2020-2021学年八年级人教版数学上册期末专题复习三角形认识

合集下载

《三角形》(解析版)-期末挑重点之2020-2021学年上学期人教版八年级数学

《三角形》(解析版)-期末挑重点之2020-2021学年上学期人教版八年级数学

专题01 三角形1.三角形的概念由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形.2.三角形的分类(1)三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形.(2)三角形按边分为两类:等腰三角形和不等边三角形.3.三角形三边的关系(重点)(1)三角形的任意两边之和大于第三边.三角形的任意两边之差小于第三边.(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a.(2)已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b.4.判断三条已知线段a、b、c能否组成三角形.当a最长,且有b+c>a时,就可构成三角形.5.三角形的主要线段从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线.三角形一个角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.连接三角形一个顶点与它对边中点的线段叫做三角形的中线.注意:(1)三角形的角平分线、中线和高都是线段,不是直线,也不是射线;(2)任意一个三角形都有三条角平分线,三条中线和三条高;(3)任意一个三角形的三条角平分线、三条中线都在三角形的内部.但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部.(4)一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点.(三角形的三条高(或三条高所在的直线)交于一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部.)(5)三角形的三条高的交于一点,这一点叫做“三角形的垂心”.三角形三条角平分线的交于一点,这一点叫做“三角形的内心”.三角形三条中线的交于一点,这一点叫做“三角形的重心”.三角形的中线可以将三角形分为面积相等的两个小三角形.6.三角形的稳定性(1)三角形具有稳定性(2)四边形及多边形不具有稳定性要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了.7.三角形的内角和定理三角形的内角和为180°,与三角形的形状无关.8.直角三角形两个锐角的关系直角三角形的两个锐角互余(相加为90°).有两个角互余的三角形是直角三角形.一个三角形中至多有一个直角或一个钝角;一个三角形中至少有两个内角是锐角.9.三角形的外角(1)三角形的一边与另一边的延长线组成的角叫做三角形的外角;(2)三角形的一个外角等于与它不相邻的两个内角之和.三角形的一个外角大于与它不相邻的任何一个内角.(3)三角形的外角和等于360°.10.多边形(1)在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角.多边形的边与它邻边的延长线组成的角叫做外角.连接多边形不相邻的两个顶点的线段叫做多边形的对角线.(2)一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为2)3(nn.(3)画出多边形的任何一条边所在的直线,如果多边形的其他边都在这条直线的同侧,那么这个多边形就是凸多边形.(4)各角相等,各边相等的多边形叫做正多边形.(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)11.多边形的内角和(1)n边形的内角和定理n边形的内角和为(n−2)·180°。

考点05 半角模型2021学年八年级数学上册期末考点专项复习之全等三角形辅助线解题方法(人教版)

考点05 半角模型2021学年八年级数学上册期末考点专项复习之全等三角形辅助线解题方法(人教版)

考点5:半角模型1.(2020·南京师范大学盐城实验学校月考)如图,等腰直角三角形ABC中,∠BAC= 90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM= 1,CN=3,求MN的长.2.(2020·盐城市盐都区实验初中月考)在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD=CD,点E,F分别在边AM和AN上.(1)如图1,若∠BED=∠CFD,请说明DE=DF;(2)如图2,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.3.(2020·全国专题练习)如图,已知:正方形ABCD,点E,F分别是BC,DC上的点,连接AE ,AF ,EF ,且45EAF ∠=︒,求证:BE DF EF +=.4.(2020·山东济南·期末)如图,正方形ABCD 中,E 、F 分别在边BC 、CD 上,且∠EAF =45°,连接EF ,这种模型属于“半角模型”中的一类,在解决“半角模型”问题时,旋转是一种常用的分析思路.例如图中∠ADF 与∠ABG 可以看作绕点A 旋转90°的关系.这可以证明结论“EF =BE +DF ”,请补充辅助线的作法,并写出证明过程.(1)延长CB 到点G ,使BG = ,连接AG ; (2)证明:EF =BE +DF5.如图,在正方形ABCD 中,E 、F 是对角线BD 上两点,将ADF 绕点A 顺时针旋转90︒ 后,得到ABM ,连接EM ,AE ,且使得45∠=︒MAE .(1)求证:=ME EF ;(2)求证:222EF BE DF =+.6.如图所示,在ABC ∆中,30A B ∠=∠=︒,60MCN ∠=︒,MCN ∠的两边交AB 边于E ,F 两点,将MCN ∠绕C 点旋转(1)画出BCF ∆绕点C 顺时针旋转120︒后的ACK ∆; (2)在(1)中,若222AE EF BF +=,求证:2BF CF =;(3)在(2)的条件下,若31AC =+,直接写出EF 的长.7.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°.将∠DAE 绕点D 逆时针旋转90°,得到∠DCM.(1)求证:EF=FM(2)当AE=1时,求EF 的长.8.(2019·全国初二专题练习)如图:E 、F 分别是正方形ABCD 的边CD 、DA 上一点,且CE+AF=EF ,请你用旋转的方法求∠EBF 的大小.9.(2020·陕西期末)如图,AB AD BC DC ===,90C D ABE BAD ∠=∠=∠=∠=︒,点E 、F 分别在边BC 、CD 上,45EAF ∠=︒,过点A 作GAB FAD ∠=∠,且点G 在CB 的延长线上.(1)GAB ∆与FAD ∆全等吗?为什么? (2)若2DF =,3BE =,求EF 的长.10.(2020·重庆北碚·初三其他)已知:正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB DC ,(或它们的延长线)于点M N ,. 当MAN ∠绕点A 旋转到BM DN =时(如图1),易证BM DN MN +=.(1)当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段,BM DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当MAN 绕点A 旋转到如图3的位置时,线段,BM DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想.参考答案1.解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中AB ACB ACE BM CE⎧∠⎪∠⎪⎨⎩===,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN =45°.在△MAN和△EAN中AM AEMAN EAN AN AN⎪∠⎪⎩∠⎧⎨===,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN.2.【详解】(1)∵DB⊥AM,DC⊥AN,∴∠DBE=∠DCF=90°.在△BDE和△CDF中,∵,,,BED CFDDBE DCFBD CD∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDE≌△CDF(AAS).∴DE=DF.(2)过点D作∠CDG=∠BDE,交AN于点G.在△BDE和△CDG中,∵ ,,,EBD GCD BD CD BDE CDG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △BDE ≌△CDG (ASA ) ∴DE =DG ,BE =CG . ∵∠BDC =120°,∠EDF =60°, ∴ ∠BDE+∠CDF =60°. ∴ ∠FDG =∠CDG +∠CDF =60°.∴ ∠EDF =∠GDF . 在△EDF 和△GDF 中,,,,DE DG EDF GDF DF DF =⎧⎪∠=∠⎨⎪=⎩∴ △EDF ≌△GDF (SAS ). ∴ EF =FG .∴ EF =FC +CG =FC +BE .3.【详解】如解图,将ABE △绕点A 逆时针旋转90︒至ADG 的位置,使AB 与AD 重合.∠AG AE =,,DAG BAE DG BE ∠=∠=. ∠45EAF ∠=︒.∠904545GAF DAG DAF BAE DAF BAD EAF ∠=∠+∠=∠+∠=∠-∠=︒-︒=︒, ∠EAF GAF ∠=∠. 在AGF 和AEF 中,,AG AEGAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∠()AGF AEF SAS △≌△.∠EF GF =.∠GF DG DF BE DF =+=+, ∠BE DF EF +=.4.解:(1)根据旋转的性质知BG=DF ,从而得到辅助线的做法:延长CB 到点G ,使BG=DF ,连接AG ;(2)∵四边形ABCD 为正方形, ∴AB=AD ,∠ADF=∠ABE=∠ABG=90°, 在∠ADF 和∠ABG 中AD AB ADF ABG DF BG =⎧⎪∠=∠⎨⎪=⎩∴∠ADF ∠∠ABG (SAS ), ∴AF=AG ,∠DAF=∠GAB , ∵∠EAF=45°, ∴∠DAF+∠EAB=45°, ∴∠GAB+∠EAB=45°, ∴∠GAE=∠EAF =45°, 在∠AGE 和∠AFE 中0AG AF GAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴∠ADF ∠∠ABG (SAS ), ∴GE=EF ,∴EF =GE=BE+GB=BE +DF 5.【详解】证明:(1)∵将ADF 绕点A 顺时针旋转90°后,得到ABM ,∴MB DF =,AM AF =,∠∠BAM DAF =, MA AF ∴⊥, 45∠︒MAE =, 45∴∠︒EAF =,∴∠∠MAE FAE =,在△AME 和AFE △中AM AF MAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩, ()AME AFE SAS ∴≅,∴=ME EF ;(2)由(1)得:=ME EF , 在Rt MBE 中,222+MB BE ME =, 又∵MB DF =,222∴+EF BE DF =.(1)作图如图所示(2)证明:连结KE ,作KH ⊥AC 于H ,如图,∵∠A=∠B=30°,∠MCN=60°, ∴∠ACB=120°, ∴∠ACE+∠BCF=60°,∵△BCF 绕点C 顺时针旋转120゜后的△ACK ,∴BF=AK ,∠KCA=∠FCB ,CK=CF ,∠KAC=∠B=30°, ∴∠KCE=∠KCA+∠ACE=∠FCB+∠ACE=60°, ∴∠KCE=∠FCE , 在△CKE 和△CFE 中CK CF KCE FCE CE CE ⎧⎪∠∠⎨⎪⎩===, ∴△CKE ≌△CFE ,∵AE2+EF2=BF2,∴AE2+KE2=AK2,∴△AEK为直角三角形,∴∠AEK=90°,∴∠KEC=∠FEC=45°,∴∠BCF=180°-45°-60°-30°=45°,∴∠KCA=45°,设KH=a,在Rt△KHC中,a;在Rt△KHA中,AK=2a,∴AK:KC=2a,∴BF:,即CF;(3)设KH=a,在Rt△KHC中,HC=a;在Rt△KHA中,a,∴,解得a=1,∴AK=2a=2,在Rt△AEK中,∠KAE=∠KAC+∠CAE=60°,∴∠AKE=30°,∴AE=12AK=1,∴∴ 7.【详解】(1)∠∠DAE 逆时针旋转90°得到∠DCM ∠DE=DM ∠EDM=90° ∠∠EDF + ∠FDM=90° ∠∠EDF=45°∠∠FDM =∠EDM=45° ∠ DF= DF ∠∠DEF∠∠DMF ∠ EF=MF …(2) 设EF=x ∠AE=CM=1 ∠ BF=BM -MF=BM -EF=4-x ∠ EB=2在Rt∠EBF 中,由勾股定理得222EB BF EF += 即2222(4)x x +-=解之,得 52x =8.解:将∠BCE 以B 为旋转中心,逆时针旋转90º,使BC 落在BA 边上,得∠BAM ,则∠MBE=90º,AM=CE,BM=BE,因为CE +AF =EF ,所以MF =EF ,又BF=BF,所以∠FBM∠∠FBE,所以∠MBF=∠EBF, 所以∠EBF=9.【详解】 解:(1)∵90D ABE ∠=∠=︒,点G 在CB的延长线上, ∴∠ABG =∠D =90°, 在△GAB 和△F AD 中,∵GAB FAD ∠=∠,AB =AD ,∠ABG =∠D , ∴△GAB ≌△F AD (ASA ); (2)∵△GAB ≌△F AD , ∴AG =AF ,GB =DF ,∵90BAD ∠=︒,45EAF ∠=︒, ∴∠BAE +∠DAF =45°,∴∠BAE +∠GAB =45°,即∠GAE =45°, ∴∠GAE =∠EAF , 在△GAE 和△F AE 中,∵AG =AF ,∠GAE =∠EAF ,AE =AE , ∴△GAE ≌△F AE (SAS ), ∴GE =EF ,∵GE =GB +BE =DF +BE =2+3=5, ∴EF =5.10.【详解】(1)BM+DN=MN 成立.证明:如图,把△ADN 绕点A 顺时针旋转90°,得到△ABE ,则可证得E 、B 、M 三点共线.∴∠EAM=90°-∠NAM=90°-45°=45°, 又∵∠NAM=45°, ∴在△AEM 与△ANM 中,AE ANEAM NAM AM AM ⎪∠⎪⎩∠⎧⎨=== ∴△AEM ≌△ANM (SAS ), ∴ME=MN ,∵ME=BE+BM=DN+BM , ∴DN+BM=MN ; (2)DN -BM=MN .在线段DN 上截取DQ=BM ,如图,在△ADQ 与△ABM 中,∵AD AB ADQ ABM DQ BM ⎪∠⎪⎩∠⎧⎨===, ∴△ADQ ≌△ABM (SAS ), ∴∠DAQ=∠BAM , ∴∠QAN=∠MAN . 在△AMN 和△AQN 中,AQ AM QAN MAN AN AN ⎪∠⎪⎩∠⎧⎨=== ∴△AMN ≌△AQN (SAS ), ∴MN=QN , ∴DN -BM=MN .。

易错04 三角形全等问题的分类讨论中漏解从而产生易错(解析版)-2021学年八上期末提优训练

易错04 三角形全等问题的分类讨论中漏解从而产生易错(解析版)-2021学年八上期末提优训练

12020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)易错04 三角形全等问题的分类讨论中漏解从而产生易错【典型例题】1.(2020·江西南昌市·八年级期中)如图,已知在△ABC 中,AB =AC ,BC =12厘米,点D 为AB 上一点且BD =8厘米,点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,设运动时间为t ,同时,点Q 在线段CA 上由C 点向A 点运动.(1)用含t 的式子表示PC 的长为 ;(2)若点Q 的运动速度与点P 的运动速度相等,当2t =时,三角形BPD 与三角形CQP 是否全等,请说明理由; (3)若点Q 的运动速度与点P 的运动速度不相等,请求出点Q 的运动速度是多少时,能够使三角形BPD 与三角形CQP 全等?【答案】解:(1) 由题意得出:122BC BP t ==,122PC BC BP t -=-=,故答案为:()122cm t -(2)当2t =时,224BP CQ ==⨯=厘米,8BD =厘米.2又,12PC BC BP BC =-=厘米,1248PC ∴=-=厘米,PC BD ∴=,又AB AC =,B C ∴∠=∠,在BPD △和CQP 中,BD PC B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,()BPD CQP SAS ∴≌;③P Q v v ≠,BP CQ ∴≠,又,BPD CPQ B C ∠=∠≌,6cm,8cm BP PC CQ BD ∴====,∴点P ,点Q 运动的时间6322PB t ===秒, 83Q CQ V t ∴==厘米/秒. 即点Q 的运动速度是83厘米/秒时,能够使三角形BPD 与三角形CQP 全等. 【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,题目比较好,但是有一定的难度.【专题训练】一、填空题1.(2020·黑龙江齐齐哈尔市·八年级期中)在Rt△ABC中,∠C=90°,AC=15cm,BC=8cm,AX⊥AC于A,P、Q两点分别在边AC和射线AX上移动.当PQ=AB,AP=_____时,△ABC和△APQ全等.34 【答案】8cm 或15cm解:①当P 运动到AP =BC 时,如图1所示:在Rt △ABC 和Rt △QP A 中,AB QPBC PA =⎧⎨=⎩,∴Rt △ABC ≌Rt △QP A (HL ),即AP =B =8cm ;②当P 运动到与C 点重合时,如图2所示:在Rt △ABC 和Rt △PQA 中,5AB PQ AC PA=⎧⎨=⎩, ∴Rt △ABC ≌Rt △PQA (HL ),即AP =AC =15cm .综上所述,AP 的长度是8cm 或15cm .故答案为:8cm 或15cm .【点睛】本题考查了三角形全等的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键,注意分类讨论,以免漏解. 2.(2020·四川成都市·天府四中七年级期中)如图,ABC ∆中,90,6,8ACB ACcm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.【答案】如图1所示:PEC∆与QFC∆全等,PC QC,683∴-=-t t,解得:1t=;如图2所示:点P与点Q重合,PEC与QFC∆全等,638∴-=-t t,解得:72t=;故答案为:1或7 2.【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键.3.(2020·宁波市曙光中学九年级月考)如图,已知点(44)A-,,一个以A为顶点的45︒角绕点A旋转,角的两边分别交x轴正半轴,y轴负半轴于E、F,连接EF.当△AEF直角三角形时,点E的坐标是________.67 【答案】(8)0,或(40),①如图所示:90AFE ︒∠=,∴90AFD OFE ︒∠+∠=,∵90OFE OEF ︒∠+∠=,∴AFD OEF ∠=∠,∵90AFE ︒∠=,45EAF ︒∠=,∴45AEF EAF ︒∠==∠,∴AF EF =,在△ADF 和FOE 中,ADE FOEAFD OEF AF EF∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△FDE ,8∴4FO AD ==,8OE DF OD FO ==+=,∴(40)E ,. ②当90AEF ︒∠=时,同①的方法有:8OF =,4OE =,∴(40)E ,, 综上所述,满足条件的点E 坐标为(8,0)或(4,0)故答案为:(8,0)或(4,0)【点睛】本题考查三角形全等性质和判定、等腰直角三角形的性质,注意直角三角形按角分类讨论分三种情况,不要漏解. 4.(2020·常州市北郊初级中学八年级期中)如图,在△ABC 中,AB =AC =12,BC =8,D 为 AB 的中点,点 P 在线段 BC 上以每秒2 个单位的速度由 B 点向 C 点运动,同时,点 Q 在线段 CA 上以每秒 x 个单位的速度由C 点向 A 点运动.当△BPD 与以 C 、Q 、P 为顶点的三角形全等时,x 的值为_____.【答案】2 或 3解:设经过 t 秒后,使△BPD 与△CQP 全等.∵AB =AC =12,点 D 为 AB 的中点.∴BD =6.∵∠ABC =∠ACB .∴要使△BPD 与△CQP 全等,必须 BD =CP 或 BP =CP .9即 6=8﹣2t 或 2t =8﹣2t .1t =1,2t =2.当t =1 时,BP =CQ =2,2÷1=2.当t =2 时,BD =CQ =6,6÷2=3.即点 Q 的运动速度是 2 或 3,故答案为:2 或 3.【点评】本题考查了全等三角形的判定的应用,关键是能根据题意得出方程.5.(2020·铜陵市第二中学)如图,5AB cm =,4AC BD cm ==,60CAB DBA ∠=∠=︒.点E 沿线段AB 由点A 向点B 运动,点F 沿线段BD 由点B 向点D 运动,E 、F 同两点时出发,它们的运动时间记为t 秒.已知点E 的运动速度是1cm s ,如果顶点是A 、C 、E 的三角形与顶点是B 、E 、F 的三角形全等,那么点F 的运动速度为______cm s .【答案】1或85解:根据题意,∵60CAB DBA ∠=∠=︒,当AE =BF ,AC =BE 时,△ACE ≌△BEF ,∵AE =t ,5BE t =-,AC =4,∴54t -=,∴1t =,∴BF=AE=1,∴点F的运动速度为1cm s;当AE=BE,AC=BF时,△ACE≌△BFE,∴1155222 AE BE AB===⨯=,∴52 t=;∴点F的速度为:584/25cm s ÷=;综合上述,点F的运动速度为1或85cm s.【点睛】本题考查了全等三角形的判定和性质,点的运动问题,解题的关键是熟练掌握全等三角形的判定和性质,注意运用分类讨论的思想,数形结合的思想进行解题.6.(2020·全国八年级单元测试)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E 为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为_____厘米/秒时,能够使△BPE与以C、P、Q三点所构成的三角形全等.【答案】3或9 2解:设点P运动的时间为t秒,则BP=3t,CP=8﹣3t,∵∵B=∵C,10∵∵当BE=CP=6,BP=CQ时,∵BPE与∵CQP全等,此时,6=8﹣3t,解得t=2 3,∵BP=CQ=2,此时,点Q的运动速度为2÷23=3厘米/秒;∵当BE=CQ=6,BP=CP时,∵BPE与∵CQP全等,此时,3t=8﹣3t,解得t=4 3,∵点Q的运动速度为6÷43=92厘米/秒;故答案为3或9 2.【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生的理解能力和计算能力.7.(2020·河南商丘市·八年级期中)在平面直角坐标系中,点A(4,0)、B(3,2),点P在坐标平面内,以A、O、P为顶点的三角形与∵AOB全等(点P与B不重合),写出符合条件的点P的坐标________________.【答案】(3,-2)或(1,2)或(1,-2)如图:11符合条件的点P有3个,(3,-2)或(1,2)或(1,-2)故答案为:(3,-2)或(1,2)或(1,-2).【点睛】本题考查坐标与图形性质、全等三角形的判定等知识,是重要考点,难度较易,掌握相关知识是解题关键.8.(2020·广西玉林市·八年级期中)已知点A,B的坐标分别为(2,2),(2,4),O是原点,以A,B,P为顶点的三角形与△ABO全等,写出所有符合条件的点P的坐标:_______________.【答案】(4,0)(0,6)(4,6)解:如图,符合条件的点P的坐标有三种情况,分别是:(4,0)、(0,6)、(4,6),故答案为:(4,0)、(0,6)、(4,6).1213【点睛】本题考查三角形全等的判定与直角坐标系的综合运用,根据三角形全等的判定画出全等三角形后写出顶点坐标是解题关键. 9.(2020·江西省宜春实验中学八年级期中)如图,在△ABC 中,点A 的坐标为(0,1),点B 的坐标为(0,4),点C 的坐标为(4,3),点D 在平面直角坐标系中且不与C 点重合,若ABD △与△ABC 全等,则点D 的坐标是_________.【答案】(4,2)或(4,2)-或(4,3)-解:当D 点与C 点关于y 轴对称时,△ABD 与△ABC 全等,此时D 点坐标为∵-4∵3∵;当点D 与点C 关于AB 的垂直平分线对称时,△ABD 与△ABC 全等,此时D 点坐标为∵4∵2∵;点D 点与∵4∵2∵关于y 轴对称时,△ABD 与△ABC 全等,此时D 点坐标为∵-4∵2∵;综上所述,D 点坐标为∵-4∵3∵∵∵4∵2∵∵∵-4∵2∵.故答案为:∵-4∵3∵∵∵4∵2∵∵∵-4∵2∵.【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法.也考查了坐标与图形性质.10.(2020·广州市第五中学八年级期中)如图,CA⊥AB,垂足为点A,AB=8cm,AC=4cm,射线BM⊥AB,垂足为点B,一动点E从A点出发,以2cm/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动_________秒时,点B、D、E组成的三角形与点A、B、C组成的三角形全等.【答案】0或2或6或8△≌BDE,解:①当E在线段AB上,AB=BE时,ACB这时E在A点未动,因此时间为0秒;△≌BED,②当点E在线段AB上,AC=BE时,ACB∵AC=4cm,∴BE=4cm,∴AE=AB-BE=8-4=4cm,∴点E的运动时间为4÷2=2(秒);△≌BED,③当E在BN上,AC=BE时,ACB∵AC=4cm,∴BE=4cm,∴AE=AB+BE=8+4=12cm,∴点E的运动时间为12÷2=6(秒);14△≌BDE,④当E在BN上,AB=BE时,ACB∵AB=8cm,∴BE=8cm,∴AE=AB+BE=8+8=16cm,∴点E的运动时间为16÷2=8(秒),综上所述,当点E运动0或2或6或8秒时,点B、D、E组成的三角形与点A、B、C组成的三角形全等.故答案为:0或2或6或8.【点睛】本题考查了直角三角形全等的判定,解题的关键是熟练的掌握直角三角形全等的判定定理.二、解答题11.(2020·兴化市乐吾实验学校八年级月考)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).Array(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】1516解:(1)当1t =时,1AP BQ ==,3BP AC ==,又90A B ∠=∠=︒,在ACP ∆和BPQ ∆中,AP BQA B AC BP=⎧⎪∠=∠⎨⎪=⎩()ACP BPQ SAS ∴∆≅∆.ACP BPQ ∴∠=∠,90APC BPQ APC ACP ∴∠+∠=∠+∠=︒.90CPQ ∴∠=︒,即线段PC 与线段PQ 垂直.(2)①若ACP BPC ∆≅∆,则AC BP =,AP BQ =,则34tt xt =-⎧⎨=⎩,解得:11t x =⎧⎨=⎩;②若ACP BQP ∆≅∆,则AC BQ =,AP BP =,则34xtt t=⎧⎨=-⎩,解得:232 tx=⎧⎪⎨=⎪⎩;综上所述,存在11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩使得ACP∆与BPQ∆全等.【点睛】本题主要考查了全等三角形的判定与性质,两边及其夹角分别对应相等的两个三角形全等.在解题时注意分类讨论思想的运用.12.(2020·长春市第九十七中学校八年级期中)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=4cm,点P从点A出发,沿A→B→A方向以3cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发.当点P到达点A时,P、Q两点同时停止运动.设点P的运动时间为t(s).(1)求证:AB//DE.(2)写出线段AP的长(用含t的式子表示).(3)连结PQ,当线段PQ经过点C时,求t的值.【答案】(1)证明:在ABC 和EDC中,1718 AC ECACB ECD BC DC=⎧⎪∠=∠⎨⎪=⎩, ∵ABC ∵EDC (SAS ),∵∵A =∵E ,AB =DE =4∵AB //DE .(2)解:当0≤t ≤43时,AP =3tcm ; 当43<t ≤83时,BP =(3t ﹣4)cm ,则AP =4﹣(3t ﹣4)=(8﹣3t )cm ;综上所述,线段AP 的长为3tcm 或(8﹣3t )cm ;(3)解:由(1)得:∵A =∵E ,ED =AB =4cm ,在ACP 和ECQ 中,A EAC CE ACP ECO∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵ACP ∵ECQ (ASA ),∵AP =EQ ,当0≤t ≤43时,3t =4﹣t ,解得:t =1; 当43<t ≤83时,8﹣3t =4﹣t ,解得:t =2;19综上所述,当线段PQ 经过点C 时,t 的值为1s 或2s .【点睛】本题考查了全等三角形的判定与性质、平行线的判定以及一元一次方程的应用等知识;证明三角形全等是解题的关键,属于中考常考题型.13.(2020·湖南长沙市·八年级月考)如图,已知△ABC 中,20cm AB AC ==,16cm BC =,点D 为AB 的中点.(1)如果点P 在线段BC 上以6cm /s 的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP 全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?【答案】(1)①因为t =1(秒),所以BP =CQ =6(厘米)∵AB =20,D 为AB 中点,20∴BD =10(厘米)又∵PC =BC −BP =16−6=10(厘米)∴PC =BD ,∵AB =AC ,∴∠B =∠C ,在△BPD 与△CQP 中,BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②因为V P ≠V Q ,所以BP ≠CQ ,又因为∠B =∠C ,要使△BPD 与△CQP 全等,只能BP =CP =8,即△BPD ≌△CPQ , 故CQ =BD =10.所以点P 、Q 的运动时间t =84663BP ==(秒), 此时V Q =1043CQ t ==7.5(厘米/秒); (2)因为V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程, 设经过x 秒后P 与Q 第一次相遇,依题意得152x=6x+2×20,解得x=803(秒)此时P运动了803×6=160(厘米)又因为△ABC的周长为56厘米,160=56×2+48,所以点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.【点睛】此题考查了三角形全等的判定和性质,等腰三角形的性质,以及数形结合思想的运用,解题的根据是熟练掌握三角形全等的判定和性质.21。

第11章三角形-2020-2021学年上学期八年级数学期末复习冲刺(人教版)(解析版)

第11章三角形-2020-2021学年上学期八年级数学期末复习冲刺(人教版)(解析版)

第11章三角形学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知正多边形的一个内角是135°,则这个正多边形的边数是()A.3 B.4 C.6 D.8【答案】D【解析】【分析】根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数=3608 45︒=︒,∴这个正多边形的边数是8.故选:D.【点睛】本题考查了正多边形的内角和与外角和的知识,知道正多边形的外角之和为360°是解题关键.2.如图,要使四边形木架(用四根木条钉成)不变形,至少要再钉上的木条的根数为()A.1根B.2根C.3根D.4根【答案】A【解析】【分析】根据三角形具有稳定性可得:沿对角线钉上1根木条即可.【详解】解:根据三角形的稳定性可得,至少要再钉上1根木条.故选A .【点睛】此题主要考查了三角形具有稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,而四边形不具有稳定性.3.如图,△ABC 中,AE ⊥BC 于点E,AD 为BC 边上的中线,DF 为△ABD 中AB 边上的中线,已知AB=5cm,AC=3cm,△ABC 的面积为12cm 2.求△ABD 与△ACD 的周长的差( )A .3B .4C .2D .1【答案】C【解析】【分析】根据中线的性质得到BD=CD ,根据周长的计算公式计算即可;【详解】∵AD 为BC 边上的中线,∴BD=CD ,∴△ABD 与△ACD 的周长的差=(AB+AD+BD)−(AC+AD+CD)=AB −AC=2cm.故选择C.【点睛】本题考查三角形中线的性质,解题的关键是掌握三角形中线的性质.4.如图,在ABC ∆中,点,D E 分别为,BC AD 的中点,2EF FC =,若ABC ∆的面积为a ,则BEF ∆的面积为( )A .6aB .4aC .3aD .38a 【答案】C【解析】【分析】根据高相同,底成比例的两个三角形的面积也成比例即可得出答案.【详解】∵ABC ∆的面积为a ,D 为BC 的中点 ∴11S S S 22ABD ACD ABC a === ∵E 为AD 的中点 ∴11S S S 24ABE BED ABD a ===同理:11SSS 24ACE CED ACD a === ∴1S S S 2CBE BED CED a =+= ∵EF=2FC∴S2S BEF BFC = 即21S 33BEF BEC S a == 故答案选择C.【点睛】本题考查的是三角形的基本概念.5.下列命题中:①长为5cm 的线段AB 沿某一方向平移10cm 后,平移后线段AB 的长为10cm ;②三角形的高在三角形内部;③六边形的内角和是外角和的两倍;④平行于同一直线的两直线平行;⑤两个角的两边分别平行,则这两个角相等,真命题个数有()A.1B.2C.3D.4【答案】A【解析】【分析】利用平移的性质、三角形高的定义、多边形的外角与内角、平行线的性质分别判断出正确答案的个数,即可得出答案.【详解】①:平移不改变图形的形状和大小,故选项①错误;②:直角三角形的高在三角形的边上,钝角三角形的高在三角形的外面,故选项②错误;③:六边形的外角和360°,六边形的内角和720°,故选项③正确;④:平行于同一条直线的两条直线平行,故选项④正确;⑤:两个角的两边分别平行,则这两个角相等或互补,故选项⑤错误.因此正确的个数有两个,答案选择A.【点睛】本题考查了命题与定理的知识,解题的关键是了解平移的性质、三角形的高的定义、多边形的外角与内角、平行线的性质等知识,难度不大.6.如图,在中,,是的角平分线交于点,于点,下列四个结论中正确的有()①②③④A.个B.个C.个D.个【答案】C【解析】【分析】根据角平分线性质,即可得到DE=DC;根据全等三角形的判定与性质,即可得到BE=BC,△BDE≌△BDC.【详解】解:∵∠ACB=90°,BD是∠ABC的角平分线,DE⊥AB,∴DE=DC,故①正确;又∵∠C=∠BEC=90°,BD=BD,∴Rt△BCD≌Rt△BED(HL),故④正确;∴BE=BC,故②正确;∵Rt△ADE中,AD>DE=CD,∴AD=DC不成立,故③错误;故选C.【点睛】本题主要考查了全等三角形的判定与性质,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.7.等腰直角三角形的腰长为2,该三角形的重心到斜边的距离为()A.223B.23C.23D.13【答案】D【解析】【分析】作等腰直角三角形底边上的高并根据勾股定理求解,再根据三角形重心三等分中线的性质即可求出.【详解】如图,根据三线合一的性质,底边上的中线CD=2sin45°=1,∵三角形的重心到三角形顶点的距离等于中点距离的2倍,∴重心到AB 的距离=1×13=13. 故选D.【点睛】此题考查等腰直角三角形,三角形的重心,解题关键在于画出图形8.如图,△CEF 中,∠E=70°,∠F=50°,且AB ∥CF ,AD ∥CE ,连接BC ,CD ,则∠A 的度数是( )A .40°B .45°C .50°D .60°【答案】D【解析】【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.【详解】连接AC 并延长交EF 于点M .∵AB CF ,∴31∠=∠,∵AD CE ,∴24∠∠=,∴3412BAD FCE ∠=∠+∠=∠+∠=∠,∵180180705060FCE E F ∠=︒-∠-∠=︒-︒-︒=︒,∴60BAD FCE ∠=∠=︒,故选D .【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.9.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( )A .8B .9.6C .10D .12【答案】B【解析】【分析】如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可.【详解】如图,作CE AB ⊥与E.AD 是ABC ∆的中线,BC =12,∴BD=6,10,8,6,AB AD BD ===∴ 222AB AD BD =+,90,ADB ∴∠=,AD BC ∴⊥ 11,22ABC S BC AD AB CE ∆== 1289.6.10CE ⨯∴== 故选B.【点睛】本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.10.一个四边形,截一刀后得到的新多边形的内角和将A .增加 180°B .减少 180°C .不变D .不变或增加 180°或减少 180°【答案】D【解析】【分析】根据一个四边形截一刀后得到的多边形的边数即可得出结果.【详解】∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和为180°或360°或540°.故选D【点睛】本题考查了多边形.能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键. 11.下列说法中不正确的是( )A .内角和是1080°的多边形是八边形B .六边形的对角线一共有8条C .三角形任一边的中线把原三角形分成两个面积相等的三角形D .一个多边形的边数每增加一条,这个多边形的内角和就增加180°【答案】B【解析】【分析】根据各选项逐个判断说法是否正确即可.【详解】A 根据正多边形的内角和计算公式可得:(82)1801080︒︒-⨯=,因此A 说法正确;B 选项说法不正确,六边形的对角线有18条;C 正确,因为每个边上的高是相等的,只要边上的中线则分成的两个三角形的面积相等;D 正确,根据多边形的内角和的计算公式可得每增加一条边,正多边形的内角增加180°.故选B.【点睛】本题主要考查正多边形的性质,这些选项都是基本性质,必须掌握.12.有两条线段长度分别为:2cm ,5cm ,再添加一条线段能构成一个三角形的是( )A .1cmB .2cmC .3cmD .4cm 【答案】D【解析】【分析】先根据三角形的三边关系确定第三边的范围,再判断各选项即可.【详解】解:∵有两条线段长度分别为:2cm ,5cm ,∴设第三条边长为acm ,故5﹣2<a <5+2,则3<a <7,故再添加一条线段长为4cm 时,能构成一个三角形.故选D .【点睛】本题考查了三角形的三边关系,三角形的三边满足:任意两边之和大于第三边,任意两边之差小于第三边.二、填空题13.如图,在ABC 中,AD 是BC 边上的高,且ACB BAD ∠=∠,AE 平分CAD ∠,交BC 于点E ,过点E 作EF AC ,分别交AB 、AD 于点F 、G .则下列结论:①90BAC ∠=︒;②AEF BEF ∠=∠;③BAE BEA ∠=∠;④2B AEF ∠=∠,其中正确的有_____.【答案】①③④【解析】【分析】利用高线和同角的余角相等,三角形内角和定理即可证明①,再利用等量代换即可得到③④均是正确的,②缺少条件无法证明.【详解】由已知可知∠ADC=∠ADB=90°, ∵∠ACB =∠BAD∴90°-∠ACB=90°-∠BAD ,即∠CAD=∠B, ∵三角形ABC 的内角和=∠ACB+∠B+∠BAD+∠CAD=180°,∴∠CAB=90°,①正确,∵AE 平分∠CAD ,EF ∥AC ,∴∠CAE=∠EAD=∠AEF ,∠C=∠FEB=∠BAD ,②错误,∵∠BAE=∠BAD+∠DAE ,∠BEA=∠BEF+∠AEF,∴∠BAE =∠BEA ,③正确,∵∠B=∠DAC=2∠CAE=2∠AEF ,④正确,故答案为:①③④.【点睛】本题考查了三角形的综合性质,高线的性质,平行线的性质,综合性强,难度较大,利用角平分线和平行线的性质得到相等的角,再利用等量代换推导角之间的关系是解题的关键.14.如图,E ∠是六边形ABCDE 的一个内角.若120E ∠=︒,则A B C D F ∠+∠+∠+∠+∠的度数为________.【答案】600︒【解析】【分析】根据多边形的内角和=(n-2)x180求出六边形的内角和,把∠E =120°代入,即可求出答案.【详解】解:∵∠A+∠B+∠C+∠D+∠E+∠F=(6-2)×180=720° ∵∠E=120°∴∠A+∠B+∠C+∠D+∠F=720°-120°=600° 故答案为600°【点睛】本题考查了多边形的内角和外角,能知道多边形的内角和公式是解此题的关键,边数为7的多边形的内角和=(n-2)×180°. 15.如图,直线12l l ,1110∠=︒,2130∠=︒,那么3∠的度数为___________度.【答案】60【解析】【分析】如图利用平行线的性质求出∠4,再根据三角形的外角的性质解决问题即可.【详解】解:∵l 1∥l 2,∴∠1+∠4=180°,∵∠1=110°,∴∠4=70°,∵∠2=∠3+∠4,∠2=130°,∴∠3=130°−70°=60°,故答案为60.【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.,点E是AC中点,若△CDE面积为1,则△ABC的16.如图,△ABC中,点D在BC上,且BD2DC面积为____.【答案】6【解析】【分析】根据等底同高的两个三角形的面积公式得到△ADC的面积,然后根据△ABC与△ADC的底边的数量关系来求△ABC.【详解】∵△CDE面积为1,点E是AC中点,∴S△ADC=2S△CDE=2.又∵BD=2DC,∴S△ABC=3S△ADC=6.故答案是:6.【点睛】考查了三角形的面积,熟记等底同高、同底等高三角形面积间的数量关系即可解答.三、解答题17.(1)如图,△ABC, ∠ABC、∠ACB 的三等分线交于点E、D,若∠1=130°,∠2=110°,求∠A 的度数.(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数.【答案】(1)∠A=60°,(2)∠A=60°【解析】【分析】(1)由三角形内角和及三等角平分线的定义可得到方程组,则可求得∠ABC+∠ACB,再利用三角形内角和可求得∠A.(2)由三角形外角可得∠DBC=20°由三等角平分线的定义可得∠ABC=60°,三角形内角和可得∠ECB=30°,角平分线的定义可得∠ACB=60°,由三角形内角和可得∠A=60°.【详解】解:(1)∵∠ABC、∠ACB 的三等分线交于点E、D设∴∠=∠=∠=∠=∠=∠=;ABE EBD DBC x ACE ECD DCB y,, ∠ABC=3x,∠ACB=3y∴∠=∠=22EBC x ECB y∠∠+∠=∠+∠+∠=1+180,2180EBC DCB ECB DBC130+2x+y=180110+2y+x=180⎧∴⎨⎩①②①+②得:240°+3x+3y=360° 即3x+3y=120°∴∠ABC+∠ACB=120°∴∠A=180°-(∠ABC+∠ACB)=180°-120°=60° (2)∵∠ABC 的三等分线分别与∠ACB 的平分线交于点 D,E;ABD DBE EBC x ACE DCB y ∴∠=∠=∠=∠=∠=设32ABC x ACB y ∴∠=∠=,710879=1209÷ 【点睛】掌握三角形内角和和外角和以及角的三等分线及角平分线是解题的关键.18.如图是某厂生产的一块模板,已知该模板的边//AB CF ,//CD AE ,按规定AB ,CD 的延长线相交成70︒角,因交点不在模板上,不便测量,这时师傅规定徒弟只需测一个角,便知道AB ,CD 的延长线的夹角是否合乎规定,你知道需测哪一个角吗?说明理由.【答案】测A ∠或C ∠的度数,只需110A ∠=︒或110C ∠=︒,见解析.【解析】【分析】连接AF ,由AB ∥CF 可证明360BAE E EFC ∠+∠+∠=︒,设AB ,CD 延长线交于点M ,若∠M =70°,则在五边形AEFCM 中,∠C =540°-360°-70°=110°,即当∠C =110°时,可知AB ,CD 的延长线的夹角合乎规定,再按此思路整理写出即可.【详解】解:测A ∠或C ∠的度数,只需110A ∠=︒或110C ∠=︒,即知模板中AB ,CD 的延长线的夹角是否符合规定,理由如下:连接AF .因为//AB CF ,所以180BAF AFC ∠+∠=︒.又因为180EAF E AFE ∠+∠+∠=︒,所以360BAE E EFC ∠+∠+∠=︒.若110C ∠=︒,则AB ,CD 延长线的夹角∠M 54036011070=︒-︒-︒=.即符合规定;同理,若连接CE ,当110A ∠=︒时,也可说明AB ,CD 延长线的夹角为70°,符合规定.【点睛】此题考查了多边形的内角和和平行线的性质的实际应用,解题的关键是通过连接AF 架起已知和所求的桥梁,进而解决问题.19.(1)如图,四边形ABCD 中,30A ∠=︒,60B ∠=︒,20C ∠=︒,则ADC ∠=________. (2)对于任意的凹四边形ABCD ,猜想A ∠,B ,C ∠与ADC ∠的大小关系,并证明.(3)一个零件的形状如图所示,按规定,A ∠应等于40︒,B 与C ∠应分别是70︒和25︒,工人检验140ADC ∠=︒,就断定这个零件不合格,请你运用上述结论,说明零件不合格的理由.【答案】(1)110︒;(2)ADC A B C ∠=∠+∠+∠,见解析;(3)见解析.【解析】【分析】(1)延长AD 交BC 于E ,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ADC ; (2)连接BD 并延长,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ADC.(3)延长AD 交BC 于E ,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ADC ,然后即可判断.【详解】(1)延长AD 交BC 于E ,∵∠A=30°,∠B=60°,∴∠AEC=∠A+∠B=30°+60°=90°,∵∠C=20°,∴∠ADC=∠C+∠AEC=20°+90°=110°. (2)ADC A B C ∠=∠+∠+∠.证明:连接BD 并延长,如图所示.在ABD △中,13∠=∠+∠A ,在BCD 中,24C ∠=∠+∠,1234A C ∴∠+∠=∠+∠+∠+∠,即ADC ABC A C ∠=∠+∠+∠.(3)延长AD 交BC 于E ,∵∠A=40°,∠B=70°,∴∠AEC=∠A+∠B=40°+70°=110°,∵∠C=25°,∴∠ADC=∠C+∠AEC=25°+110°=135°. 又∵∠ADC=140°,∴这个零件不合格.【点睛】此题考查多边形内角与外角了,三角形的外角性质,解题关键在于作辅助线.20.如图,在△ABC中,AD是BC边上的高,将△ABD沿AD折叠得到△AED,点E落在CD上,∠B=50°,∠C=30°.(1)填空:∠BAD= 度;(2)求∠CAE的度数.【答案】(1)40;(2)20°【解析】【分析】(1)直接根据三角形内角和定理求出∠BAD的度数;(2)先根据图形折叠的性质求出∠AED的度数,再由三角形外角的性质即可得出结论.【详解】(1)∵AD是BC边上的高,∠B=50°,∴∠BAD=180°-90°-50°=40°.故答案为40;(2)∵△AED是由△ABD折叠得到,∴∠AED=∠B=50°,∵∠AED是△ACE的外角,∴∠AED=∠CAE+∠C,∴∠CAE=∠AED-∠C=50°-30°=20°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.21.如图,点D与点E分别是△ABC的边长BC、AC的中点,△ABC的面积是20cm2.(1)求△ABD与△BEC的面积;(2)△AOE与△BOD的面积相等吗?为什么?【答案】(1)10,10;(2)相等,理由,见解析【解析】【分析】(1)要计算△ABE与△BCE的面积,可设点A到边BC的高为h,则S△ABD=12BD·h,S△ACD=12CD·h;再根据中点的定义得BD=CD,然后利用等量代换即可得到S△ABD=S△ACD,同理S△ABE=S△BCE,再结合△ABC的面积即可解决;(2)结合上面的推理可得S△ABE=S△ABD,再根据图形可知S△ABE=S△ABO+S△AOE,S△ABD=S△ABO+S△BOD,【详解】(1)可设点A到边BC的高为h,则S△ABD=12BD·h,S△ACD=12CD·h,∵点D是BC边的中点,∴BD=CD.∴S△ABD=S△ACD,同理S△ABE=S△BCE,∴S△ABD=S△BCE=12S△ABC=12×20=10(cm2).(2)△AOE与△BOD的面积相等,理由如下.根据(1)可得:S△ABE=S△ABD,∵S△ABE=S△ABO+S△AOE,S△ABD=S△ABO+S△BOD,∴S△AOE=S△BOD.【点睛】此题考查中点的定义和三角形面积的计算方法,掌握定义及公式是解题的关键;22.如图为一个正n 边形的一部分,AB 和DC 延长后相交于点P ,若∠BPC=120°,求n .【答案】n=12.【解析】试题分析:因为是正多边形,所以外角相等,根据∠BPC =120°,利用三角形内角和可求出正多边形的外角,再利用多边形外角等于360°,即可求出正多边形的边数. 试题解析:∵PB =PC ,∠BPC =120°, ∴∠PBC =∠PCB =12(180°﹣∠BPC )=30°, 即正n 边形的一个外角为30°, ∴n =36030︒︒=12. 23.已知,在平面直角坐标系中,AB ⊥x 轴于点B ,A(a ,b)满足64a b -+-=0,平移线段AB 使点A 与原点重合,点B 的对应点为点C .OA ∥CB .(1)填空:a =_______,b =_______,点C 的坐标为_______;(2)如图1,点P(x ,y)在线段BC 上,求x ,y 满足的关系式;(3)如图2,点E 是OB 一动点,以OB 为边作∠BOG =∠AOB 交BC 于点G ,连CE 交OG 于点F ,当点E 在OB 上运动时,OFC FCG OEC∠+∠∠的值是否发生变化?若变化,请说明理由;若不变,请求出其值.【答案】(1)()6,4,0,4-;(2)2312x y -=;(3)不变,2OFC FCG OEC∠+∠=∠. 【解析】【分析】(14b -=0,可得,a b 的值,再根据AB=OC ,且C 在y 轴负半轴上,可得C 的坐标; (2)过点P 分别作P M ⊥x 轴于点M ,P N ⊥y 轴于点N ,连接OP ,根据BOC POB POC SS S =+,可得,x y 满足的关系式;(3)由//BC OA ,证明,AOB OBC ∠=∠结合已知条件可得,BOG CBO ∠=∠ 再利用三角形的外角的性质证明∠OGC=2∠OBC ,∠OFC=∠FCG+∠OGC ,得到∠OFC+∠FCG =2∠OEC ,从而可得结论.【详解】解:(1)∵ 40b -=,∴60,40a b -=⎧⎨-=⎩∴6,4a b =⎧⎨=⎩ 4,6,AB OB ∴==由平移得:4,OC =且C 在y 轴负半轴上,()0,4,C ∴-故答案为:()6,4,0,4-;(2)如图,过点P 分别作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,连接OP .∵AB ⊥x 轴于点B ,且点A ,P ,C 三点的坐标分别为:()()()6,4,,,0,4,x y -∴OB=6,OC=4,,,PM y PN x =-= ∴()1111462222BOC POC POB S S S OC PN OB PM x y =+=•+•=⨯+⨯⨯- 23x y =-,而116412,22BOC S OB OC =•=⨯⨯=2312,x y ∴-=∴,x y 满足的关系式为:2312,x y -=(3) OFC FCG OEC∠+∠∠的值不变,值为2. 理由如下:∵线段OC 是由线段AB 平移得到,∴//,OA CB ,∴∠AOB=∠OBC ,又∵∠BOG=∠AOB ,∴∠BOG=∠OBC ,根据三角形外角性质,可得∠OGC=2∠OBC ,∠OFC=∠FCG+∠OGC ,,OEC FCG OBC ∠=∠+∠∴∠OFC+∠FCG=2∠FCG+2∠OBC =2(∠FCG+∠OBC ) =2∠OEC ,∴22OFC FCG OEC OEC OEC∠+∠∠==∠∠; 所以:OFC FCG OEC ∠+∠∠的值不变,值为2.【点睛】本题属于几何变换综合题,主要考查了非负数的性质,坐标与图形,平行线的性质以及平移的性质,三角形的外角的性质,解决问题的关键是作辅助线,运用面积法,角的和差关系以及平行线的性质进行求解. 24.已知a ,b ,c 分别为△ABC 的三条边,且满足23a b c +=-,26a b c -=-,a b >. (1)求c 的取值范围.(2)若ABC ∆的周长为12,求c 的值.【答案】(1)36c <<;(2)5c =.【解析】【分析】(1)根据三角形两边之和大于第三边,两边之差小于第三边即可求解;(2)根据23a b c +=-得三角形的周长为33-c 等于12,即可求出c 的值.【详解】解:(1)∵a ,b ,c 分别为ABC ∆的三条边,且23a b c +=-,26a b c -=-,∴23,26,c c c c ->⎧⎨-<⎩ 解得36c <<.故答案为:36c <<.(2)∵ABC ∆的周长为12,23a b c +=-,∴3312a b c c ++=-=,解得5c =.故答案为:5c =.【点睛】此题考查三角形的三边关系,利用三角形任意两边之和大于第三边,任意两边之差小于第三边,建立不等式解决问题.。

[26946616]2020-2021学年八年级数学人教版上册 第11章 与三角形有关的角度计算

[26946616]2020-2021学年八年级数学人教版上册 第11章 与三角形有关的角度计算
【模型三:两内角角平分线模型】
条件:BD 是∠ABC 的角平分线,CD 是∠ACB 的角平分线。
1
结论:∠D=90°+ ∠A。
2 证明:证法一:∵BD 是∠ABC 的角平分线,∴∠1=∠2= 1 ∠ABC,
2
∵CD 是∠ACB 的角平分线,∴∠3=∠4= 1 ∠ACB, 2
1
在△BCD 中,∠D=180°-∠1-∠4=180°- (∠ABC+∠ACB)
4、如图,已知∠ABC 的平分线 BD 与△ACB 的外角平分线 CD 相交于点 D,连接 AD,若 ∠BDC=40°,则∠DAC 的度数为_______.
5、如图,在△ABC 中,∠ABC 与∠ACB 的角平分线交于 I,根据下列条件填空 (1)若∠ABC=50°,∠ACB=80°,则∠BIC=______。 (2)若∠ABC+∠ACB=120°,则∠BIC=_______。 (3)若∠A=56°,则∠BIC=______; (4)若∠BIC=120°,则∠A=______; (5)若∠A=α,请将∠BIC 用α的代数式表示。
M
D
N
7、如图,在△ABC 中,∠ABC 的角平分线与∠ACD 的角平分线交于同一点 P,根据下列条件 填空: (1) 若∠A=50°,则∠P=______;
(2)若∠ABC+∠ACB=135°,则∠P=______;
(3)若∠BPC=34°,则∠A=______;
(4)若∠A=α,请将∠P 用α的代数式表示。
9、如图,∠DBC 和∠ECB 的角平分线相交于点 O,∠A=α,
(1)若∠CBO= 1 ∠DBC,∠BCO= 1 ∠ECB,请将∠BOC 用α的代数式表示.
3
3

人教版2020-2021学年八年级数学上册12.2 三角形全等的判定 “边边边”定理 课件

人教版2020-2021学年八年级数学上册12.2  三角形全等的判定 “边边边”定理 课件

所画的弧交于点D′;
(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.
依据是什 么?
课堂检测
基础题
1. 如图,D、F是线段BC上的两点,AB=CE,AF=DE, 要
使△ABF≌△ECD ,还需要条件 BF=CD___ (填一个
条件即可).
A
E
B
D
F
C
2.如图,AB=CD,AD=BC, 则下列结论:
AB=AC, BD=CD, AD=AD, AB=AC, BH=CH, AH=AH,
BH=CH, BD=CD, DH=DH,
△ABD≌△ACD(SSS)
A
△ABH≌△ACH(SSS)
D
B
HC
△BDH≌△CDH(SSS)
亲亲爱爱的的读读者者:: 1、学 盛 生而 年 活不思 重 相则 来 信罔 , 眼, 一 泪思 日 ,而 难 眼不 再 泪学 晨 并则 。 不殆及代。时表宜软20自弱.7.勉。12,270.岁.172.月1.22不072.待1020人.92:。025。00929:0:0.575:.001392J:7u0.l51-2:00.320J09u2:l0-250090:095:059:05:03Jul-2009:05 春亲去爱春的又读回者,: 2、一 千 世年 里 上之 没计 行 有在 , 绝于 始 望春 于 的, 足 处一 下 境日 。 ,之 只20计 有20在对年于处7月晨境1。绝2日二望星〇的期二人日〇。年二七〇月二十〇二年日七月20十20二年日7月201220日年星7月期1日2日星期日 春去春又回,新新桃桃换换旧旧符符。。在在那那桃桃花花盛盛开开的的地地方方,, 3、莫 少 成等 年 功闲 易 都, 学 永白 老 远了 难 不少 成 会年 , 言头 一 弃, 寸空 光 放悲 阴 弃切不者。可永轻远09。不:05。会7成.12功.2。02009:057.12.202009:0509:05:037.12.202009:057.12.2020 春去春又回,新桃换旧符。在那桃花盛开的地方, 40、9:0桃57花.1潭2.水20深20千09尺:0,57不.1及2.汪20伦20送09我:0情50。9:70.51:20.3270.21027.2.102.020092:00597:.01520.290:025009:05:0309:05:03 在在这这醉醉人人芬芬芳芳的的季季节节,,愿愿你你生生活活像像春春天天一一样样阳阳光光,,心心情情 54、少 敏 不壮 而 要不 好 为努 学 它力 , 的, 不 结老 耻 束大 下 而徒 问 哭伤 。 ,悲 。 应。 当7.1为S2u.它2n0d的2a0y开,7J.始1u2l而y.21笑022。,020709.21:025J.2u00l9y2:0205070S.19u2:n0.2d50a:02y30,00J9u9:l:0y0551:0293, :200520097:0/152:0/230290:05:03

与三角形有关的角-2021-2022学年八年级数学上学期期中期末考试满分全攻略(人教版)原卷版

与三角形有关的角-2021-2022学年八年级数学上学期期中期末考试满分全攻略(人教版)原卷版
C.钝角三角形D.等腰三角形
【变2】(2020·中山市石岐中学八年级期中)若一( )
A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形
考点二:三角形的内角和与三角板
【例3】(2021·广东平洲二中九年级月考)如图,将一副直角三角板如图所示放置,使含 角的三角板的一条直角边和含 角的三角板的一条直角边重合,则 的度数为( )
∠ACD > ∠A ∠ACD >∠B
思考与交流:画出任意一个三角形,用量角器测量每个外角的度数,并将所测得的角度相加,你画的三角形三个外角的角度加起来等于多少?
六、三角形的外角和
三角形的外角和等于360°。即∠ACD +∠CBE +∠BAF = 360°
注意
七、三角形外角和的证明
三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°。
【变9】(2021·广东九年级专题练习)如图,AB和CD相交于点O,则下列结论正确的是( )
A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠5
【例10】(2020·广东)将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则 的度数是( )
A. B. C. D.
【变10-1】(2021·广东八年级专题练习)如图,则∠A+∠B+∠C+∠D+∠E的度数是__.
【变12-1】(2020·珠海市紫荆中学)如图,在 中, 于 点, 平分 交 于点 .若 ,则 的度数为__________.
【变12-2】(2021·广东东莞市·八年级期末)如图, 中, 平分 , 为 延长线上一点, 于 ,已知 , ,求 的度数.
【变12-3】(2020·广东虎门成才实验学校八年级月考)如图,∠CBF,∠ACG是△ABC的外角,∠ACG的平分线所在的直线分别与∠ABC,∠CBF的平分线BD,BE交于点D,E.

第十二章 全等三角形(基础卷)(解析版)-人教版八年级数学试题

第十二章 全等三角形(基础卷)(解析版)-人教版八年级数学试题

2020-2021学年人教版八年级上册期末真题单元冲关测卷(基础卷)第十二章全等三角形一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2020春•邵阳县期末)如图,OD平分∠AOB,DE⊥AO于点E,DE=4,点F是射线OB上的任意一点,则DF的长度不可能是()A.3B.4C.5D.6【解答】解:过D点作DH⊥OB于H,如图,∵OD平分∠AOB,DE⊥AO,DH⊥OB于H,∴DH=DE=4,∴DF≥4.故选:A.2.(2分)(2020春•扶风县期末)如图,△AOB≌△COD,A和C,B和D是对应顶点,若BO=6,AO=3,AB=5,则CD的长为()A.5B.8C.10D.不能确定【解答】解:∵△AOB≌△COD,∴CD=AB=5,故选:A.3.(2分)(2020春•沙坪坝区校级期末)下列说法正确的是()A.相等的两个角是对顶角B.两条直线被第三条直线所截,同旁内角互补C.若两个三角形全等,则它们的面积也相等D.过一点有且只有一条直线与已知直线平行【解答】解:A、对顶角相等,故原题说法错误,故此选项不合题意;B、两条平行线被第三条直线所截,同旁内角互补,故原题说法错误,故此选项不合题意;C、若两个三角形全等,则它们的面积也相等,故原题说法正确,故此选项符合题意;D、过直线外一点有且只有一条直线与已知直线平行,故原题说法错误,故此选项不合题意;故选:C.4.(2分)(2020春•舞钢市期末)如图,∠ABD=∠EBC,BC=BD,再添加一个条件,使得△ABC≌△EBD,所添加的条件不正确的是()A.∠A=∠E B.BA=BE C.∠C=∠D D.AC=DE【解答】解:∵∠ABC=∠EBD,BC=BD,∴当添加BA=BE时,可根据“SAS”判断△ABC≌△EBD;当添加∠C=∠D时,可根据“ASA”判断△ABC≌△EBD;当添加∠A=∠E时,可根据“AAS”判断△ABC≌△EBD.故选:D.5.(2分)(2020春•抚州期末)下列各图中a、b、c为△ABC的边长,根据图中标注数据,判断甲、乙、丙、丁四个三角形和如图△ABC不一定全等的是()A.B.C.D.【解答】解:∵∠B=70°,∠C=50°,∴∠A=180°﹣70°﹣50°=60°,根据“SAS”判断图乙中的三角形与△ABC全等;根据“AAS”判断图丙中的三角形与△ABC全等;根据“SSS”判断图丙中的三角形与△ABC全等.根据“SSA”无法判断图甲中的三角形与△ABC全等.故选:A.6.(2分)(2020春•商河县期末)如图,点O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=6,OB=2,则OC的长为()A.2B.3C.4D.6【解答】解:∵∠AOC=∠BOD,∴∠AOB=∠COD,∵∠A=∠C,CD=AB,∴△AOB≌△COD(AAS),∴OA=OC,OB=OD=2,∵AD=6cm,∴OA =AB ﹣OD =6﹣2=4,∴OC =OA =4.故选:C .7.(2分)(2019秋•曹县期末)如图,△AOB 的外角∠CAB ,∠DBA 的平分线AP ,BP 相交于点P ,PE ⊥OC 于E ,PF ⊥OD 于F ,下列结论:(1)PE =PF ;(2)点P 在∠COD 的平分线上;(3)∠APB =90°﹣∠O ,其中正确的有( )A .0个B .1个C .2个D .3个 【解答】解:(1)证明:作PH ⊥AB 于H ,∵AP 是∠CAB 的平分线,∴∠P AE =∠P AH ,在△PEA 和△PHA 中,{∠PPP =∠PPP =90°PPPP =PPPP PP =PP,∴△PEA ≌△PHA (AAS ),∴PE =PH ,∵BP 平分∠ABD ,且PH ⊥BA ,PF ⊥BD ,∴PF =PH ,∴PE =PF ,∴(1)正确;(2)与(1)可知:PE =PF ,又∵PE ⊥OC 于E ,PF ⊥OD 于F ,∴点P 在∠COD 的平分线上,∴(2)正确;(3)∵∠O +∠OEP +∠EPF +∠OFP =360°,又∵∠OEP+∠OFP=90°+90°=180°,∴∠O+∠EPF=180°,即∠O+∠EP A+∠HP A+∠HPB+∠FPB=180°,由(1)知:△PEA≌△PHA,∴∠EP A=∠HP A,同理:∠FPB=∠HPB,∴∠O+2(∠HP A+∠HPB)=180°,即∠O+2∠APB=180°,,∴∠APB=90°−PP2∴(3)错误;故选:C.8.(2分)(2020春•青岛期末)如图,在△ABC中,AB=AC,BD=CD,点E,F是AD上的任意两点.若BC=8,AD=6,则图中阴影部分的面积为()A.12B.20C.24D.48【解答】解:∵AB=AC,BD=CD,AD=AD,∴△ADC≌△ADB(SSS),∴S△ADC=S△ADB,∵BC=8,∴BD=4,∵AB=AC,BD=DC,∴AD⊥BC,∴EB=EC,FB=FC,∵EF=EF,∴△BEF≌△CEF(SSS)∴S△BEF=S△CEF,∵AD=6,∴S阴影=S△ADB=12PP⋅PP=12×4×6=12.故选:A.9.(2分)(2020春•锦州期末)如图,AB∥CD,BE和CE分别平分∠ABC和∠BCD,AD过点E,且与AB 互相垂直,点P为线段BC上一动点,连接PE.若AD=8,则PE的最小值为()A.8B.6C.5D.4【解答】解:∵BE和CE分别平分∠ABC和∠BCD,∴∠EBC=12PABC,∠ECB=12PDCB,∵AB∥CD,∴∠ABC+∠DCB=180°,∴∠EBC+∠ECB=12×180°=90°,∴∠BEC=180°﹣(∠EBC+∠ECB)=90°,要使PE取最小值,只要BC最小即可,此时BC⊥AB,BC⊥CD,∠PBE=∠PCE=45°,∴BE=CE,即△CEB是等腰直角三角形,当PE⊥BC时,PE最短,∴P为BC的中点,∵∠BEC=90°,BC,∴PE=12当BC⊥CD时,BC最小,此时BC=AD=8,×8=4,∴PE最小值是12故选:D.10.(2分)(2020春•涪城区期末)如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',则下列说法正确的是()A.下滑过程中,始终有CC'=DD'B.下滑过程中,始终有CC'≠DD'C.若OC<OD,则下滑过程中,一定存在某个位置使得CC'=DD'D.若OC>OD,则下滑过程中,一定存在某个位置使得CC'=DD'【解答】解:将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',可得:CD=C'D',A、下滑过程中,CC'与DD'不一定相等,说法错误;B、下滑过程中,当△OCD与△OD'C'全等时,CC'=DD',说法错误;C、若OC<OD,则下滑过程中,不存在某个位置使得CC'=DD',说法错误;D、若OC>OD,则下滑过程中,当△OCD与△OD'C'全等时,一定存在某个位置使得CC'=DD',说法正确;故选:D.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2019秋•宿松县校级期末)已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件AC=BD(答案不唯一)就可以判断△ABC≌△BAD.【解答】解:添加AC=BD(答案不唯一).,理由:∵∠C=∠D=90°,∴△ACB和△BDA都是直角三角形,在Rt△ABC和Rt△BAD中{PP=PP PP=PP,∴Rt△ABC≌Rt△BAD(HL),故答案为:AC=BD(答案不唯一).12.(2分)(2020春•翼城县期末)如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE 的长是7cm.【解答】解:∵△ABC≌△ADE,BC=7,∴DE=BC=7(cm),故答案为:7cm.13.(2分)(2020春•河南期末)如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为100°.【解答】解:∵△ABC ≌△ADE ,∴∠D =∠B =40°,∴∠BED =∠A +∠D =60°+40°=100°,故答案为:100°.14.(2分)(2020春•抚州期末)如图,在△ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,若CD =2,AB =9,则△ABD 的面积为 9 .【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵BD 平分∠ABC ,又∵DE ⊥AB ,DC ⊥BC ,∴DE =DC =2,∴△ABD 的面积=12•AB •DE =12×9×2=9.故答案为:9.15.(2分)(2020春•漳州期末)如图,在△ABC 中,∠B =45°,∠C =30°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E .若BD =√2,则CD 的长为 2 .【解答】解:过点D 作DF ⊥AC 于F ,∵AD 为∠BAC 的平分线,且DE ⊥AB 于E ,DF ⊥AC 于F ,∴DE =DF ,在Rt △BED 中,∠B =45°,∴2DE 2=BD 2=(√2)2=2,∴DE 2=1,∴DF =DE =1,在Rt △CDF 中,∠C =30°,∴CD =2DF =2,故答案为:2.16.(2分)(2020春•天桥区期末)如图,AD 、BC 表示两根长度相同的木条,若O 是AD 、BC 的中点,经测量AB =9cm ,则容器的内径CD 为 9 cm .【解答】解:由题意知:OA =OD ,∠AOB =∠DOC ,OB =OC ,在△AOB 和△DOC 中,{PP =PP PPPP =PPPP PP =PP,∴△AOB ≌△DOC (SAS ),∴CD =AB =9cm .故答案为:9.17.(2分)(2020春•崇川区校级期末)在△ABC 中,AB =AC ,∠ABC =∠ACB ,CE 是高,且∠ECA =36°,平面内有一异于点A ,B ,C ,E 的点D ,若△ABC ≌△CDA ,则∠DAE 的度数为 117°、27°、9°和81° .【解答】解:如图:∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠BAC=54°,∠ACB=∠ABC=63°,∵△ABC≌△CDA,∴∠CAD=∠ACB=63°,∴∠DAE=∠CAD+∠BAC=63°+54°=117°,同理,∠DAE=9°,当△ABC为钝角三角形时,∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠EAC=54°,∠ACB=∠ABC=27°,∵△ABC≌△CDA,∴∠CAD=∠ACB=27°,∴∠DAE=∠EAC﹣∠CAD=54°﹣27°=27°,同理可得:∠DAE=81°.故答案为:117°、27°、9°和81°.18.(2分)(2019秋•汾阳市期末)如图,在△ABC中,点E、F分别是AB、AC边上的点,EF∥BC,点D在BC边上,连接DE、DF,请你添加一个条件BD=EF(或∠BED=∠EDF或DF∥AB或∠B=∠EFD),使△BED≌△FDE.【解答】解:由题意:DE=ED,∠DEF=∠EDB,∴根据SAS可以添加DB=EF,根据AAS,ASA可以添加∠BED=∠EDF或DF∥AB或∠B=∠EFD,故答案为BD=EF(或∠BED=∠EDF或DF∥AB或∠B=∠EFD)19.(2分)(2019秋•肥东县期末)如图,∠C=90°,AC=20,BC=10,AX⊥AC,点P和点Q同时从点A出发,分别在线段AC和射线AX上运动,且AB=PQ,当AP=10或20时,以点A,P,Q为顶点的三角形与△ABC全等.【解答】解:∵AX⊥AC,∴∠P AQ=90°,∴∠C=∠P AQ=90°,分两种情况:①当AP=BC=10时,在Rt△ABC和Rt△QP A中,{PP=PP,PP=PP∴Rt△ABC≌Rt△QP A(HL);①当AP=CA=20时,在△ABC和△PQA中,{PP=PP,PP=PP∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时,△ABC与△APQ全等;故答案为:10或20.20.(2分)(2019秋•永州期末)如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为4.【解答】解:延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,{PP=PPPPPP=PPPP PP=PP,∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,{PP=PPPPPP=PPPP PP=PP,∴△MDN≌△EDN(SAS),∴MN =EN =CN +CE ,∴△AMN 的周长=AM +MN +AN =AM +CN +CE +AN =AM +AN +CN +BM =AB +AC =4;故答案为:4.三.解答题(共9小题,满分60分)21.(6分)(2020春•龙泉驿区期末)已知:如图,点E ,D ,B ,F 在同一条直线上,AD ∥CB ,∠E =∠F ,DE =BF .求证:AE =CF .(每一行都要写依据)【解答】证明:∵AD ∥CB (已知),∴∠ADB =∠CBD (两直线平行,内错角相等),∴∠ADE =∠CBF (等角的补角相等).在△ADE 和△CBF 中,{∠PPP =∠PPP PP =PPPP =PP,∴△ADE ≌△CBF (ASA ),∴AE =CF (全等三角形的对应边相等).22.(6分)(2019秋•裕安区期末)如图,△ACF ≌△ADE ,AD =12,AE =5,求DF 的长.【解答】解:∵△ACF ≌△ADE ,AD =12,AE =5,∴AC =AD =12,AE =AF =5,∴DF =12﹣5=7.23.(6分)(2019秋•孝义市期末)已知:如图,△ABC ≌△DEF ,AM 、DN 分别是△ABC 、△DEF 的对应边上的高.求证:AM =DN .【解答】方法一:证明:∵△ABC ≌△DEF ,∴AB =DE ,∠B =∠E ,∵AM ,DN 分别是△ABC ,△DEF 的对应边上的高,即AM ⊥BC ,DN ⊥EF ,∴∠AMB =∠DNE =90°,在△ABM 和△DEN 中{∠PPP =∠PPP PP =PP PP =PP,∴△ABM ≌△DEN (AAS ),∴AM =DN .方法二:∵△ABC ≌△DEF ,∴BC =EF ,∵AM 、DN 分别是△ABC 、△DEF 的对应边上的高,∴BC •AM =EF •DN ,∴AM=DN.24.(6分)(2020春•邵阳县期末)如图,AC平分∠BAD,CE⊥AB,CD⊥AD,点E、D为垂足,CF=CB.(1)求证:BE=FD;(2)若AC=10,AD=8,求四边形ABCF的面积.【解答】(1)证明:∵AC平分∠BAD,CE⊥AB,CD⊥AD,∴CD=CE,在Rt△CBE和Rt△CFD中,{PP=PP,PP=PP∴Rt△CBE≌Rt△CFD(HL),∴BE=FD;(2)解:在Rt△ACD中,∵AC=10,AD=8,∴CD=√102−82=6,∵AC=AC,CD=CE,∴Rt△ACD≌Rt△ACE(HL),∴S△ACD=S△ACE,∵Rt△CBE≌Rt△CFD,∴S△CBE=S△CFD,×6×8=48.∴四边形ABCF的面积=S四边形AECD=2S△ACD=2×1225.(6分)(2020春•舞钢市期末)如图,在线段BC上有两点E,F,在线段CB的异侧有两点A,D,且满足AB=CD,AE=DF,CE=BF,连接AF;(1)∠B与∠C相等吗?请说明理由.(2)若∠B=40°,∠DFC=20°,若AF平分∠BAE时,求∠BAF的度数.【解答】解:(1)∠B =∠C ,理由如下:∵CE =BF ,∴BE =CF ,在△AEB 和△DFC 中,{PP =PP PP =PP PP =PP,∴△AEB ≌△DFC (SSS ),∴∠B =∠C ;(2)∵△AEB ≌△DFC ,∴∠AEB =∠DFC =20°,∴∠EAB =180°﹣∠B ﹣∠AEB =120°,∵AF 平分∠BAE ,∴∠BAF =12∠BAE =60°. 26.(6分)(2020春•太平区期末)如图,AB =AC ,AD =AE ,∠BAC =∠DAE =50°,点D 在BC 的延长线上,连接EC .(1)①求证:BD =CE ;①求∠ECD 的度数;(2)当∠BAC =∠DAE =α时,请直接写出∠ECD 的度数.【解答】证明:(1)①∵AB =AC ,AD =AE ,∠BAC =∠DAE =50°,∴∠ABC =∠ACB =65°,∠ADE =∠AED =65°,∠BAD =∠CAE ,在△BAD 和△CAE 中,{PP =PP PPPP =PPPP PP =PP,∴△BAD ≌△CAE (SAS ),∴BD =CE ;①∵△BAD ≌△CAE ,∴∠ACE =∠ABC =65°,∴∠ECD =180°﹣∠ACB ﹣∠ACE =50°,(2)∵∠BAC =∠DAE =α,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,{PP =PP PPPP =PPPP PP =PP,∴△BAD ≌△CAE (SAS ),∴∠ACE =∠ABD ,∵∠BAC =α,AB =AC ,∴∠ABC =∠ACB =180°−P 2, ∴∠ACE =180°−P 2,∴∠ECD =180°﹣∠ACB ﹣∠ACE =α.27.(8分)(2020春•竞秀区期末)已知OM 是∠AOB 的平分线,点P 是射线OM 上一点,点C 、D 分别在射线OA 、OB 上,连接PC 、PD .(1)如图①,当PC ⊥OA ,PD ⊥OB 时,则PC 与PD 的数量关系是 PC =PD .(2)如图①,点C 、D 在射线OA 、OB 上滑动,且∠AOB =90°,当PC ⊥PD 时,PC 与PD 在(1)中的数量关系还成立吗?说明理由.【解答】解:(1)PC =PD ,理由:∵OM 是∠AOB 的平分线,∴PC =PD (角平分线上点到角两边的距离相等),故答案为:PC =PD ;(2)证明:过点P 点作PE ⊥OA 于E ,PF ⊥OB 于F ,如图,∴∠PEC =∠PFD =90°,∵OM 是∠AOB 的平分线,∴PE =PF ,∵∠AOB =90°,∠CPD =90°,∴∠PCE +∠PDO =360°﹣90°﹣90°=180°,而∠PDO +∠PDF =180°,∴∠PCE =∠PDF ,在△PCE 和△PDF 中{∠PPP =∠PPPPPPP =PPPP PP =PP,∴△PCE ≌△PDF (AAS ),∴PC =PD .28.(8分)(2019秋•道外区期末)如图,△ABC 中,AB =AC ,点D 在AB 边上,点E 在AC 的延长线上,且CE =BD ,连接DE 交BC 于点F .(1)求证:EF =DF ;(2)过点D 作DG ⊥BC ,垂足为G ,求证:BC =2FG .【解答】证明:(1)过点D 作DH ∥AC ,DH 交BC 于H ,如图1所示: 则∠DHB =∠ACB ,∠DHF =∠ECF ,∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠DHB ,∴BD =HD ,∵CE =BD ,∴HD =CE ,在△DHF 和△ECF 中,{∠PPP =∠PPPPPPP =PPPP PP =PP,∴△DHF ≌△ECF (AAS ),∴EF =DF ;(2)如图2,由(1)知:BD =HD ,∵DG ⊥BC ,∴BG =GH ,由(1)得:△DHF ≌△ECF ,∴HF =CF ,∴GH +HF =12BH +12CH =12BC , ∴BC =2FG .29.(8分)(2020春•南岸区期末)如图,在△ABC中,点D是BC上一点,且AD=AB,AE∥BC,∠BAD =∠CAE,连接DE交AC于点F.(1)若∠B=70°,求∠C的度数;(2)若AE=AC,AD平分∠BDE是否成立?请说明理由.【解答】解:(1)∵∠B=70°,AB=AD,∴∠ADB=∠B=70°,∵∠B+∠BAD+∠ADB=180°,∴∠BAD=40°,∵∠CAE=∠BAD,∴∠CAE=40°,∵AE∥BC,∴∠C=∠CAE=40°;(2)AD平分∠BDE,理由是:∵∠BAD =∠CAE ,∴∠BAD +∠CAD =∠CAE +∠CAD , 即∠BAC =∠DAE ,在△BAC 和△DAE 中,{PP =PP PPPP =PPPP PP =PP,∴△BAC ≌△DAE (SAS ) ∴∠B =∠ADE ,∵∠B =∠ADB ,∴∠ADE =∠ADB ,即AD 平分∠BDE .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年八年级人教版数学上册期末专题复习三角形认识学校:___________姓名:___________班级:___________考号:___________一、单选题1.三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个B.3个C.5个D.无数个2.如图,△ABC中,D,E分别是BC上两点,且BD=DE=EC,则图中面积相等的三角形有()A.4对B.5对C.6对D.7对3.等腰三角形一边长等于5,一边长等于9,则它的周长是()A.14 B.23 C.19或23 D.194.现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取()A.10cm的木棒B.40cm的木棒C.50cm的木棒D.60cm的木棒5.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于A.44°B.60°C.67°D.77°6.如图,AE,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAE的度数为( )A.40°B.20°C.18°D.38°7.如图,把一块含有30°角(∠A=30°)的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么∠AFE=()A.50°B.40°C.20°D.10°8.一个多边形的内角和等于1260°,则从此多边形一个顶点引出的对角线有()A.4条B.5条C.6条D.7条9.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种10.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC 的外角,则∠1+∠2+∠3等于A.90°B.180°C.210°D.270°11.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为( )A.50°B.51°C.51.5°D.52.5°12.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第n个图案中,所包含的黑色正三角形和白色正六边形的个数总和是()A.n2+4n+2 B.6n+1 C.n2+3n+3 D.2n+4二、填空题13.一个三角形的两边长分别是2和4,第三边长为偶数,则这个三角形的周长是__.14.如图所示,在△ABC中,AB = 5,BC = 7,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为________15.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.16.如图,AB∥CD,∠ABE=66°,∠D=54°,则∠E=____度.17.已知△ABC的三个内角分别是∠A.∠B、∠C,若∠A=60°,∠C=2∠B,则∠C=_____ 18.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=68°,则∠1+∠2=____°.三、解答题19.如图所示,已知△ABC的周长为21 cm,AB=6 cm,BC边上中线AD=5cm,△ABD的周长为15 cm,求AC的长.20.已知△ABC的周长是24cm,三边a,b,c满足c+a=2b,c-a=4cm,求a,b,c的长。

21.已知等腰三角形一腰上的中线把这个三角形的周长分成9cm和15cm两部分,求这个三角形的腰长。

22.如图,AD平分∠BAC,∠EAD=∠EDA.(1)∠EAC与∠B相等吗?为什么?(2)若50B ∠=︒,:1:3CAD E ∠∠=,则E ∠= .23.在△ABC 中,∠1=∠2,∠3=∠4,∠BAC=54°,求∠DAC 的度数.24.(1)如图,在△ABC 中,∠B=40°,∠C=80°,AD⊥BC 于D ,且AE 平分∠BAC,求∠EAD 的度数.(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD 与∠B、∠C 之间的数列关系?并说明理由.25.△ABC 是一个三角形的纸片,点D ,E 分别是△ABC 边AB ,AC 上的两点. (1)如图1,如果沿直线DE 折叠,则∠BDA′与∠A 的关系是____________;(2)如果折成图2的形状,猜想∠BDA′,∠CEA′和∠A 的关系,并说明理由; (3)如果折成图3的形状,猜想∠BDA′,∠CEA′和∠A 的关系,并说明理由.参考答案1.C【解析】根据三角形的三边关系可得5-3<c<5+3,即2<c<8,因c的值为奇数,所以c为3、5、7,即可得由a,b,c为边可组成三角形的个数为3个,故选B.2.A【分析】根据三角形的面积公式,知:只要同底等高,则两个三角形的面积相等,据此可得面积相等的三角形.【详解】由已知条件,得△ABD,△ADE,△ACE,3个三角形的面积都相等,组成了3对,还有△ABE和△ACD的面积相等,共4对.故选A.【点睛】本题考查了三角形的相关知识,解题的关键是熟练的掌握三角形面积公式与运用.3.C【解析】解:当5为底时,其它两边都为9,5、9、9可以构成三角形,周长为23;当5为腰时,其它两边为5和9,5、5、9可以构成三角形,周长为19,所以答案19或23.故选C.4.B【分析】设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围.进而可得出结论.【详解】设应选取的木棒长为x,则30cm-20cm<x<30cm+20cm,即10cm<x<50cm.故选B.【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.5.C分析:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°-∠A=68°.由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°.∴180ADEBDC672︒-∠∠==︒.故选C.6.B【解析】∵△ABC中已知∠B=36°,∠C=76,∴∠BAC=68°.∴∠BAD=∠DAC=34,∴∠ADC=∠B+∠BAD=70°,∴∠DAE=20°.故选B.【点睛】本题主要考查了三角形的外角性质和三角形内角和定理,属于基础题,根据已知条件善于找出题目中的能求出角的条件是解题的关键,在平时解题中要善于对题目进行分析.7.D【解析】试题分析:由矩形的性质可得EF∥CD,根据平行线的性质及三角形外角的性质可知,∠A+∠AFE=∠1=40°,所以∠AFE=10°.故选D.考点:平行线的性质;三角形外角的性质.8.C【解析】【分析】这个多边形的内角和是1260°.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.根据题意,得(n-2)•180=1260,解得n=9,∴从此多边形一个顶点引出的对角线有9-3=6条,故选C.【点睛】本题考查了多边形的内角和定理:n边形的内角和为(n-2)×180°.9.C【解析】试题分析:由镶嵌的条件知,判断一种图形是否能够镶嵌,只要看一看正多边形的内角度数是否能整除360°,能整除的可以平面镶嵌,反之则不能.解:①正方形的每个内角是90°,4个能组成镶嵌;②长方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有3种.故选C.10.B【详解】试题分析:如图,如图,过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故选B【分析】根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE=∠BED=12(180°﹣25°)=77.5°,根据平角的定义即可求出∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°【详解】∵AC=CD=BD=BE∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED∵∠CDA=∠B+∠DCB即∠CDA=2∠B∴∠B=25°∴∠BDE=∠BED=12(180°﹣25°)=77.5°∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°故答案选D.【点睛】本题考查等腰三角形的性质;三角形内角和定理;三角形的外角性质.12.B【解析】试题分析:由图形可知图形①的黑色正三角形和白色正六边形的个数总和=4×1+3=7个,图形②的黑色正三角形和白色正六边形的个数总和=4×2+5=13个…依此类推,图形n的黑色正三角形和白色正六边形的个数总和=4n+2n+1=6n+1个.故选B.考点:平面镶嵌(密铺).13.10【解析】已知三角形的两边长是2和4,根据三角形的三边关系可得第三边大小要大于2 小于6,又因为第三边长是偶数,所以第三边是4,即可得周长=2+4+4=10.14.12cm【解析】∵将△ABC折叠,使点C与点A重合,折痕为DE,∴AE=CE,∴△ABE的周长=AB+BE+AE=AB+(BE+CE)=AB+BC=5+7=12(cm),即△ABE的周长为12cm.故答案是:12cm.15.0<a<12 b>2【解析】【分析】由已知条件腰长是6,底边长为x,根据三角形三边关系列出不等式,通过解不等式即可得到答案;等腰三角形的两腰长度相等,根据三角形中两边之和大于第三边,两边之差小于第三边可求出解.【详解】(1)根据三边关系可知:6-6<a<6+6,即0<a<12.(2)根据b+b>4且b-b<4,可求出b>2.故答案为:0<a<12;b>2.【点睛】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.16.12【分析】利用三角形的外角与内角的关系及平行线的性质可直接解答.【详解】∵AB∥CD,∴∠BFC=∠ABE=66°.在△EFD中,利用三角形的外角等于与它不相邻的两个内角的和,得到∠BFC=∠E+∠D, ∴∠E=∠BFC-∠D=12°.故答案是:12.【点睛】本题考查了三角形外角与内角的关系及平行线的性质,比较简单.17.80°【解析】【分析】根据三角形内角和定理求出∠B+∠C的度数,把∠C=2∠B代入求出即可.【详解】∵∠A=60°,∴∠B+∠C=180°-∠A=120°,∵∠C=2∠B,∴3∠B=120°,∴∠B=40°,∴∠C=80°.故答案为80°.【点睛】本题考查了三角形内角和定理的应用,能得出关于∠B的度数是解此题的关键.18.136【解析】【分析】根据三角形的内角和等于180°求出∠ADE+∠AED,再根据翻折变换的性质可得∠A′DE=∠ADE,∠A′ED=∠AED,然后利用平角等于180°列式计算即可得解.【详解】∵∠A=68°,∴∠ADE+∠AED=180°-68°=112°,∵△ABC沿着DE折叠压平,A与A′重合,∴∠A′DE=∠ADE,∠A′ED=∠AED,∴∠1+∠2=180°-(∠A′ED+∠AED)+180°-(∠A′DE+∠ADE)=360°-2×112°=136°.故答案为:136.【点睛】本题考查了三角形的内角和定理,翻折变换的性质,整体思想的利用求解更简便.19.7cm.【解析】试题分析:先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15-6-5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21-6-8=7cm.故AC长为7cm.考点:三角形的角平分线,中线,高点评:考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC的长,题目难度中等.20.a=6cm,b=8cm,c=l0cm【解析】试题分析:根据a+b+c=24,然后再联立两方程得出方程组,解出a、b、c即可.试题解析:解:由题意得:2424c a bc aa b c+=⎧⎪-=⎨⎪++=⎩,解得:6810abc=⎧⎪=⎨⎪=⎩.答:a的长度为6cm,b的长度为8cm,c的长度为10cm.21.10cm【解析】【分析】首先根据题意画出图形,然后分别从AB+AD=9cm与AB+AD=15cm,去分析求解即可求得答案.【详解】如图,∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x,∵中线BD将△ABC的周长分成9cm和15cm两部分,∴可知分为两种情况:①AB+AD=9cm,即3x=9,解得x=3,此时AB=AC=2x=6(cm),BC=15-x=15-3=12(cm);∵6+6=12,不能组成三角形,舍去;②AB+AD=15cm,即3x=15,解得x=5;此时AB=AC=2x=10(cm)BC=9-x=9-5=4(cm);此时等腰△ABC的三边分别为10cm,10cm,4cm.∴这个三角形的腰长为10cm.【点睛】此题考查了等腰三角形的性质以及三角形的三边关系.此题难度适中,注意掌握分类讨论思想与方程思想的应用.22.(1)见解析;(2)48°【解析】分析:(1)根据角平分线的概念可得∠BAD=∠CAD,再根据三角形的一个外角等于和它不相邻的两个内角和,结合已知条件可得∠EAC与∠B相等;(2)若设∠CAD=x°,则∠E=3x°.根据(1)中的结论以及三角形的内角和定理及其推论列方程进行求解即可.详解:(1)相等.理由如下:∵AD平分∠BAC,∴∠BAD=∠CAD.又∵∠EAD=∠EDA,∴∠EAC=∠EAD﹣∠CAD=∠EDA﹣∠BAD=∠B;(2)设∠CAD=x°,则∠E=3x°,由(1)知:∠EAC=∠B=50°,∴∠EAD=∠EDA=(x+50)°.在△EAD 中,∵∠E +∠EAD +∠EDA =180°,∴3x +2(x +50)=180,解得:x =16,∴∠E =48°.点睛:(1)建立要证明的两个角和已知角之间的关系,根据已知的相等的角,即可证明;(2)注意应用(1)中的结论,主要是根据三角形的内角和定理及其推论用同一个未知数表示相关的角,再列方程求解.23.12°【分析】已知∠BAC=54°可得:∠2+∠3的度数,然后利用三角形的外角的性质,即可利用∠2表示出∠3,从而得到关于∠3的方程,求得∠3的度数,进而求得∠DAC 的度数.【详解】∵∠1=∠2,∠3=∠4,∴∠4=2∠1=2∠2=∠3,∴∠2+∠3=3∠2=126°,∴∠2=∠1=42°,∴∠DAC=54-42=12°.【点睛】本题考查了三角形的内角和定理以及三角星的外角的性质,正确求得∠2的度数是关键. 24.(1)20°;(2)∠EAD=12∠C ﹣12∠B .理由见解析.【解析】【分析】(1)根据三角形内角和定理求出∠BAC ,求出∠CAE ,根据三角形内角和定理求出∠CAD ,代入∠EAD=∠CAE-∠CAD 求出即可;(2)根据三角形内角和定理求出∠BAC ,求出∠CAE ,根据三角形内角和定理求出∠CAD ,代入∠EAD=∠CAE-∠CAD 求出即可.【详解】(1)∵∠B=40°,∠C=80°,∴∠BAC=180°-∠B-∠C=60°,∵AE 平分∠BAC ,∴∠CAE=12∠BAC=30°,∵AD ⊥BC ,∴∠ADC=90°,∵∠C=80°,∴∠CAD=90°-∠C=10°,∴∠EAD=∠CAE-∠CAD=30°-10°=20°;(2)∵三角形的内角和等于180°,∴∠BAC=180°-∠B-∠C , ∵AE 平分∠BAC ,∴∠CAE=12∠BAC=12(180°-∠B-∠C ),∵AD ⊥BC ,∴∠ADC=90°,∴∠CAD=90°-∠C , ∴∠EAD=∠CAE-∠CAD=12(180°-∠B-∠C )-(90°-∠C )=12∠C-12∠B . 【点睛】本题考查了三角形内角和定理,角平分线性质的应用,解此题的关键是求出∠CAE 和∠CAD 的度数.25.(1)∠BDA′=2∠A ;(2)∠BDA′+∠CEA′=2∠A ,理由见解析;(3)∠BDA′-∠CEA′=2∠A ,理由见解析.【解析】试题分析:(1)由折叠可得∠DA′A =∠A ,根据三角形外角的性质可得∠BDA′=∠DA′A+∠A =2∠A ;(2)∠BDA′+∠CEA′=2∠A ,在四边形ADA′E 中,根据四边形的内角和为360°可得∠A +∠A′+∠ADA′+∠A′EA =360°,即∠A +∠A′=360°-∠ADA′-∠A′EA.又因∠BDA′+∠ADA′=180°,∠CEA′+∠A′EA =180°,所以∠BDA′+∠CEA′=360°-∠ADA′-∠A′EA ,即可得∠BDA′+∠CEA′=∠A +∠A′.再由折叠的性质可得∠A =∠A′,所以∠BDA′+∠CEA′=2∠A.(3)∠BDA′-∠CEA′=2∠A ,设DA′交AC 于点F ,根据三角形外角的性质可得∠BDA′=∠A +∠DFA ,∠DFA =∠A′+∠CEA′,即可得∠BDA′=∠A +∠A′+∠CEA′,所以∠BDA′-∠CEA′=∠A+∠A′.再由折叠的性质可得∠A=∠A′,所以∠BDA′-∠CEA′=2∠A.试题解析:(1)∠BDA′=2∠A(2)∠BDA′+∠CEA′=2∠A,理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠A′EA=360°,∴∠A+∠A′=360°-∠ADA′-∠A′EA.∵∠BDA′+∠ADA′=180°,∠CEA′+∠A′EA=180°,∴∠BDA′+∠CEA′=360°-∠ADA′-∠A′EA,∴∠BDA′+∠CEA′=∠A+∠A′.∵△A′DE是由△ADE沿直线DE折叠而得,∴∠A=∠A′,∴∠BDA′+∠CEA′=2∠A.(3)∠BDA′-∠CEA′=2∠A.理由:设DA′交AC于点F,∵∠BDA′=∠A+∠DFA,∠DFA=∠A′+∠CEA′,∴∠BDA′=∠A+∠A′+∠CEA′,∴∠BDA′-∠CEA′=∠A+∠A′.∵△A′DE是由△ADE沿直线DE折叠而得,∴∠A=∠A′,∴∠BDA′-∠CEA′=2∠A.点睛:本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.还考查了四边形内角和是360°及三角形外角性质.。

相关文档
最新文档