气压计基点法测定矿井通风阻力的误差分析及基点位置的选择(正式版)
气压计基点法测矿井通风阻力的分析

P01 = - 9. 8 Pa ; P02 = - 14 Pa ; ρ1 = 1. 16kg/ m3 ;ρ2 = 1. 15kg/ m3 ;
V 1 = 75m/ min ; V 2 = 119m/ min ; S 1 = 8. 69m2 ; S 2 = 13. 10m2 ; Z1 = - 345. 5m ; Z2 = - 345. 2m 。 其阻力计算结果是 Pr1 - 2 = 0. 11 Pa ,阻 力值偏小 。根据测定当时的情况 ,风门附近 有人员作业 ,判断是由于风门开启造成了风 量变化 , V 1 应修正为 179. 4m/ min 。 因此巷道通风阻力修正结果为 Pr1 - 2 = 4. 42 Pa 。 2. 3 静压差项 Ps
参 考 文 献
1 刘雪峰 1 巷道摩擦风阻的动态分析 1 煤矿安全 , 1989 (12) :40~43
2 王德明 1 矿井通风阻力测定中的气压监测问题 1 煤炭工程师 ,1992 (5) :18~20 (责任编辑 唐自强)
煤炭工程师 1997 年第 6 期 COAL EN GIN EER No . 6 1997
ห้องสมุดไป่ตู้
V 1 = 67. 6m/ min ; V 2 = 56. 3m/ min ;
Z1 = - 286. 7m ; Z2 = - 285. 8m 。
其阻力计算结果是 Pr1 - 2 = - 15. 92 Pa ,
出现了负值 。进一步核对知 Z2 点标高应低
于 Z1 点标高 ,再到有关图纸上找到两测点 ,
L
=
( P′3 αU ( Q 2
P3) S 3
- Q′2)
例如某运输大巷断面积 S = 14m2 ,周长 U = 14. 4m ,摩擦阻力系数 α= 0. 008kg/ m3 , 受扰动前风量 Q = 48m3/ s , 受扰动时风量
矿井通风系统阻力测定与优化

2. 1 通风阻力测定结果
依据通风系统各测点获取到的巷道断面参数、
温度、风速等参数计算得到的井下通风阻力、风阻分
布情况见表 1. 矿井总回风量为 85. 05 m 3 / s, 经由
3101 综采 工 作 面 测 量 路 线 获 取 到 的 通 风 阻 力 为
2 774. 61 Pa. 测定得到的通风阻力值偏大,特别是
关键词:煤岩开采;通风系统;通风阻力;优化措施;煤矿安全
中图分类号:TD724 文献标识码:B 文章编号:10052798(2023)04007403
山西某矿设计产能 120 万 t / a,可采煤层包括
3 号、9 号以及 11 号等,煤层赋存稳定。 井下有独立
的通风系统,采用中央并列式通风。 现生产集中在
87. 75
20. 96 ∶ 31. 45 ∶ 47. 59
3
回风巷内随意摆放杂物等优化措施后,对优化后矿
井通风系统阻力进行测定,具体测定结果见表 3.
-1
对通风系统优化后,矿井通风阻力由优化前的
2 774. 61 Pa 降低至 2 204. 59 Pa,降幅达到 20. 5%.
优化后通风系统回风段风阻占比有所降低,进风段、
通风阻力分布不合理,特别是回风段通风阻力偏高,
矿井通风系统难易程度为中等。 需要针对现场情况
对通风系统进行优化。
2) 通风系统中回风段阻力偏高的原因是回
风巷受区域地质构造影响,断面积缩小且巷道内堆
积有杂物。 因此提出对巷道底板及巷帮进行刷扩、
修整巷道断面,提高巷道断面积及表面光滑度,清除
或者规则摆放杂物及材料等,减少通风阻力。 优化
2
8
孔为 1. 92 m 2 ,根据相关判定规则 [7-9] 得到矿井通风
矿井通风阻力测定及优化分析

矿井通风阻力测定及优化分析矿井是非常特殊的工作环境,一般需要通过地下采掘或开采来获得价值。
在一些较深的矿洞环境下,通风是非常重要的方面,因为矿井需要保证一定的空气流动,以保证工人在工作过程中能够呼吸清新的空气、避免安全隐患,并且减少了温度和湿度等方面对工人的影响。
通风阻力是通风系统中必不可少的一个指标,在矿井通风过程中起到了非常重要的作用。
因此,本文我们将会介绍如何进行矿井通风阻力测定及优化分析。
通风阻力主要是由矿井内部的空气摩擦、汽泡效应和气体的密度、粘性等因素影响而造成的。
因此,矿井通风阻力测定的主要任务就是要解决这些问题,并确定整个通风系统所需的通风阻力。
测定通风阻力的方法比较多,按照不同的原理可以分为静态法和动态法两种。
其中,静态法是利用压力差测量矿井管道内部的压力,从而确定其通风阻力的大小。
在测量时需要先利用静态法来测量每一个井筒内的气流压力差,并将其记录下来。
然后,将测量到的数据进行加权平均,分别计算与每个井筒的视运行情况相对应的阻力。
最终,可以通过累加各个井筒之间的阻力值得到整个通风系统的阻力。
动态法测定通风阻力主要是通过测量气流的体积和速度来计算通风阻力的大小。
这种方法需要采用特定的设备和测量仪器,可以在现场安装多个测量点,利用测量点测量气流体积和速度,从而计算出每个点的通风阻力。
最终,可以通过累加各个测量点之间的通风阻力值得到整个通风系统的阻力。
通风阻力测定的最终目的是得到通风系统的阻力图,并根据阻力图对通风系统进行优化分析。
通风系统优化通风系统的优化分析可以从管道的可靠性、流阻损失和节能等方面入手,以提高整个通风系统的效率和减少能耗。
从管道的可靠性来看,矿井通风管道通常使用抗压能力强、耐腐蚀的材料制成,以确保其在耐腐蚀性和机械强度方面具有较高的可靠性。
为了保持通风管道的可靠性,需要定期检测通风管道、修补或更换那些存在损坏的管道。
从流阻损失来看,通风系统的流阻损失是影响通风效率的主要因素。
矿井通风阻力测定方法讲义

9/36
风井 副井 主井
中央并列式主要通风路线
2019年4月8日星期一 通风阻力测试讲义-马恒 10/36
选择测点时应满足下列要求:
1) 测点应在分风点或汇风点前(或后)处选定。选在前方不得小于 巷道宽度的3倍;选在后方不得小于巷道宽度的8倍;
2) 需要在巷道转弯处、断面变化大的地方选点时,选在前方不得 小于巷道宽度的3倍;选在后方不得小于巷道宽度的8倍; 3) 测点前、后3内巷道应支护良好,巷道内无堆积物; 4) 两测点间的压差:倾斜压差计法应不小于5;气压计法应不小 于20; 5) 测试巷摩擦风阻力时,两测点之间不应有分风点或汇风点; 6) 测试巷道局部阻力时,测点应在分风点或汇风点前(或后)3~8 倍巷道宽度范围内进行。
ቤተ መጻሕፍቲ ባይዱ
2019年4月8日星期一
通风阻力测试讲义-马恒
24/36
2019年4月8日星期一
通风阻力测试讲义-马恒
25/36
澄清几个概念: 静压(能):相对,绝对;hs 动压(能): hv 全压(能):相对,绝对;ht hs hv 或 ht =hs -hv (读数) 位压(能): hz 总压(能): hw 阻力: hr 风硐静压: 风硐全压: 风机装置静压: h fs ht hs hv (读数)
2)其他参数测量
风速测量、大气物理参数测量、巷道断面积和周长测量、测 点间距离测量同倾斜压差计法。
2019年4月8日星期一 通风阻力测试讲义-马恒 20/36
局部阻力测量 测量局部阻力时,在分风点或汇风点前后进行布置 测点,采取倾斜压差计法或气压计法测试两测点间压差。 风门两侧压差测量 在风门两侧用精密气压计测试静压( 或采取倾斜 压差计法测试两端压差 )。 风门压差: ∆P=P1-P2
矿井通风阻力测定及优化分析

矿井通风阻力测定及优化分析矿井通风是煤矿生产中的重要环节,对于保证矿井安全和提高矿井生产效率具有重要作用。
通风阻力是指通风系统中空气流动受到的阻碍力,直接影响矿井通风效果和能耗。
为了准确测定通风阻力,首先需要对矿井中的各种通风设备进行检查和测试。
通风设备主要包括风机、风门、导风器、风道等。
通过检查设备的运行状态、密封性能和调节性能等,可以了解设备的工作情况和对通风流动的影响。
通风阻力测定主要包括两个方面,一是测定单一通风设备的阻力,二是测定整个通风系统的总阻力。
对于单一通风设备的阻力测定,可以通过实际操作或者模拟实验进行,通过测量设备的压力、流量和功率等参数,计算得到阻力。
对于整个通风系统的总阻力测定,需要将各个通风设备的阻力相加得到。
通风阻力的优化分析是为了减小通风系统的阻力,提高通风效果和节约能耗。
通过分析阻力的来源和影响因素,可以找出问题所在并采取相应的措施进行优化。
常见的通风阻力优化方法包括改善通风设备的设计和选用、控制通风系统中的风速和风量、优化通风系统的布置和风道的形状等。
改善通风设备的设计和选用是降低阻力的关键。
合理选择风机类型和型号、优化叶轮和泵叶设计,可以提高风机的效率和节能性能。
对于风门和导风器等通风附件的设计和选用也要注意减小阻力。
控制通风系统中的风速和风量是减小阻力的有效手段。
通过合理的调节风机的转速和风门的开度,控制通风系统中的风速和风量,可以达到最佳通风效果和能耗的平衡。
优化通风系统的布置和风道的形状也可以减小通风阻力。
合理布置通风设备和风道,减小通风系统中的阻力损失,提高通风效果。
矿井通风阻力测定及优化分析是保证矿井安全和提高矿井生产效率的重要工作。
通过准确测定通风阻力,找出问题所在并采取相应的优化措施,可以提高通风效果、节约能耗,为矿井生产提供有力支持。
矿井通风阻力测定及优化分析

矿井通风阻力测定及优化分析随着煤矿开采深度的不断增加,矿井通风阻力的问题日益突出,严重影响了矿井工作面的安全生产。
对矿井通风阻力的测定和优化分析显得尤为重要。
本文将围绕矿井通风阻力测定的方法和优化分析的过程展开讨论。
一、矿井通风阻力测定方法1. 风压法测定法风压法是通过实测矿井通风系统的总风压,再根据风道的尺寸和形状以及风机的性能参数计算得到通风网络的总阻力值。
该方法操作简单,不受环境条件的影响,适用于对通风系统总阻力的测定。
2. 等效阻力法测定等效阻力法是通过测定各个部分的阻力,再把每个部分的阻力值相加得到整个风道系统的总阻力。
这种方法相对于风压法更为精确,可以更准确地找到通风系统中存在的阻力点,是通风系统的优化提供了重要的依据。
3. 模型试验法测定模型试验法是通过建立矿井通风系统的物理模型,利用风洞实验等方法进行仿真,通过计算得到通风系统的阻力,该方法具有较高的精度和准确性,但是成本较高,周期较长。
以上三种方法在矿井通风阻力测定中各有所长,可以根据具体情况进行选择。
而在实际应用中,往往需要结合多种方法,进行多方面的测定和分析。
二、矿井通风阻力优化分析过程1. 数据收集首先需要收集矿井通风系统相关的数据,包括风道的尺寸和形状、风机的性能参数、风量、风压等信息。
通过对这些数据的收集和整理,能够为后续的优化分析提供有效的依据。
2. 阻力分析3. 优化方案制定在阻力分析的基础上,制定合理的优化方案,包括对通风系统的结构优化、风机的参数调整、风道的改造等措施,从而降低通风系统的阻力,提高其通风效率和安全性。
4. 优化效果评估实施优化措施后,需要对通风系统的性能进行评估,通过对通风量、风压、风速等指标的测定和比对,验证优化措施的效果,并进行必要的调整和改进。
在矿井通风阻力优化分析中,除了以上提到的过程之外,还需要对通风系统的运行状态进行实时监测和控制,及时发现并解决系统中存在的问题,保障通风系统的正常运行,确保矿井的安全生产。
煤矿矿井通风阻力测定

煤矿矿井通风阻力测定发表时间:2020-04-13T17:00:43.877Z 来源:《基层建设》2019年第31期作者:张瑞武[导读] 摘要:矿井通风是保障矿井安全的最主要技术手段之一。
黑龙江省龙煤鹤岗矿业有限责任公司鸟山煤矿黑龙江鹤岗 154100摘要:矿井通风是保障矿井安全的最主要技术手段之一。
矿井通风阻力指的是由井筒、巷道及通风构筑物构成的通风网路所产生的通风总阻力,它是衡量矿井通风能力的重要指标,也是矿井通风技术管理的重要内容之一,了解和掌握矿井通风阻力大小和分布状况,是进行矿井通风科学管理、风量调节、通风设计及通风系统优化和改造的基本依据。
关键词:煤矿矿井;通风;阻力测定前言通风阻力测定是矿井通风技术的一项重要研究内容。
通过监测不同类型井巷的通风阻力和风量大小,评定矿井巷道通风特性的好坏,进而确定与之对应的风阻值和摩擦阻力系数(即井下平均空气密度值),将相关数据整理编集,为矿井通风技术管理提供参考。
为了明确井巷各路段通风阻力及风量情况,需连续测试某一路线各区段的通风阻力值,以便更好地掌握矿井的整体通风情况。
1、矿井概况斜沟煤矿位于山西省兴县县城北直距20km处,行政区划隶属于兴县魏家滩镇和保德县南河沟镇管辖。
矿井设计生产能力1500万t/a,实际年产量为1550万t/a,现开采8#、13#、6#煤层。
矿井采用分区式通风方式,机械抽出式通风方法。
共有进风井5个、回风井3个。
斜沟回风井安装有2台FBCDZ-8-№22型主要通风机,配套电机2×160kW;石吉塔沟回风斜井安装有2台FBCDZ-10-№34型主要通风机,配套电机2×800kW;石吉塔沟回风立井安装有2台FBCDZ-10-№34型主要通风机,配套电机2×800kW。
矿井2011年度鉴定为低瓦斯矿井。
2、矿井通风阻力测定2.1测定方法及测定时间的选择矿井通风阻力测定常用方法有气压计法和压差计法。
由于压差计法在现场铺设、收放胶皮管费时费力、工作量大、操作较繁琐,因此目前大多采用气压计法。
矿井通风阻力测试技术的探讨与合理性分析

矿井通风阻力测试技术的探讨与合理性分析作者:李永宝来源:《学习与科普》2019年第04期摘要:矿井通风阻力是衡量矿井通风状况的主要指标,矿井通风阻力测定则是矿井通风技术管理的一项基础工作,介绍了矿井通风阻力的测定方法,对矿井通风阻力测定中的几个问题进行了分析。
关键词:矿井通风阻力伯努利方程等积孔一:矿井通风阻力测定原理:能量方程能量方程表达了空气在流动过程中的静压能、动能和位能的变化规律,是能量守恒和转换定律在矿井通风中的应用。
在流体力学中,对理想流体,当从1点流到2点时,采用伯诺利方程(也叫通风能量方程):p1+ρm1gZ1+ρm1v12/2=p2+ρm2gZ2+ρm2 v22/2但对于实际中的空气流动,由于空气具有粘性,在流动过程中必然产生内外磨擦力而损失部分能量;另外,空气还具有可压缩性,在流动过程中气体的密度会有变化,在实际应用中的通风能量方程可用下式表示:p1+ρm1gZ1+ρm1v12/2=p2+ρm2gZ2+ρm2 v22/2+h阻1-2式中 h阻1-2 ——空气从断面1流到断面2所损失的能量,即两点间的通风阻力,Pa上述能量方程表示了风流在任意两断面间的能量转化关系,指出两点间的能量损失就是两点间的通风阻力。
该方程在矿井通风中应用极为广泛,是研究矿井通风的理论基础。
二:测定方案的确定本次矿井通风阻力测定前,根据矿井通风系统的实施情况,经与矿方共同协商,选定通风网络最长的路线,采用通风参数仪法进行测定。
三:测定方法:气压计法(矿井通风参数仪)用精密气压计测量两测点间的静压差,测算两断面的动压差和位压差,从而计算出两测点间的通风阻力。
实施阻力测定前,按煤矿现通风系统,并结合矿井实际生产地点选择测定路线及标注井下测点标号、量取测点断面和两测点间斜距、记录井巷支护形式等。
第二步,依次测定井下各测点的风速、绝对大气压力、空气干温度、空气湿温度及相对于基点(进风井口)的静压差,具体测定步骤如下:①精密气压计A、B及测定所用的其他仪器、仪表的操作做好人员分工。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文件编号:TP-AR-L7316In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.(示范文本)编订:_______________审核:_______________单位:_______________气压计基点法测定矿井通风阻力的误差分析及基点位置的选择(正式版)气压计基点法测定矿井通风阻力的误差分析及基点位置的选择(正式版)使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。
材料内容可根据实际情况作相应修改,请在使用时认真阅读。
1 概述矿井通风阻力测定是生产矿井通风管理的一项重要内容。
目前,矿井阻力测定已基本淘汰了倾斜压差计测定法,大多采用省时省力,操作简单的气压计测定方法,特别是在大型矿井的全矿井阻力测定中更是如此。
采用气压计进行阻力测定时,测定方法又分为基点法和同步法2种。
同步法是将2台气压计分别安置在井巷的两侧,并约定时间同时读取风流的静压值。
而基点法则是用1台气压计监测基点气压的变化,另1台气压计沿测定线路逐步测定风流的静压。
由于同步法采用2台气压计同时读数,从而有效地避免了地面大气压力变化和其他扰动因素的影响。
测定精度主要受气压计性能本身的影响。
若采用2台相同精度和漂移性能的气压计,其测定精度易于保证。
但要求2台气压计同时读数,测定过程的联络和配合较困难,测定速度慢。
而基点法则相反,它是目前较为常用的测定方法。
本文试图从基点法测定的原理入手,对测定误差产生的原因、基点位置的确定等问题进行探讨,希望能为提高基点法在实际应用过程中的精度有所帮助。
2 基点法测定误差来源分析2.1 基点法测定原理采用基点法进行井巷通风阻力测定时,测定段的通风阻力计算公式为:式中 K₁、K₂——移动气压计和基点监测气压计的校正系数;P₁、P₂——移动气压计在井巷进风测点和出风测点不同时刻的读数,Pa;P01、P02——在读取P₁和P₂时,基点气压计的读数,Pa;V₁、V₂——井巷进风测点和出风测点不同时刻的风速,m/s;Z₁、Z₂——井巷进风测点和出风测点的标高,m;ρ₁、ρ₂——井巷进风测点和出风测点处的风流密度,kg/m³;ρ₁~₂——测定段风流平均密度,kg/m³。
从形式上看,(1)式和描述井巷通风阻力的典型的伯努利能量方程类似,具有相同的物理意义,它们都表示任意井巷进、出2个断面上的能量差。
但是(1)式中的压力、风速和密度等物理量是气压计等仪器沿测定线路在测定段进出风测点不同时刻的测定值,如果地面大气压力和井下风流是严格的稳定流,并且在测定时间内不考虑地面大气压力滞后等因素的影响,(1)式就准确的反映了测定段的通风阻力。
但是矿井实际风流和地面大气压力往往是变化的,这样由于2个测点读数的非同时性,就必然导致测定过程中误差的产生,这是由基点法本身所造成的。
由于(1)式中各项的物理意义不同,产生误差的原因也不同,因此有必要对其分别进行讨论。
2.2 基点法测定误差分析为了详细的分析基点法测定中误差产生的原因,将(1)式分成3个部分如加以讨论,即位压差项、速压差项、静压差项。
(1)位压差项:任一测段位压差的表达式为:hz1~2=( Z₁-Z₂)gρz1~2 (2)在正常生产条件下,风流的密度变化较小,并且也易于测算。
对位压差hz1~2影响最大的是测点的标高。
在实际测定中,由于测定标高的不准确而导致测定段的阻力出现负值的情况时发生。
为此,在测定线路布点时,尽可能将测点布置在标高已知的地方,并且事先将测线布置图送有关的地质部门,以便准确确定出测点的标高数值。
对于测点难以选在已知标高的位置时,可根据具体情况进行推算。
这里有2种情况,一种是测定段位于在巷、石门或者上下山等坡度已知的巷道时,则可根据巷道的坡度和已知标高测点到未知标高测点的距离进行推算。
另一种对于巷道起伏变化大,又缺乏坡度变化准确资料的测段,采用上述的推算方法比较困难时,可根据前后测点的有关参数推算待求测点的最可能标高值,并以此作为该测点的准确标高进行位压差的计算。
(2)速压差项:速压差的测算公式为:影响速压差项精度的主要因素是进出风测点的风速。
井巷中运输设备的运行、大批人员的移动对风表的读数都会产生直接的影响,从而引起测点风速值的误差。
因此,测风点应设在免受上述因素干扰的地点。
由于风流汇合或分流都会产生涡旋,对于处在交叉点附近的测点,为了避开涡旋,在从分风点或合风点流出的风流中,测点的位置与该分风点或合风点的距离不小于巷道宽度的12~14倍;在流入分风点或事风点的风流中,测点的位置与该分风点合风点的距离不小于巷道宽度的3~4倍,并且务分支的风量都要进行测量,以便相互验证。
一般而言,井下风流的动能值较小,速压差在阻力中所占比例很小,不会引起较大的误差。
但是如果在测点附近设有风门,若恰好在测定时风门开启或者关闭,则可能引起较大的误差。
所以在测风速时,应采用多次测定,取平均值的方法,避免粗大误差的产生。
(3)静压差项:静压差项的测算公式为:hs=K₁( P₁-P₂) +K₂( P02-P01) (4)上式由2项组成,第1项表示测段进行风测点的静压差,第2项表示井下移动气压计在测点读数时刻,基点气压计的变化情况。
如前所述,基点法通风阻力测算公式是根据稳定流的伯努利能量方程而得到的。
而矿井风流并不是严格的稳定流,并且基点法测定过程中对测点气压的读数不是在同一时刻进行的,所以不能照搬伯努力利方程,必须对其进行修正,这样就引入了(4)中的第2项。
对上式进行变形得到;hs=(K₁ P₁-K₂ P01)+(K₁ P₂-K₂ P02)(5)在不考虑基点气压计和井下移动气压计仪器本身误差的条件下,(5)式的第一项相当于同时测定法中基点和测点1在某时刻的静压差,而第2项则相当于基点和测点2在另一时刻的静压差。
如果井下风流(包括地面大气压)是严格的定常流,则以上2项的差就准确的表示某段井巷始末点的静压差。
由(5)式就更加清楚地看出风流的非定常性和测点读数的非同时性是基点法误差产生的根本原因。
实际观测也证明了上述推论,用1台气压计观测井下某点的气压,很容易发现在不同时刻,该点的气压将有不同的读数,而2个测点在不同时刻得到的读数,代入(5)式进行静压差的计算,误差的产生是不可避免的。
3 基点位置的确定由于基点法阻力测定中,静压差的精度直接关系到整个测定工作的精度,因此从测定方法本身着手考虑如何降低静压差的误差是十分重要的。
而对静压差精度影响最大的是基点气压计的位置。
合理的基点位置应使矿井风流的非定常性给阻力测定带来的影响降到最小。
引起井下测点静压波动的原因有2类:①由于地面大气压的变化;②井下作业在矿井风网中引起的局部附加冲击压力。
不同的基点位置,这2个因素对静压差有着不同的影响。
3.1 基点设在进风井口当基点位于进风井口附近时,校正气压计的读数主要受地面大气压变化的影响。
地面大气压力的变化与天气有一定的关系,并一在1d之内其变化的趋势和幅度也不同。
根据观测,在白天大气压力的为化可达100Pa左右(晴天),每小时的变化幅度可达50Pa左右,并且大气压力的变化是渐变的,基本上没有突变的情况发生,气压随时间的变化曲线比较平稳。
大气压力的这种变化将传递过程中有一定滞后和衰减,其滞后的时间和衰减的幅度取决于井下测点距井口的距离。
3.2 基点设在井底车场根据观测,当基点设在井底车场附近时,气压的波动幅度较大,并且有突变的情况发生。
产生这种情况的原因在于,井底车场附近的气压除受地面大气压力波动的直接影响久,还会受到井下不同形式扰动的影响。
例如,当副井的罐笼向下运行,而大巷的电机车向井底车场方向运行时,井底车场附近的空气被压缩,气压升高;反之,则气压降低。
这样就造成了井底车场附近气压的变化曲线较井口附近的气压变化曲线起伏多,变化的幅度大。
3.3 基点设在采区下部车场及回风大巷起点当基点设在采区下部车场不受运输影响的巷道内时,如果不考虑采区内风门的开启和关闭的影响,基点气压计的波动和采区内测点气压的波动在趋势和时间上基本一致。
这是由于在采区内部受到的运输干扰较少,产生压力跃阶的因素减少;同时,基点和测点的距离较近,基点气压延迟效应降低,从而使二者的波动一致。
在回风系统的测定,将基点设在采区上部回风大巷起点附近,也具有类似的结果。
综合以上讨论,用基点法进行矿阻力测定时,由于井下风流的非定常性和前后测点读数的非同时性,从理论上讲误差存在是必然的。
要降低测定的误差,就必须从这2个方面入手。
为此,阻力测定应该在人员活动少、运输量轻的检修班进行。
将进风井到出风井的阻力测定路线分为3段,即进风段,用风段和回风段。
从入风井到采区下部车场为进风段,在这一测段,由于矿井的运输和提升设备对测定结果的影响大于大气压力波动滞后的影响,因此,一般基点应设在进风井口附近。
对于特别深的矿井或者进风线路特别长的矿井,可考虑将基点设在井底车场附近。
在采区下部车场到总回风巷的用风段测定中,可将基点设在采区下部车场不受运输影响的地点,以缩短基点和测点间的距离。
同时,为了消除风门开启或者关闭造成的跃阶对测定精度的影响,必须在气压稳定后读数。
在从总回风巷入口到回风井的回风段测定中,基点应设在采区上部总回风巷入口附近。
为了剔除测定工作中可能出现的粗大误差,测定时应采用至少4台气压计。
在从进风井口到回风井口的整条测线内,随着测定工作的前移,在进风井口、采区下部车场附近、总回风巷入口附近先后设立3个基点,实行多基点测定,以弥补基点法本身的缺陷。
(曲方)此处输入对应的公司或组织名字Enter The Corresponding Company Or Organization Name Here。