22234xy ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;(2)33223a b ⎛⎫- ⎪⎝⎭;(4)()42313x y a b ⎡⎤--⋅⎢⎥⎣⎦.【难度】★ 【答案】(1)2481256x y ;(2)96827a b -;(3)()8124181x y a b - 【解析】考查幂的运算法则,熟练计算. 【作业3】计算:()()2436234341233a b a b b a ⎛⎫+--- ⎪⎝⎭【难度】★【答案】912410239a b ⎛⎫+⨯ ⎪⎝⎭.【解析】原式=12412491249124110232399a b a b a b a b ⎛⎫++⨯=+⨯ ⎪⎝⎭.【总结】本题主要考查幂的综合运算.【作业4】 简便计算: (1)20021220028113834⎛⎫⎛⎫-⋅+⨯- ⎪⎪⎝⎭⎝⎭;(2)()201120101294313343⎛⎫⎛⎫⎛⎫-⋅--⨯ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.【难度】★【答案】(1)2;(2)3527-.【解析】(1)原式=2002122002122002121111343423434⎛⎫⎛⎫⎛⎫⎛⎫⨯+⨯=⨯+⨯= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭;(2)原式=2010201093944311413533343332727⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯+⨯⨯=-+=- ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.【总结】本题主要考查利用积的乘法法则完成简便运算.【作业5】 计算:62262224()()()()()kk k k kx y x y x y x y x y +-⎡⎤⎡⎤⎡⎤-⋅---⋅-+-⎣⎦⎣⎦⎣⎦.【难度】★★ 【答案】()8kx y -.【解析】原式=()()()()2662228k k k k kx y x y x y x y ++--⋅---+-=()()()888kkkx y x y x y ---+-()8kx y =-.【总结】本题主要考查幂的乘方的运用.【作业6】 求值:(1)已知102103m n ==,,求3210m n +. (2)已知54n n x y ==,,求()32n x y .【难度】★★【答案】(1)72;(2)2000.【解析】(1)()()3232323210101010102372m n m n m n +=⋅=⋅=⨯=;(2)()()()32323232542000nn n n n x y x y x y ==⋅=⨯=.【总结】本题主要考查整体思想的应用.【作业7】 求值:(1)若23n a =,求()43n a 的值.(2)如果()23612m n a b a b ⋅=,求m n ,的值.【难度】★★【答案】(1)729;(2)32m n ==,.【解析】(1)()()46312263729n n n a a a ====;(2)()2326612m n m n a b a b a b ⋅==,由此26612m n ==,,可解得32m n ==,.【总结】本题主要考查整体思想的应用.【作业8】 若a 、b 、c 都是正数,且22a =,33b =,44c =,比较a 、b 、c 的大小. 【难度】★★★ 【答案】b a c >=.【解析】22a =,则有()22224a ==,即44a =,又44c =,且a 、c 都是正数,可得a c =;由22a =,33b =,则有()()322633622839a a b b ======,,即66a b <,可知a b <;综上所述,b a c >=.【总结】本题主要考查幂的乘法的综合运算,以及幂的大小比较,注意将不同的幂化成同底数或者是同指数.【作业9】 已知999990991199X Y ==,,比较X 与Y 的大小.【难度】★★★ 【答案】X=Y .【解析】()999999999999011999119119999X Y ⨯⨯=====. 【总结】本题主要考查幂的大小比较,根据幂的乘方法则进行转化.【作业10】 已知:252000x =,802000y =,求11x y+的值. 【难度】★★★ 【答案】1. 【解析】由题意()1125200025xxx==,()1180200080yyy==,两式相乘,得:11200025802000x y+=⨯=,故111x y+=. 【总结】本题一方面考查整体思想的运用,另一方面考查幂的乘方的计算.。
2022中考数学第一部分知识梳理第一单元数与式第4讲代数式与整式课件20220708338

(1)求所捂的二次三项式;
(2)若x= +1,求所捂二次三项式的值.
(2)x2-2x+1=(x-1)2,
解:(1)设所捂的二次三项式为A,
则A=x2-5x+1+3x
=x2-2x+1.
∵x= +1,
∴x-1= .
∴当x= +1时,原式=( )2=6.
返回子目录
23. (2017·河北,22)发现
又∵A=B2,B>0,
∴B=n2+1.
联想
勾股数组Ⅰ
勾股数组Ⅱ
37
17
返回子目录
20. (2020·河北,21)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同
时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25
和-16,如图.
如,第一次按键后,A,B两区分别显示:
个
××…×
3.(2017·河北,4)
=(
++…+
个
A. B.
C. D.
B)
返回子目录
4. (2013·河北,5)若x=1,则|x-4|=( A )
A. 3
B. -3
C. 5
D. -5
5. (2012·河北,11)如图,两个正方形的面积分别为16,9,两阴影部分面积分别为
返回子目录
命题点4
因式分解
24. (2020·河北,3)对于①x-3xy=x(1-3y),②(x+3)(x-1)=x2+2x-3,从左到右的变
形,表述正确的是( C )
初中数学复习第四讲——整式与分式

初中数学复习第四讲——整式与分式一、知识结构说明:在本局部,代数式分为整式和分式讨论。
在实数X围内,代数式分为有理式和无理式,有理式分为整式和分式,整式分为单项式和多项式。
二、知识点梳理1.代数式:用运算符号和括号把数或表示数的字母连接而成的式子叫做代数式。
用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。
2.单项式:由数与字母的积或字母与字母的积所组成的代数式叫做单项式〔单独一个数也是单项式〕;单项式中的数字因数叫做这个单项式的系数〔包括符号〕;一个单项式中,所有字母的指数的和叫做这个单项式的次数。
3.多项式:由几个单项式的和组成的代数式叫做多项式;在多项式中的每个单项式叫做多项式的项,不含字母的项叫做常数项;次数最高项的次数就是这个多项式的次数。
4.整式:单项式、多项式统称为整式。
5.分式:两个整式A、B相除,即A÷B时,可以表示为AB.如果B中含有字母,那么AB叫做分式,A叫做分式的分子,B叫做分式的分母。
6.同类项:所含的字母一样,且一样的字母的指数也一样的单项式叫做同类项。
把多项式中的同类项合并成一项,叫做合并同类项;一个多项式合并后含有几项,这个多项式就叫做几项式。
合并同类项的法如此:把同类项的系数相加的结果作为合并后的系数,字母和字母的指数不变〔合并同类项,法如此不能忘,只求系数代数和,字母指数不变样〕。
7.整式的加减:整式的加减就是单项式、多项式的加减,可利用去括号法如此和合并同类项来完成整式的加减运算。
去括号法如此:括号前面是“+〞号,去掉“+〞号和括号,括号里的各项不变号;括号前面是“—〞 号,去掉“—〞号和括号,括号里的各项都变号。
〔括号前面是“+〞 号,去掉括号不变号;括号前面是“—〞号,去掉括号都变号。
〕8.同底数幂的乘法:同底数的幂相乘,底数不变,指数相加。
m n m+n a a =a •.〔m 、n 都是正整数〕9.幂的乘方:幂的乘方,底数不变,指数相乘,即()n m mn a =a .〔m 、n 都是正整数〕10.积的乘方:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘, 即()nn n ab =a b .〔n 为正整数〕11.整式的乘法:〔1〕单项式与单项式相乘:单项式与单项式相乘,把它们的系 数、同底数幂分别相乘的积作为积的因式,其余字母连同它 的指数不变,也作为积的因式。
代数式(单项式、多项式、整式)知识点综合梳理

1. 代数式的概念用运算符号“+ — X 十……把数与表示数的字母连接而成的式子叫 做代数式。
单独的一个数或一个字母也是代数式。
如: 5,a ,x 均是代数式。
① 代数式中除了含有数、字母和运算符号外,还可以有括号;② 代数式中不含有“=、>、<、工”等符号。
等式和不等式都不是代数式, 但等号和不等号两边的式子一般都是代数式;如: 2x=5这个整体因为含有等号 所以不是代数式,但是等号左边的 2x 和右边的5却是代数式。
③ 代数式中的字母的限制:字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
1 •下列式子中,是代数式的有:2. 比a 多3的数是(4 .代数式2 a 所表示的意义是()A.比2多a 的数 B.比a 多2的数 C.比2少a 的数 D .比a 少2的数 5 .下列各题中,错误的是()A.代数式x 2y 2的意义是x, y 的平方和B.代数式5( x y )的意义是5与x y 的积C. x 的5倍与y 的和的一半,用代数式表示是5x 丄。
代数式①abed ②0③2(ab)2 R ⑤3x2⑥ 3x 4x 1 0A. a 3 B . a 3C. 3aD . a33. a,b 两数差的平方除以 A止2 . 2a bB .a,b 两数的平方差是(a 2b 2 (a b )2D .a 2b 2 a b 2211 一1 1D. x的一与y的一的差,用代数式表示是—x - y。
2 3 2 36. 在式子x+2,3#b,m,S= R :口,a b 2c中代数式有()yA、6个B、5个C、4个D、3个7. —项工作,甲独做x天完成,乙独做y天完成,甲、乙合作a天后还剩()典 a a A 、1 B、x y 1 —x y1 1c、1 a 1丄x yD 1 —xy2.代数式的书写规范①代数式中数与字母相乘,字母与字母相乘,乘号通常使用“ •”乘表示,或省略不写,如v x t通常写成V • t或vt ;②数与字母相乘时,一般在结果中把数写在字母前面,如a x5应写成5a;③数字与数字相乘,一般仍用“x”号,即“x”号不省略或写成“•”;5X 8,不能省略乘号写成58也不能写成5 • 8;④带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如a x』应2 写成3a;2⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4宁(a-4)应写作4/ (a-4 ),3十a写成3的形式.a⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如(a2-b2)平方米⑦ a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .分数线具有“宁号和括号的双重作用例1.下列式子中,符合书写要求的是( ) 1 2(A ) a5b(B ) 5 — ab(C ) a b c6例2.下列式子中,符号代数式书写要求的是( ) 1 1A. a3B. 3 —xC. - aD . x 3 人22例3.下列式子中符合书写要求的是()3. 代数式的系数代数式中的数字中的数字因数叫做代数式的系数。
第4章 代数式(单元小结)-2023-2024学年七年级数学上册同步精品课堂(浙教版)

单元小结
知识点二 同类项、合并同类项
1.同类项:所含字母__相__同____,并且相同字母的次数也__相__同__的项叫做同类 项.常数项与常数项也是同类项.
2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项. 3.合并同类项法则:同类项系数相加,所得结果作为系数,字母和字母的次 数不变. [注意] (1)同类项不考虑字母的排列顺序,如-7xy与yx是同类项; (2)只有同类项才能合并,如x2+x3不能合并.
单元小结
2.化简: (1)(x+2y)-(-2x-y).
(2)6a-3(-a+2b).
解:(1)原式=x+2y+2x+y =3x+3y;
(2)原式=6a+3a-6b =9a-6b;
(3)3(a2-ab)-5(ab+2a2-1). (3)原式=3a2-3ab-5ab-10a2+5
=-7a2-8ab+5.
数学(浙教版)
七年级 上册
第4章 代数式
单元小结
单元小结
知识点一 整式的有关概念
1.代数式:用加、乘、除及乘方等运算符号将数或表示数的字母连接而成 的式子,叫做代数式.单个的数或字母也是代数式.
2.单项式:都是数或字母的__积__,这样的式子叫做单项式,单独的一个数 或一个字母也是单项式.
3.单项式的系数:单项式中的数字因数叫做这个单项式的系数. 4.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的 次数.
4,
其中x=-2.
解:原式=3x2 x2 6x 3 4 2x2 6x 1.
当x=-2时,原式=2×(-2)2+6×(-2)+1=-3.
(2)3x2+(2x2-3x)-(-x+5x2),其中x=314.
Mathcad-数学运算-符号运算

(2)在左占位符中输入代数式,在右占 位符输入关键字expand;
(3)把光标移开并单击,便得: (x+1)3(x-1) expand →x4+2·x3-2·x-1
Mathcad-数学运算-符号运算
(c)代数式的 因式分解(Factor)
Mathcad-数学运算-符号运算
图 29
Mathcad-数学运算-符号运算
用户可在此框内输入浮点数的精度, 范围为1~4000之间的整数,当此数大于 255时将计算结果存入剪贴板中而不显示 在屏幕上。例:
解析解: 10
x2 dx
1000
0
3
10
实数解: x2dx floa,6t33.3333
(1)输入多项式; (2)指定展开变量或式子 (3)使用“Symbolics”菜单中的“Polynomial Coefficients”命令即可。 也可用指定代数符号运算符来返回含有指 定变量或指定子式的多项式系数的向量,其步 骤是:
Mathcad-数学运算-符号运算
(1) 按 “ Ctrl+Shift+.” , 出 现 指 定 代 数符号运算符;
0
复数解:e 2 in co m c2 o p n s l ) ( e isx 2 in n )(
Mathcad-数学运算-符号运算
(3)方程、不等式 的解析解
Mathcad-数学运算-符号运算
使用“Symbolics”菜单“Variable”命 令 的 子 命 令 “ Solve” 可 以 求 出 一 元 方 程 、 多元方程组、不等式的解析解,运用 given-find 求 解 模 块 也 可 以 求 得 多 元 方 程组的解析解。由于Mathcad2001在求解 方程时首先是对代数式进行因式分解, 因此对不能分解成基本因式的方程无法 求出解析解,但可以得到数值解。
新人教版(2024版)版)初中数学七年级上册 第四章整式的加减 4.1.2多项式 教学设计

课堂教学设计
例3、用多项式填空,并指出它们的项和次数.
(1)一个长方形相邻两条边的长分别为a,6,则这个长方形的周长为________
(2)m为一个有理数,m的立方与2的差为________
(3)某公司向某地投放共享单车,前两年每年投放a辆,为环保和安全起见,从第三年年初起不再投放,且每个月回收b辆.第三年年底,该地区共有这家公司的共享单车的辆数为________
(4)现存于陕西历史博物馆的我国南北朝时期的
官员独孤信的印章如图4.1-2所示,它由18个
相同的正方形和8个相同的等边三角形围成.如
果其中正方形和等边三角形的边长都为a,等边
三角形的高为6,那么这个印章的表面积为
___________
多项式的排列
运用加法交换律,任意交换多项式x+x2+1中各项的位置,可以做到__种不同的排列方式。
你认为哪几种比较整齐?
1)降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列。
x2+x+1
(2)升幂排列:把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列。
1+x+x2出多项式的概念,发展学生数学抽象能力核心素养
与学习的热情,
比较、
力
步巩固多项式的概念
展学生数学抽象能力核心素养
2。
第4讲:(七年级)单项式乘单项式与单项式乘多项式

1 3
练习:
(1) 6 x( x 3 y);
1 2 (2) 2a ( ab b ) 2
2
例2 先化简,再求值: 2a(a-b)-b(2a-b)+2ab,其中a=2,b= -3 2 2 解: 原式=2a –2ab –2ab+b +2ab 2 2 = 2a – 2ab + b
∵ a=2,b= -3 2 2 ∴原式= 2a – 2ab + b 2
七年级数学备课组
.
(3)(-3x² y)² ・
七年级数学备课组
全科王习题(第6页)
1.(2018・聊城期末)下列计算正确的是( ) A.3a² ・2a³ =6a6 B.3x² ・2x³ =6x5 C.3x² ・ 2x² =6x² D.3y² ・2y5=6y10 知识点2 单项式乘法法则的应用 2.若x3・xmy2n=x9y8则m+n= . 3.计算 (1)-2x² y・(-2xy² )2+(2xy)³ ・xy² (2)(-4ab³ )・(-2ab)-(2ab² )² ;
七年级数学备课组
全科王习题(第8页)
8.(2017・长沙中考)计算. (1)(x-2y)(x+y) (2)(x-1)(2x+1)-2(x-5)(x+2) 9.(2018・宁波中考)在矩形ABCD内将两张边长分别为 a和b(a>b)的正方形纸片(如图1-5(1)所示)按如 图(2),(3)所示的两种方式放置(图(2),(3)中 两张正方形纸片均有部分重叠),矩形中未被这两张正方 形纸片覆盖的部分用阴影表示,设图(2)中阴 影部分的面积为S1,图(3)中阴影部分的面积为S2,当AD -AB=2时,求S2-S1的值.
.
(3)(-3x² y)² ・
七年级数学备课组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)syms函数 函数sym一次只能定义一个符号变量,使用不方便。MATLAB提供 了另一个函数syms,一次可以定义多个符号变量。syms函数的一 般调用格式为: syms 符号变量名1 符号变量2 … 符号变量n 用这种格式定义符号变量时,变量间用空格而不要用逗号分隔。 例如,用syms函数定义4个符号变量a,b,命令如下: syms a b
命令如下: fminbnd('x^3-2*x-5', 0, 5) ans = 0.8165
建立函数文件f.m。 function w=f(p) x=p(1); y=p(2); z=p(3); w=x+y^2/(4*x)+z^2/y+2/z; 调用fminsearch函数求多元函数在[1/2,1/2,1/2]附近的最小值点。 w=fminsearch('f ',[1/2,1/2,1/2]) w= 0.5000 1.0000 1.0000 计算多元函数的最小值。 f(w) ans = 4.0000
MATLAB符号计算
MATLAB为用户提供了一种符号数据类型,相应的运算对象称为符号对象。例如,符号常量、 符号变量以及为它们参与的数学表达式等。在进行符号运算前首先要建立符号对象,然后才能 进行符号对象的运算。 1 建立符号变量和符号常量 (1)sym函数 sym函数用来建立单个符号量,一般调用格式为: 符号变量名=sym(‘符号字符串’) 该函数可以建立一个符号量,符号字符串可以是常量、变量、函数或表达式。 例如,a=sym(‘a’)将建立符号变量a,此后,用户可以在表达式中使用变量a进行各种运算。符 号变量a和在其他过程中建立的非符号变量a是不同的。一个非符号变量在参与运算前必须赋值, 变量的运算实际上是该变量所对应值的运算,其运算结果是一个和变量类型对应的值,而符号 变量参与运算前无须赋值,其结果是一个由参与运算的变量名组成的表达式。下面的命令及其 运算结果,说明了符号变量与非符号变量的差别。 在MATLAB命令窗口,输入以下命令: a=sym('a'); %定义符号变量a,b b=sym('b'); x=3; %定义数值变量x,y y=4; w=a*a+b*b %符号运算 w= a^2+b^2 w=x*x+y*y %数值运算 w= 25
MATLAB还提供了一个fzero函数,可以用来求单变量非线性方程的求根。 该函数的调用格式为: z=fzero(‘fname’,x0) 其中fname是待求根的函数文件名,x0为搜索的起点。一个函数可能有 多个根,但fzero函数只能给出离x0最近的那个根。
命令如下: fzero('x-10^x+2',0.5) ans = 0.3758 或 建立函数文件f.m。 function y=f(x) y=x-10^x+2; 调用fzero函数求根。 fzero('f',0.5) ans = 0.3758
第4讲 多项式与符号运算
刘雁 三峡大学理学院 2013.3
提纲
数据统计 多项式 函数极值 Matlab符号运算
数据统计
1 求向量的最大值和最小值 求一个向量x的最大值的函数有两种调用格式,分别是: (1)max(x):返回向量x的最大值,如果x中包含复数元素,则按模取最大 值。 (2)[y, i]=max(x):返回向量x的最大值存入y,最大值的序号存入i,如果x 中包含复数元素,则按模取最大值。 求向量x的最小值函数是min(x),用法与max(x)完全相同。
6 排序
对向量元素的进行排序是一种经常性的操作,MATLAB提供了sort函 数对向量x进行排序。 y=sort(x):返回一个对x中元素按升序排列后的向量y。 [y,i]=sort(x):返回一个对x中的元素按升序排列的向量y,而i记录y中 元素在x中的位置。
多项式
多项式的四则运算
多项式之间可以进行四则运算,其运算结果仍为多项式。 1 多项式的加减运算 MATLAB没有提供专门进行多项式加减运算的函数。事实上,多项式的加 减运算就是其所对应的系数向量的加减运算。对于次数相同的两个多项式, 可直接对多项式系数向量进行加减运算。如果多项式的次数不同,则应该 把低次的多项式系数不足的高次项用0补足,使各多项式具有相同的次数。
(3)利用已经定义的符号变量组成符号表达式。 例如 syms x y; z=3*x^2-5*y+2*x*y+6 z= 3*x^2-5*y+2*x*y+6
3 符号表达式中变量的确定 利用函数findsym(s)可以确定符号表达式s中的全部符号变量。例如: syms a b x y; %定义4个符号变量 c=sym('3'); %定义1个符号常量 s=3*x+y; findsym(s) ans = x, y findsym(5*x+2) ans = x findsym(a*x+b*y+c) %符号变量c不会出现在结果中 ans = a, b, x, y
命令如下: p1=[1,-1]; p2=[1,-1,3]; [p,q]=polyder(p1,p2) p= -1 2 2 q= 1 -2 7 -6 9
多项式的求值和求根
polyval函数用来求代数多项式的值,其调用格式为: y=polyval(p,x) 若x为一数值,则求多项式在该点的值;若x为向量,则对向量中的每 个元素求其多项式的值。
符号表达式运算
1 符号表达式四则运算 符号表达式的加、减、乘、除和幂运算可分别由函数symadd、 symsub、symmul、symdiv和sympow来实现。例如 f='2*x^2+3*x-5' f= 2*x^2+3*x-5 g='x^2-x+7' g= x^2-x+7 symadd(f,g) %加法运算 ans = 3*x^2+2*x+2 sympow(f,'2*x') %乘幂运算 ans = (2*x^2+3*x-5)^(2*x)
应用sym函数还可以定义符号变量,使用符号变量进行代数运算时和数值常量 进行的运算不同。下面的命令用于比较符号常量与数值常量在代数运算时的差 别 在MATLAB命令窗口,输入命令: p1=sym('pi'); %定义符号常量 a=sym('3'); b=sym('4'); p2=pi; %定义数值常量 x=3; y=4; sin(p1/3) %符号计算 ans = 1/2*3^(1/2) sin(p2/3) %数值计算 ans = 0.8660 cos((a+b)^2)-sin(pi/4) %符号计算 ans = cos(49)-1/2*2^(1/2) cos((x+y)^2)-sin(pi/4) %数值计算 ans = -0.4065 从命令执行情况可以看出,用符号常量进行计算更像在进行数学运算,所得 到的结果是精确的数学表达式,而数值计算将结果近似为一个有限小数。
2 建立符号表达式
含有符号对象的表达式称为符号表达式。 建立符号表达式有以下3种方法: (1)利用单引号来生成符号表达式。例如 y='1/sqrt(2*x)' y= 1/sqrt(2*x) (2)利用sym函数建立符号表达式。例如 z=sym('3*x^2-5*y+2*x*y+6') z= 3*x^2-5*y+2*x*y+6 A=sym('[a,b;c,d]') A= [ a, b] [ c, d] 第一条命令建立一个符号函数表达式,第二条命令生成一个符号矩阵。
p1=[1,8,0,0,-10]; p2=[2,-1,3]; [q,r]=deconv(p1,p2) q= 0.5000 4.2500 1.3750 r= 0 0 0 -11.3750 -14.1250
多项式的求导
对多项式求导数的函数是: p=polyder(p1):求多项式p1的导函数。 p=polyder(p1,p2):求多项式p1和p2乘积的导函数。 [p,q]=polyder(p1,p2):求多项式p1和p2之商的导函数,p、 q是导函数的分子、分母。
2 求矩阵的最大值和最小值 求矩阵A的最大值的函数有三种调用格式,分别是: (1)max(A):返回一个行向量,向量的i个元素是矩阵A的第i列的最大值。 (2)[y,u]=max(A):返回行向量y和u,y纪录A的每列的最大值,u纪录每 列最大值的行号。 求矩阵A的最小值的函数min(A),用法与max(A)完全相同
函数极值
MATLAB提供了求函数极值的函数fminbnd和fminsearch,它 们分别用于求单变量函数和多变量函数的最小值点,其调用格 式为: x=fminbnd(‘fname’,x1,x2) x=fminsearch(‘fname’,x0) 这里,fname是目标函数名,x1和x2限定自变量的取值范围, 而x0是搜索起点的坐标。 MATLAB没有专门提供求函数最大值点的函数,当需要求函数 在区间(a,b)上最大值点时,可将它转化为求-f(x)在(a,b)上的 最小值点。
4 平均值、标准方差
或
1 n 2 ( xi x ) 2 n i 1
MATLAB提供了mean,std函数来计算平均值、标准方差或方差。 这些函数的调用方法如下: mean(x):返回向量x的算术平均值。 std(x):返回向量x的标准方差。 对于矩阵A,mean函数的一般调用格式为: y=mean(A,dim) 这里,dim取1或2。当dim=1时,返回一个行向量y,y的第i个元素 是A的第i列元素的平均值;当dim=2时,返回一个列向量y,y的第i 个元素是A的第i行元素的平均值。 对于矩阵A,std函数的一般调用格式为: y=std(A,flag,dim) 这里,dim取1或2。当dim=1时,求各列元素的标准方差;当dim=2 时,求各行元素的标准方差。flag取0或1,当flag=0时,按计算标准 方差;当flag=1时,按计算方差。缺省flag=0,dim=1。