2020年人教版八年级上册第15章分式单元测试卷

2020年人教版八年级上册第15章分式单元测试卷
2020年人教版八年级上册第15章分式单元测试卷

北京回民学校数学分式填空选择单元测试题(Word版 含解析)

北京回民学校数学分式填空选择单元测试题(Word 版 含解析) 一、八年级数学分式填空题(难) 1.如果关于x 的分式方程1a x +-3=11 x x -+有负分数解,且关于x 的不等式组2()43412 a x x x x -≥--???+<+??的解集为x <-2,那么符合条件的所有整数a 的积是_________. 【答案】9 【解析】 ()243412a x x x x ?-≥--??+<+?? ①②, 由①得:x≤2a+4, 由②得:x<-2, 由不等式组的解集为x<-2,得到2a+4≥-2,即a≥-3, 分式方程去分母得:a-3x-3=1-x , x=42 a -, 由分式方程 1a x +-3=11x x -+有负分数解,则有a-4<0,所以a<4, 所以-3≤a<4, 把a=-3代入整式方程得:-3x-6=1-x ,即x=- 72 ,符合题意; 把a=-2代入整式方程得:-3x-5=1-x ,即x=-3,不合题意; 把a=-1代入整式方程得:-3x-4=1-x ,即x=- 52 ,符合题意; 把a=0代入整式方程得:-3x-3=1-x ,即x=-2,不合题意; 把a=1代入整式方程得:-3x-2=1-x ,即x=-32 ,符合题意; 把a=2代入整式方程得:-3x-1=1-x ,即x=-1,不合题意; 把a=3代入整式方程得:-3x=1-x ,即x=-12 ,符合题意, ∴符合条件的整数a 取值为-3,-1,1,3,之积为9, 故选D 【点睛】本题考查了解一元一次不等式组,以及解分式方程,熟练掌握运算法则是解本题的关键.

2.若关于x 的分式方程 321 x m x -=-的解是正数,则m 的取值范围为_______. 【答案】m >2且m ≠3 【解析】 解关于x 的方程 321 x m x -=-得:2x m =-, ∵原方程的解是正数, ∴20210m m ->??--≠? ,解得:2m >且3m ≠. 故答案为:2m >且3m ≠. 点睛:关于x 的方程321 x m x -=-的解是正数,则字母“m ”的取值需同时满足两个条件:(1)2x m =-不能是增根,即210m --≠;(2)20x m =->. 3.如果实数x 、y 满足方程组30233 x y x y +=?? +=?,求代数式(xy x y ++2)÷1x y +. 【答案】1 【解析】 解:原式=222()xy x y x y x y ++?++=xy +2x +2y ,方程组:30233x y x y +=??+=?,解得:31x y =??=-? ,当x =3,y =﹣1时,原式=﹣3+6﹣2=1.故答案为1. 点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 4.若方程 256651130 x x k x x x x ---=---+的解不大于13,则k 的取值范围是__________. 【答案】15k ≤且k ≠±1. 【解析】 【分析】 通过去分母去括号,移项,合并同类项,求出112 k x += ,结合条件,列出关于k 的不等式组,即可求解. 【详解】 256651130 x x k x x x x ---=---+ 方程两边同乘以(x-6)(x-5),得:22(5)(6)x x k ---=, 去括号,移项,合并同类项,得:211x k =+, 解得:112 k x +=,

第十五章分式知识点总结及单元测试题

第十六章分式知识点总结 1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。 分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 (0≠C ) 3.分式的通分和约分:关键先是分解因式 ,a b a b a c ad bc ad bc c c c b d bd bd bd ±±±=±=±= 4.分式的运算: 分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 分式乘方法则: 分式乘方要把分子、分母分别乘方。 分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为 同分母分式,然后再加减 混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。 5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ; 当n 为正整数时,n n a a 1=- ()0≠a 6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数) (1)同底数的幂的乘法:n m n m a a a +=?;(2)幂的乘方:mn n m a a =)(; (3)积的乘方:n n n b a ab =)(; (4)同底数的幂的除法:n m n m a a a -=÷( a ≠0); (5)商的乘方:n n n b a b a =)(();(b ≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。 解分式方程的步骤 : (1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根. 分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原 分式方程的解;否则,这个解不是原分式方程的解。 8.科学记数法:把一个数表示成n a 10?的形式(其中101<≤a ,n 是整数)的记数方法叫做科学记数法. 用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是1-n 用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点 前面的一个0) bc ad c d b a d c b a bd ac d c b a =?=÷=?;n n n b a b a =)(C B C A B A ??=C B C A B A ÷÷=

2013年新人教版八年级上数学第十五章分式测试题

第十五章 分式测试题 (总分120分,时间60分钟) 姓名: 成绩: 一、选择题(每小题3分,共30分) 1、在式子:23123510,,,,,94678xy a b c x y x a x y π+++中,分式的个数是( ) A :2 B :3 C :4 D :5 2、化简1x x y x ÷?的结果是( ) A :1 B :xy C :y x D :x y 3、若把分式x y x 23+的x 、y 同时扩大10倍,则分式的值 ( ) A :扩大10倍 B :缩小10倍 C :不变 D :缩小5倍 4、化简2293m m m --的结果是( ) A :3+m m B :3+-m m C :3-m m D :m m -3 5、对于分式23 x -有意义,则x 应满足的条件是( ) A :3x ≥ B :3x > C :3x ≠ D :3x < 6、用科学记数法表示-0.0000064记为( ) A :-64×10-7 B :-0.64×10-4 C :-6.4×10-6 D :-640×10-8 7、若分式1 12--x x 的值为0,则x 的取值为( ) A :1=x B :1-=x C :1±=x D :无法确定 8、下列等式成立的是( ) A :9)3(2-=-- B :()9 132=-- C :2222b a b a ?=?-- D :b a a b b a +=--22 9、若方程342(2)a x x x x =+--有增根,则增根可能为( ) A :0 B :2 C :0或2 D :1 10、小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等。设小明打字速度为x 个/分钟,则列方程正确的是( ) A :x x 1806120=+ B :x x 1806120=- C :6180120+=x x D :6 180120-=x x 二、填空题(每小题3分,共30分) 11、计算:=-321)(b a ;=+-203π ; 12、方程x x 527=-的解是 ; 13、分式,21x xy y 51,212-的最简公分母为 ; 14、约分:=-2264xy y x ;9 32--x x = ; 15、若关于x 的方程2 11=--ax a x 的解是x=2,则a= ;

新人教版八年级(上)数学 第15章 分式 单元测试卷 (解析版)

第15章分式单元测试卷 一、选择题(共10小题). 1.分式有意义的条件是() A.x≠3B.x≠9C.x≠±3D.x≠﹣3 2.关于x的分式方程=0的解为x=2,则常数a的值为()A.a=﹣1B.a=1C.a=2D.a=5 3.计算(x3y2)2?,得到的结果是() A.xy B.x7y4C.x7y D.x5y6 4.若分式的值总是正数,a的取值范围是() A.a是正数B.a是负数C.a>D.a<0或a>5.分式可变形为() A.B.﹣C.D.﹣ 6.若分式的值等于0,则x的值为() A.±1B.0C.﹣1D.1 7.某工程公司开挖一条500米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么所列方程正确的是() A.B. C.D. 8.某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A.1600元B.1800元C.2000元D.2400元 9.甲,乙两个工程队,甲队修路300米与乙队修路400米所用的时间相等,乙队每天比甲队多修10米.若可列方程=表示题中的等量关系,则方程中x表示()A.甲队每天修路的长度

B.乙队每天修路的长度 C.甲队修路300米所用天数 D.乙队修路400米所用天数 10.若关于x的一元一次不等式组无解,且关于y的分式方程 有非负整数解,则符合条件的所有整数a的和为()A.7B.8C.14D.15 二、填空题(共6小题). 11.化简:﹣=. 12.计算:=. 13.计算:+=. 14.当x=时,分式的值为0. 15.当x时,分式无意义;当x时,分式值为零. 16.若分式的值是负数,则x的取值范围是. 三、解答题 17.解分式方程:. 18.某校庆为祝建国70周年举行“爱国读书日”活动,计划用500元购买某种爱国主义读书,现书店打八折,用500元购买的爱国主义读本比原计划多了5本,求该爱国主义读本原价多少元? 19.某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同. (1)求A,B两种书架的单价各是多少元? (2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A种书架?

(完整版)人教版八年级数学上分式教案.docx

15 . 1分式 第 1 课时从分数到分式 教学目标 1.了解分式的概念,知道分式与整式的区别和联系. 2.了解分式有意义的含义,会根据具体的分式求出分式有意义时字母所满足的条件. 3.理解分式的值为零、为正、为负时,分子分母应具备的条件. 教学重点 分式的意义. 教学难点 准确理解分式的意义,明确分母不得为零. 教学设计一师一优课一课一名师( 设计者:) 教学过程设计 一、创设情景,明确目标 一艘轮船在静水中的最大航速是20 km/h,它沿江以最大船速顺流航行100 km所用时间, 与以最大航速逆流航行60 km 所用的时间相等.江水的流速是多少? 提示:顺流速度=水速+静水中的速度;逆流速度=静水中的速度-水速. ● 自主学习指向目标 1.自学教材第 127 至 128 页. 2.学习至此:请完成《学生用书》相应部分. 三、合作探究,达成目标 探究点一分式的概念 S V10060 活动一:阅读教材思考问题:式子a ,S以及式 子20+ v 和 20- v 有什么共同特点?它们与 分数有什么相同点和不同点? 展示点评:如果 A,B 表示两个 ________( 整式 ) ,并且 B 中含有 ________( 字母 ) ,那么式A 子B叫做分式.

小组讨论:如何判断一个式子是否为分式?分式与整式有什么区别?

反思小结: 判断一个式子是否为分式,可根据:①具有分数的形式;②分子、分母都是整式;③分母中含有字母,分式与整式的区别在于:分式的分母中含有字母,而整式的分母中不含字母. 针对训练: 见《学生用书》相应部分 探究点二 分式有意义的条件 活动二: (1) 当 x ≠0时,分式 2 有意义; 3x (2) 当 x ≠1时,分式 x 有意义;x - 1 5 1 (3) 当 b ≠3时,分式 5- 3b 有意义; x + y (4)x , y 满足 __x ≠y __时,分式 x - y 有意义. 展示点评: 教师示范解答的一般步骤,强调分母不为零. 小组讨论: 归纳分式有意义的条件. 反思小结: 对于任何分式,分母均不能为零,即当分母不为零时,分式有意义;反之,分母为零时,分式无意义. 针对训练: 见《学生用书》相应部分 四、总结梳理,内化目标 1.知识小结—— (1) 学习了分式, 知道了分式与分数的区别. (2) 知道了分式有意义和值 为零的条件. 2.思想方法小结——类比、转化等数学思想. 五、达标检测,反思目标 2 x + y 1 x 1.下列各式① x ,② 5 ,③ 2- a ,④ π- 1中,是分式的有 ( C ) A .①② B .③④ C .①③ D .①②③④ 2.当 x 为任意实数时,下列分式中,一定有意义的是( C ) x - 1 x + 1 x - 1 x - 1 A. x 2 B. x 2- 1 C. x 2+1 D. x + 2 3.某食堂有煤 m t ,原计划每天烧煤 a t ,现每天节约用煤 b(b

人教版八年级数学上《第15章分式》单元测试(6)含答案解析

《第15章分式》 一、选择题 1.在,﹣,﹣y2,,,,3x﹣2,a﹣2﹣b﹣2中,属于分式的个数为()A.3 B.4 C.5 D.6 2.下列代数式:①;②;③;④;⑤3y﹣3+2;⑥;⑦(x﹣2)0中,在字母取任何值的情况下都有意义的代数式个数为() A.2 B.3 C.4 D.5 3.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是() A.米B.米C.米D.米 4.式子2a﹣1可以化为() A.B.C.﹣2a D.2a﹣1 5.下列运算正确的是() A.x10÷x5=x2B.x﹣4?x=x﹣3C.x3?x2=x6D.(2x﹣2)﹣3=﹣8x6 6.下列分式是最简分式的() A.B. C.D. 7.下面约分的式子中,正确的是() A.B.C.D. 8.下列各式中,可能取值为零的是() A.B.C.D.

9.式子有意义的x的取值范围是() A.x≥﹣且x≠1 B.x≠1 C. D. 10.分式的最简公分母是() A.3xy B.6x3y2 C.6x6y6 D.x3y3 11.把,,通分过程中,不正确的是() A.最简公分母是(x﹣2)(x+3)2B. = C. =D. = 12.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为() A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣6 13.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则正确的为() A.a<b<c<d B.c<a<d<b C.a<d<c<b D.b<a<d<c 14.若分式中的m、n的值同时扩大到原来的10倍,则此分式的值() A.不变 B.是原来的20倍C.是原来的10倍D.是原来的 15.若m人需a天完成某项工程,则这样的人(m+n)个完成这项工程需要的天数是()A.(a+m)B. C. D. 16.下列计算正确的是() A.÷﹣÷=B.÷(﹣)=2y C.÷(1﹣)=1 D.(1﹣)÷=1 17.化简÷(1+)的结果是() A.B. C.D.

分式单元测试题 (含答案)

一、选择题 1. 下列各式:()222 1451, , , 532x x y x x x π---其中分式共有( ) A .1个 B .2个 C .3个 D .4个 2.下列计算正确的是( ) A.m m m x x x 2=+ B.22=-n n x x C.3332x x x =? D.264x x x -÷= 3. 下列约分正确的是( ) A . 313m m m +=+ B .2 12y x y x -=-+ C . 1 23369+= +a b a b D .()()y x a b y b a x =-- 4.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( ) A.y x 23 B.223y x C.y x 232 D.2 3 23y x 5.计算 x x -+ +11 11的正确结果是( ) A.0 B.212x x - C.212x - D.1 2 2-x 6. 在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段 路上、下坡的平均速度是每小时( ) A . 2 2 1v v +千米 B .2121v v v v +千米 C .21212v v v v +千米 D .无法确定 7. 某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设 每天应多做x 件,则x 应满足的方程为( ) A .x +48720 ─548720= B .x +=+48720548720 C . 572048720=-x D .-48720x +48720=5 8. 若0≠-=y x xy ,则分式 =-x y 1 1( ) A . xy 1 B .x y - C .1 D .-1 9. 已知 xy x y +=1,yz y z +=2,zx z x +=3,则x 的值是( ) A .1 B. 125 C.5 12 D.-1 10.小明骑自行车沿公路以akm/h 的速度行走全程的一半,又以bkm/h 的速度行走余下的一半路程;小明骑

八年级数学上册第十五章《分式》单元模拟测试试卷

八年级数学上册第十五章《分式》单元模拟测试试卷 x (测试时间:120分钟 满分:120分) 一﹨选择题(共6小题,每题3分,共18分) 1.若 x y =3,则 x y y +=( ) A .4 3 B .3 C . 4 D .x y 2.化简2 21 1a a a a -÷-的结果是( ) A .1 B . a(a+1) C .a +1 D .a a 1 + 3.下列分式是最简分式的是( ) A .122+x x B .112 --x x C .x 24 D .1-x x -1 4.若把分式x y x 3+中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍 5.(2016?海南)解分式方程,正确的结果是( ) A .x=0 B .x=1 C .x=2 D .无解 6.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的 1.8倍,这样由北海到南宁的行驶时间缩短了 1.5小时.设原来火车的平均速度为x 千米/时,则下列方程正确的是( )

A . B . C . D . 二﹨填空题(共6小题,每题3分,共18分) 7.约分:3 263n m mn -= . 8.已知x=-2时,分式a x b x +-无意义,x=4时,此分式的值为0,则a+b= . 9.化简22 x 1x 2x 1 x 2x 4--+÷=-- . 10.若关于x 的分式方程222 -= --x m x x 无解,则m 的值为__________. 11.小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x 千米/时,根据题意列方程为 . 12.若111a m =- ,2111a a =-,321 1a a =-,… ;则a 2015 的值为 .(用含m 的代数式表示) 三﹨解答题(本大题共5小题,每小题6分,共30分) 13.问题:当a 为何值时,分式99 62 2-++a a a 无意义? 小明是这样解答的:解:因为 33 )3)(3()3(99622 2-+=+-+=-++a a a a a a a a ,由a ﹣3=0,得a=3,所以当a=3时,分式无意义. 你认为小明的解答正确吗?如不正确,请说明错误的原因.

分式单元测试题(含答案)

第7章 分式单元测试题 (时间:60分钟,满分:100分) 一、填空题:(每题2分,共22分) 1.当x_______时,分式 13 x x +-有意义,当x_______时,分式23x x -无意义. 2.当x_______时,分式29 3 x x --的值为零. 3.分式 311 ,, 46y xy x xyz -的最简公分母是_______. 4.222bc a a b c =_______;32243x x y y ÷=_______;23b a a b -=_______; 21x y x y -+-=_______. 5.一件工作,甲单独做ah 完成,乙单独做bh 完成,则甲,乙合作______h 完成. 6.若分式方程1 x x a ++=2的一个解是x=1,则a=_______. 7.若分式 1 3x -的值为整数,则整数x=_______. 8.已知x=1是方程111 x k x x x x +=--+的一个增根,则k=_______. 9.某商场降价销售一批服装,打8折后售价为120元,则原销售价是_____元. 10.已知 224(4)4 A Bx C x x x x +=+++,则B=______. 11.若 1x +x=3,则421 x x x ++=______. 二、选择题(每题2分,共14分) 12.下列各式: 3,7a b a +,x 2+12y 2,5,1,18x x π -其中分式有( ) A .1个 B .2个 C .3个 D .4个 13.如果把分式 2x x y +中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .缩小6倍 D .不变

人教版八年级数学上册第十五章分式单元测试题

人教版八年级数学上册第十五章分式单元测试题 一、选择题(共10小道,每小题3分,共30分) 1、(2019?广西贵港)若分式的值等于0,则x 的值为( ) A .±1 B .0 C .﹣1 D .1 2. 下列运算中,错误..的是( ). A. (0)a ac c b bc =≠ B. 1a b a b --=-+ C. 0.55100.20.323a b a b a b a b ++=-- D. x y y x x y y x --=++ 3. ( 2019兰州市) 化简:1 2 112+-++a a a = ( ) A. a -1 . B. a+1 . C. 11+-a a . D. 1 1 +a . 4.若分式 x y x y +-中的x ,y 的值变为原来的100倍,则此分式的值( ). A .不变 B .是原来的100倍 C .是原来的200倍 D .是原来的 1100 5.若2 (a +与1b -互为相反数,则 1 b a -的值为( ) A B 1 C 1 D .16.如果2a b =,则2222a ab b a b -++= ( ). A . 45 B .1 C .3 5 D .2 7.(2019甘肃陇南)下面的计算过程中,从哪一步开始出现错误( ) A .① B .② C .③ D .④ 【分析】直接利用分式的加减运算法则计算得出答案. 8.化简(a ﹣1)÷(﹣1)?a 的结果是( ) A .﹣a 2 B .1 C .a 2 D .﹣1 9. (2019?黑龙江哈尔滨)方程 =的解为( )

A .x = B .x = C .x = D .x = 10 。(2019?湖北十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( ) A .﹣=15 B .﹣=15 C . ﹣ =20 D . ﹣ =20 二、填空题(共6小道,每小题4分,共24分) 11. 若分式1 1 ||--x x 的值为零,则x 的值等于 . 12. 计算44xy xy x y x y x y x y ???? -+ +- ???-+???? = . 13. 若方程322x m x x -= --无解,则m = . 14.已知 113x y -=,则代数式21422x xy y x xy y ----的值为 15.如果1 1m m - =-,则2m m += ;2221m m +-= . 16. (2019四川巴中)若关于x 的分式方程 + =2m 有增根,则m 的值为 . 三、解答题(共46分) 17.(1)(2019山西)化简x x x x -- -112的结果是 . (2).(2019四川成都)化简62123412++-÷ ?? ? ?? +-x x x x 18.解下列方程: (1)2 3 11-= +x x ; (2) 1 1 12132 -=+--x x x .

第15章 分式单元测试试卷(A卷)

第十五章 分式单元测试(A ) 答题时间:90分钟 满分:100分 班级 学号 姓名 得分 一、填空题(共14小题,每题2分,共28分) 1.当x 时,分式 15x -无意义、当m = 时,分式2(1)(2)32 m m m m ---+的值为零. 2.各分式121,1,11222++---x x x x x x 的最简公分母是 . 3.若a =23,2223712 a a a a ---+的值等于_______. 4.已知y x 11-=3,则分式y xy x y xy x ---+2232的值为_______. 5.已知: 23(1)(2)12x A B x x x x -=+-+-+,则A =______,B =________. 6.科学家发现一种病毒的长度约为0.000043mm ,科学记数法表示0.000043的结果为 . 7.不改变分式的值,使分式的分子、分母中各项系数都为整数,=---05 .0012.02.0x x . 8.化简:32222222 32a b a b a ab ab a ab b a b +--÷++-= . 9.如果方程 5422436x x k x x -+=--有增根,则增根是_______________. 10.已知x y =32;则x y x y -+= __________. 11.m ≠±1时,方程m (mx-m+1)=x 的解是x =_____________.

12.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:1u +1v =1f .若f =6厘米,v =8厘米,则物距u = 厘米. 13.已知:15a a +=,则4221a a a ++=_____________. 14.已知01a a b x ≠≠=,,是方程2 100ax bx +-=的一个解,那么代数式2222a b a b --的值是____________. 二、选择题(共4小题,每题3分,共12分) 15.若分式x -51与x 322-的值互为相反数,则x = ( ) A .-2.4 B .12 5 C .-8 D .2.4 16.将()()1 021,3,44-??-- ??? 这三个数按从小到大的顺序排列,正确的结果是 ( ) A .()0 3-<114-?? ???<()24- B .114-?? ???<()03-<()24- C .()24-<()03-<114-?? ??? D .()03-<()24-<1 14-?? ??? 17.若22347x x ++的值为14,则21681 x x +-的值为 ( ) A .1 B .-1 C .-17 D .15 18.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要 求提前5 天交货,设每天应多做x 件,则x 应满足的方程为 ( ) A .72072054848x -=+ B .72072054848x +=+

分式单元测试题及答案

分式单元测试题 学生______ 日期_______ 得分_______ 一、填空题(每小题2分,共24分) 1.将2()a b c ÷-写成分式的形式:________. 2.用22,,1a x -+中的任意两个代数式组成一个分式:________. 3.当x ________时,分式 12x 有意义. 4.若2x =-,则分式22x -=________. 5.当x ________时,分式1 x x -无意义. 6.当x ________时,分式32x x -的值为零. 7.计算:b a a b ?=________. 8.化简:222a ab a =+________. 9.计算:232233-?????= ? ????? ________. 10.计算:511212x x +=________. 11.用科学记数法表示:0.0000056-=____________________. 12.写成不含有分母的式子,323() a b a b -=- ________. 二、选择题(每小题3分,共12分) 13.下列各式中,是分式的是 ( ). (A ) 12; (B )23a ; (C )222x x + ; (D )212x x +. 14.下列方程中,2x =不是它的一个解的是( ) (A )152x x + =;(B )240x -=;(C )2122x x x +=--;(D )22032 x x x -=++. 15.下列分式中,是最简分式的是( ).

(A )x xy 2 ; (B )a xy 2; (C )221++x x ; (D )222y xy y x ++ . 16.下列化简过程正确的是( ). (A )421262x x x =; (B ) y x y x y x +=-+122; (C )x x x x x 3123222+=+ ; (D )23 62+=---x x x x . 三、计算题(每小题7分,共28分) 17.22226543425x x x x x x x -++?+-- . 18.22562321 x x x x x x -+-÷+++ . 19.223123x x x ----2223x x x +--221223 x x x -+--. 20.221x x y x y --+.

新人教版八年级数学上册 第15章《分式》单元测试题及答案

人教版数学八年级上学期 《分式》单元测试复习试卷 (满分120分,限时120分钟) 一、选择题(共10小题,每小题3分,共30分) 1.式子3x 2,4x-y ,x+y ,2x +1π,5b 3a 中是分式的有( ) A 、 1个 B 、2个 C 、3个 D 、4个 2.若分式 x-2 x+1 的值为0,则x 的值为( ) A .﹣1 B .0 C .2 D .﹣1或2 3.下列等式中不一定成立的是( ) A 、 2x xy x y = B 、x y x y ππ= C 、xz yz x y = D 、( )() 2x x 2x y x y 2 2++= 4.计算 a 1 a 11a + -- ) A .﹣1 B .1 C . a 1a 1+- D .a 1 1a +- 5.化简分式 2x 1-÷(22x 1-1 1 +)的结果是( ) A .2 B . x 1 + C . 2x 1 - D .﹣2 6.使分式2x +1 1-3x 的值为负的条件是( ) A 、 x <0 B 、x >0 C 、x >13 D 、x <13 7.分式除法计算: m 1m -÷2m 1 m -的结果是( ) A .m B . 1m C .m ﹣1 D .1 m 1 - 8.已知a 、b 为实数,且ab=1,设M= a a+1+ b b+1,N=1a+1+1 b+1 ,则M 、N 的大小关系是( ) A 、 M >N B 、M=N C 、M <N D 、不确定

9.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x人,那么x满足的方程是() A.4800 x = 5000 x20 - B. 4800 x = 5000 x20 + C.4800 x20 - = 5000 x D. 4800 x20 + = 5000 x 10.已知 2x x-x+1= 1 2 ,则2x+ 2 1 x 的值为() A、1 2 B、 1 4 C、7 D、4 二、填空题(共6小题,每小题3分,共18分) 11.计算: x x1 - ﹣ 1 x1 - =. 12.计算a3?(1 a )2的结果是______ 13.要使分式 2 x9 3x9 - + 的值为,则x可取___________ 14.若分式 3 a+22 b- 4 b+1 =0,那么 a b =___ 15.计算: m m1 2m12m1 + + ++ =. 16.要使方式x-1 x+2 的值是非负数,则x的取值范围是____________ 三、解答题(共8题,共72分) 17.(本题8分)计算:(1 2 - a 2a2 + )÷ a a1 + 18.(本题8分)计算: -2 -2-1 2 -a b c 3 ?? ? ?? ÷ 2 2-2 3 -a b 2 ?? ? ??

(完整版)人教版八年级数学上分式教案

15.1 分 式 第1课时 从分数到分式 教学目标 1.了解分式的概念,知道分式与整式的区别和联系. 2.了解分式有意义的含义,会根据具体的分式求出分式有意义时字母所满足的条件. 3.理解分式的值为零、为正、为负时,分子分母应具备的条件. 教学重点 分式的意义. 教学难点 准确理解分式的意义,明确分母不得为零. 教学设计一师一优课 一课一名师 (设计者: ) 教学过程设计 一、创设情景,明确目标 一艘轮船在静水中的最大航速是20 km/h ,它沿江以最大船速顺流航行100 km 所用时间,与以最大航速逆流航行60 km 所用的时间相等.江水的流速是多少? 提示:顺流速度=水速+静水中的速度;逆流速度=静水中的速度-水速. ●自主学习 指向目标 1.自学教材第127至128页. 2.学习至此:请完成《学生用书》相应部分. 三、合作探究,达成目标 探究点一 分式的概念 活动一:阅读教材思考问题:式子S a ,V S 以及式子10020+v 和6020-v 有什么共同特点?它们与分数有什么相同点和不同点? 展示点评:如果A ,B 表示两个________(整式),并且B 中含有________(字母),那么式子A B 叫做分式. 小组讨论:如何判断一个式子是否为分式?分式与整式有什么区别?

反思小结:判断一个式子是否为分式,可根据:①具有分数的形式;②分子、分母都是整式;③分母中含有字母,分式与整式的区别在于:分式的分母中含有字母,而整式的分母中不含字母. 针对训练:见《学生用书》相应部分 探究点二 分式有意义的条件 活动二:(1)当x ≠0时,分式23x 有意义; (2)当x ≠1时,分式x x -1 有意义; (3)当b ≠53时,分式15-3b 有意义; (4)x ,y 满足__x≠y __时,分式x +y x -y 有意义. 展示点评:教师示范解答的一般步骤,强调分母不为零. 小组讨论:归纳分式有意义的条件. 反思小结:对于任何分式,分母均不能为零,即当分母不为零时,分式有意义;反之,分母为零时,分式无意义. 针对训练:见《学生用书》相应部分 四、总结梳理,内化目标 1.知识小结——(1)学习了分式,知道了分式与分数的区别.(2)知道了分式有意义和值为零的条件. 2.思想方法小结——类比、转化等数学思想. 五、达标检测,反思目标 1.下列各式①2x ,②x +y 5,③12-a ,④x π-1 中,是分式的有( C ) A .①② B .③④ C .①③ D .①②③④ 2.当x 为任意实数时,下列分式中,一定有意义的是( C ) A.x -1x 2 B.x +1x 2-1 C.x -1x 2+1 D.x -1x +2 3.某食堂有煤m t ,原计划每天烧煤a t ,现每天节约用煤b(b

第十五章分式单元测试卷及答案

第十五章分式单元测试卷及答案 (时刻:60分钟 满分:100分) 一、选择题(本大题共有10小题,每小题3分,共30分) 1、在 x 1、31、212 +x 、πy +5、m a 1+中分式的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个 2 、使分式1 1 22+-a a 有意义的a 的取值是( ) A 、a ≠1 B 、a ≠±1 C 、a ≠-1 D 、a 为任意实数 3、把分式 b a a +2中a 、b 都扩大2倍,则分式的值( ) A 、扩大4倍 B 、扩大2倍 C 、缩小2倍 D 、不变 4、能使分式1 22--x x x 的值为零的所有x 的值是( ) A 、 0=x B 、1=x C 、0=x 或1=x D 、0=x 或1±=x 5、下列运算错误的是( ) A 、253--=?a a a B 、326a a a =÷ C 、33323a a a -=- D 、() 1210 =+- 6、用科学计数法表示的数-3.6×10 -4 写成小数是 ( ) A 、0.00036 B 、-0.0036 C 、-0.00036 D 、-36000 7、化简x y x x 1?÷ 的结果是( ) A 、 1 B 、 xy C 、 x y D 、 y x 8、下列公式中是最简分式的是( ) A 、21227b a B 、22()a b b a -- C 、22x y x y ++ D 、22 x y x y -- 9、化简x y y x y x ---2 2的结果是( ) A 、y x - - B 、x y - C 、y x - D 、y x + 10、一件工作,甲单独做a 小时完成,乙单独做b 小时完成,则甲、乙两人合作完成需要( ) 小时。 A 、b a 11+ B 、ab 1 C 、b a +1 D 、b a a b + 二、填空题(本大题共有8小题,每空2分,共16分) 11、运算:() =?? ? ??+--1 311 ; 12、当x 时,分式3 13+-x x 有意义; 13、1纳米=0.000000001米,则2纳米用科学记数法表示为 米; 14、利用分式的差不多性质填空: (1) ())0(10 53≠=a axy xy a (2)() 1 422=-+a a ; 15、分式方程 11 11112 -=+--x x x 去分母时,两边都乘以 ; 16、要使2 4 15--x x 与 的值相等,则x =__________; 17、分式12x ,212y ,1 5xy -的最简公分母为 ; 18、若关于x 的分式方程3 232 -=--x m x x 无解,则m 的值为__________。 三、解答题(本大题共有7小题,共54分) 19、运算: (1)y x y y x x ---2 2 (2) 2 2 2 246??? ? ??-÷??? ??x y x y 20、运算: (1) bc c b ab b a +-+ (2)÷+--4412a a a 2 1 4 a a --

新人教版八年级下数学第十六章分式单元检测题及答案

八年级(下)数学单元检测题 (第十六章 分式) 一、选择题(每小题3分,共30分) 1.下列式子是分式的是( ) A .2x B .x 2 C .π x D .2y x + 2.下列各式计算正确的是( ) A .11--=b a b a B .ab b a b 2 = C .()0,≠=a ma na m n D .a m a n m n ++= 3.下列各分式中,最简分式是( ) A .()()y x y x +-73 B .n m n m +-22 C .2222ab b a b a +- D .222 22y xy x y x +-- 4.化简2 293m m m --的结果是( ) A.3+m m B.3 +-m m C.3-m m D.m m -3 5.若把分式xy y x +中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍 6.若分式方程 x a x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—2 7.已知432c b a ==,则c b a +的值是( ) A .54 B. 47 C.1 D.4 5 8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( ) A . x x -=+306030100 B .30 6030100-=+x x C .x x +=-306030100 D .306030100+=-x x 9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后

人教版八年级上册分式方程练习及解析

第八讲 分式方程 考点综述: 中考对于分式方程的主要要求包括分式方程的概念以及解法,会检验分式方程的根,分式方程的应用也是中考考查的重点和热点。 典型例题: 例1:解方程: (1)(2007连云港) 11322x x x -=--- (2)(2007德州)解方程:120112x x x x -+=+- (3)(2007宁波)解方程21124x x x -=-- 解:(1)方程两边同乘(2)x -,得1(1)3(2)x x =----. 解这个方程,得2x =. 检验:当2x =时,20x -=,所以2x =是增根,原方程无解 (2)两边同乘以(1)(12)x x +-, 得(1)(12)2(1)0x x x x --++=; 整理,得510x -=; 解得 15 x = . 经检验,15x =是原方程的根. (3)方程两边同乘(x-2)(x+2),得 x(x+2)-(x 2-4)=1, 化简,得2x=-3 x=-3/2, 经检验,x=-3/2是原方程的根. 例2:(2007沈阳)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队 单独完成此项工程所需天数的45 ,求甲、乙两个施工队单独完成此项工程各需多少天? 解:设甲施工队单独完成此项工程需x 天, 则乙施工队单独完成此项工程需45 x 天, 根据题意,得 10x +1245x =1

解这个方程,得x =25 经检验,x =25是所列方程的根 当x =25时,45 x =20 答:甲、乙两个施工队单独完成此项工程分别需25天和20天. 实战演练: 1.(2008安徽)分式方程112 x x =+的解是( ) A . x=1 B . x =-1 C . x=2 D . x =-2 2.(2008荆州)方程21011x x x -+=--的解是( ) A .2 B .0 C .1 D .3 3.(2008西宁)“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( ) A .12012045x x -=+ B . 12012045x x -=+ C .12012045x x -=- D .12012045x x -=- 4.(2008襄樊)当m = 时,关于x 的分式方程213 x m x +=--无解. 5.(2008大连)轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为_________________________________. 6.(2008泰州)方程 22123=-+--x x x 的解是=x __________. 7.解方程: (1)(2008赤峰)2112323x x x -=-+ (2)(2008南京)22011 x x x -=+- 8.(2008咸宁) A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?

相关文档
最新文档