高考物理选考热学计算题(一)含答案与解析

高考物理选考热学计算题(一)含答案与解析
高考物理选考热学计算题(一)含答案与解析

高考物理选考热学计算题(一)

组卷老师:莫老师

一.计算题(共50小题)

1.开口向上、内壁光滑的汽缸竖直放置,开始时质量不计的活塞停在卡口处,气体温度为27℃,压强为0.9×105 Pa,体积为1×10﹣3m3,现缓慢加热缸内气体,试通过计算判断当气体温度为67℃时活塞是否离开卡口。(已知外界大气压强p0=1×105Pa)

2.铁的密度ρ=7.8×103kg/m3、摩尔质量M=5.6×10﹣2 kg/mol,阿伏加德罗常数NA=6.0×1023mol﹣1.可将铁原子视为球体,试估算:(保留一位有效数字)

①1 克铁含有的分子数;

②铁原子的直径大小.

3.如图所示,一个上下都与大气相通的直圆筒,内部横截面积为S=0.01m2,中间用两个活塞A和B封住一定质量的气体。A、B都可沿圆筒无摩擦地上下滑动,且不漏气。A的质量不计,B的质量为M,并与一劲度系数为k=5×103N/m的较长的弹簧相连。已知大气压p0=1×105Pa,平衡时两活塞之间的距离l0=0.6m,现用力压A,使之缓慢向下移动一段距离后保持平衡。此时用于压A的力F=500N.求活塞A下移的距离。

4.如图,密闭性能良好的杯盖扣在盛有少量热水的杯身上,杯盖质量为m,杯

身与热水的总质量为M,杯子的横截面积为S.初始时杯内气体的温度为T0,压强与大气压强p0相等.因杯子不保温,杯内气体温度将逐步降低,不计摩擦.(1)求温度降为T1时杯内气体的压强P1;

(2)杯身保持静止,温度为T1时提起杯盖所需的力至少多大?

(3)温度为多少时,用上述方法提杯盖恰能将整个杯子提起?

5.如图,上端开口、下端封闭的足够长的细玻璃钌竖直放置,﹣段长为l=15.0cm 的水银柱下方封闭有长度也为l的空气柱,已知大气压强为p0=75.0cmHg;如果使玻璃管绕封闭端在竖直平面内缓慢地转动半周.求在开口向下时管内封闭空气柱的长度.

6.如图所示为一种减震垫,由12个形状相同的圆柱状薄膜气泡组成,每个薄膜气泡充满了体积为V1,压强为p1的气体,若在减震垫上放上重为G的厚度均匀、质量分布均匀的物品,物品与减震垫的每个薄膜表面充分接触,每个薄膜上表面与物品的接触面积均为S,不计每个薄膜的重,大气压强为p0,气体的温度不变,求:

(i)每个薄膜气泡内气体的体积减少多少?

(ii)若撤去中间的两个薄膜气泡,物品放上后,每个薄膜上表面与物品的接触面积增加了0.2S,这时每个薄膜气泡的体积又为多大?

7.一足够高的内壁光滑的导热气缸竖直地浸放在盛有冰水混合物的水槽中,用不计质量的活塞封闭了一定质量的理想气体,活塞的面积为1.5×10﹣3m2,如图1所示,开始时气体的体积为3.0×10﹣3m3,现缓慢地在活塞上倒上一定质量的细沙,最后活塞静止时气体的体积恰好变为原来的三分之一.设大气压强为1.0×105Pa.重力加速度g取10m/s2,求:

(1)最后气缸内气体的压强为多少?

(2)最终倒在活塞上细沙的总质量为多少千克?

(3)在P﹣V图上(图2)画出气缸内气体的状态变化过程(并用箭头标出状态变化的方向).

8.如图所示,竖直放置的气缸,活塞横截面积为S=0.01m2,厚度不计。可在气缸内无摩擦滑动。气缸侧壁有一个小孔,与装有水银的U形玻璃管相通。气缸内封闭了一段高为L=50cm的气柱(U形管内的气体体积不计)。此时缸内气体温度为27℃,U形管内水银面高度差h l=5cm。已知大气压强p0=1.0×l05Pa,水银的密度ρ=13.6×103kg/m3,重力加速度g取10m/s2。

①求活塞的质量m;

②若在活塞上缓慢添加M=26.7kg的沙粒时,活塞下降到距气缸底部H=45cm处,求此时气缸内气体的温度。

9.如图所示,在两端封闭粗细均匀的竖直长管道内,用一可自由移动的活塞A 封闭体积相等的两部分气体,开始时管道内气体温度都为T0=500K,下部分气体的压强p0=1.25×105Pa,活塞质量m=0.25kg,管道的内径横截面积S=1cm2.现保持管道下部分气体温度不变,上部分气体温度缓慢降至T,最终管道内上部分气体体积变为原来的四分之三,若不计活塞与管道壁间的摩擦,g=10m/s2,求此时:

①下部分气体的压强p;

②上部分气体的温度T.

10.国庆期间小华和家人去拉萨市参观布达拉宫,为了防止出现高原反应现象,他上网购买了一瓶便携式登山瓶装氧气,氧气瓶导热性能良好,品牌产品数据见表格,瓶内氧气可视为理想气体,厂家将瓶装氧气送达小华在拉萨市的酒店,该地海拔约为3700m,大气压强为65000pa,温度为7℃,回答下列问题。

①在拉萨市,瓶内氧气的实际压强为多少?

②酒店在受到该瓶装氧气后,由于保管不慎,发生缓慢泄漏,设瓶内氧气在未泄漏前,质量为M,当瓶内气压减小到等于外界大气压时,瓶内剩余氧气的质量为多少?

11.某同学用如图所示装置研究气体的等温变化,导热良好的气缸固定,轻质细

绳一端固定,另一端与活塞相连,定滑轮下面挂一只小桶,改变小桶中沙子质量来改变细绳对活塞的拉力,已知活塞质量为m1,横截面积为S,小桶质量为m2,大气压强为p0,不计滑轮质量和各出摩擦,环境温度保持不变,小桶中没有盛放沙子时测出活塞与气缸底部之间距离为h,现缓慢给小桶中加入质量为m的沙子,问此过程活塞移动的距离是多少?

12.将一厚度不计粗细均匀的导热性能良好的长直玻璃管水平固定在桌面上,现用一厚度不计的活塞封闭一定质量的理想气体,已知活塞与玻璃管之间的摩擦可忽略不计。已知外界大气压强为p,封闭气柱的长度为L,外界环境温度为T.现用质量不计的细绳跨过光滑的定滑轮连接活塞与质量为m的重物,连接活塞的细绳呈水平状态,当系统再次平衡时,活塞向右移动的距离为.假设整个过程中外界大气压强恒为p,重力加速度大小为g。求:

①玻璃管的横截面积为多大?

②当外界环境的温度降为时,系统再次达到平衡,气柱的长度为多少?

13.一质量M=10kg、高度L=35cm的圆柱形气缸,内壁光滑,气缸内有一薄活

寨封闭了一定质量的理想气体,活塞质量m=4kg、截面积s=100cm2.温度t0=47℃时,用绳子系住活塞将气缸悬挂起来,如图甲所示,气缸内气体柱的高L1=32cm,如果用绳子系住气缸底,将气缸倒过来悬挂起来,如图乙所示,气缸内气体柱的高L2=30cm,两种情况下气缸都处于竖直状态,取重力加速度g=10m/s2,求:(i)当时的大气压强:

(ii)图乙状态时,在活塞下挂一质量m'=6kg的物体,如图丙所示,则温度升高到多少时,活塞将从气缸中脱落.

14.如图,将导热性良好的薄壁圆筒开口向下竖直缓慢地放入水中,筒内封闭了一定质量的气体(可视为理想气体)。当筒底与水面相平时,圆筒恰好静止在水中。此时水的温度t1=7.0℃,筒内气柱的长度h1=14cm。已知大气压强p0=1.0×105Pa,水的密度ρ=1.0×103kg/m3,重力加速度大小g取10m/s2。

(ⅰ)若将水温缓慢升高至27℃,此时筒底露出水面的高度△h为多少?(ⅱ)若水温升至27℃后保持不变,用力将圆筒缓慢下移至某一位置,撤去该力后圆筒恰能静止,求此时筒底到水面的距离H(结果保留两位有效数字)。

15.2017年5月。我国成为全球首个海域可燃冰试采获得连续稳定气流的国家,可燃冰是一种白色固体物质,1L可燃冰在常温常压下释放160L的甲烷气体,常温常压下甲烷的密度0.66g/L,甲烷的摩尔质量16g/mol,阿伏伽德罗常数6.0×1023mol﹣1,请计算1L可燃冰在常温常压下释放出甲烷气体分子数目(计算结果保留一位有效数字)

16.如图所示,水平放置的两端开口长14cm、横截面积为1×10﹣5m2的均匀玻璃管一端与一体积为3.9×10﹣6m3球形玻璃泡相通,当环境温度为47℃时在管口

封入长为5cm的水银柱。假设环境温度改变时大气压强不变。

①为了不让水银柱进人玻璃泡,环境温度不能低于多少℃?

②若将该装置改装成一个环境温度计,可在玻璃管上标上刻度来显示对应的环境温度,请通过分析说明在有效的范围内玻璃管上标出的刻度是均匀的还是不均匀的?

17.如图所示,足够长密闭气缸直立于水平面上,活塞将气缸分成两部分,上部为真空,下部封有一定量的气体,活塞和缸的顶部连有一轻弹簧,如果活塞处于气缸底部,弹簧刚好处于原长.在图示位置气体的长度L1=0.2m,此时弹簧的弹力等于活塞重力的0.8倍.忽略活塞与缸壁间的摩擦.现保持缸内气体温度不变,将气缸水平放置,求缸内气体的长度L2.

18.一个水平放置的气缸,由两个截面积不同的圆筒联接而成.活塞A、B用一长为4L的刚性细杆连接,L=0.5m,它们可以在筒内无摩擦地左右滑动.A、B的截面积分别为S A=40cm2,S B=20cm2,A、B之间封闭着一定质量的理想气体,两活塞外侧(A的左方和B的右方)是压强为P0=1.0×105Pa的大气.当气缸内气体温度为T1=525K时两活塞静止于如图所示的位置.

(1)现使气缸内气体的温度缓慢下降,当温度降为多少时活塞A恰好移到两圆筒连接处?

(2)若在此变化过程中气体共向外放热500J,求气体的内能变化了多少?

19.如图所示,两端开口、粗细均匀的足够长U型玻璃管插在容积很大的水银槽中,管的上部有一定长度的水银,两段空气柱被封闭在左右两侧的竖直管中。开启阀门A,当各水银液面稳定时,位置如图所示,此时两部分气体温度均为

300K.已知h1=5cm,h2=l0cm,右侧气体柱长度L1=60cm,大气压为P0=75cmHg,求:

①左则竖直管内气体柱的长度L2:

②关闭阀门A,当右侧竖直管内的气体柱长度为L3=68cm时(管内气体未溢出),则气体温度应升高到多少。

20.如图所示,开口向下竖直放置的内部光滑气缸,气缸的截面积为S,其侧壁和底部均导热良好,内有两个质量均为m的导热活塞,将缸内理想分成I、II两部分,气缸下部与大气相通,外部大气压强始终为p0,mg=0.2p0S,环境温度为T0,平衡时I、II两部分气柱的长度均为l,现将气缸倒置为开口向上,求:(i)若环境温度不变,求平衡时I、II两部分气柱的长度之比;

(ii)若环境温度缓慢升高,但I、II两部分气柱的长度之和为2l时,气体的温度T为多少?

21.如图所示,一圆柱形绝热气缸竖直放置,通过绝热活塞封闭着一定质量的理想气体。活塞的质量为m,横截面积为S,与容器底都相距h,此时封闭气体的温度为T1.现通过电热丝缓慢加热气体,当气体吸收热量Q时,气体温度上升到T2.已知大气压强为p0,重力加速度为g,不计活塞与气缸的摩擦,求:

①活塞上升的高度;

②加热过程中气体的内能增加量。

22.一定质量的理想气体从状态A变化到状态B再变化到状态C,其状态变化过程的p﹣V图象如图所示.已知该气体在状态C时的温度为300K.求:

(i)该气体在状态A、B时的温度分别为多少?

(ii)该气体从状态A到B是吸热还是放热?请写明理由.

23.如图所示,静止的气缸内封闭了一定质量的气体,水平轻杆一端固定在墙壁上,另一端与气缸内的活塞相连,已知大气压强为1.0×105Pa,气缸的质量为50kg,活塞质量不计,其横截面积为0.01m2,气缸与地面间的最大静摩擦力为气缸重力的0.2倍,活塞与气缸之间的摩擦可忽略,开始时被封闭气体压强为1.0×105Pa、温度为27℃,取g=10m/s2,T=273+t。

①缓慢升高气体温度,求气缸开始向左运动时气体的压强和温度;

②若要保证气缸静止不动,求封闭气体温度的取值范围。

24.如图所示,截面积分别为S A=1cm2、S B=0.5cm2的两个上部开口的柱形气A、B,底部通过体积可以忽略不计的细管连通,A、B两个气缸内分别有两个不计厚度的活塞,质量分别为m A=1.4kg、m B=0.7kg.A气缸内壁粗糙,活塞与气缸间的最大静摩擦力为F f=3N;B气缸内壁光滑,且离底部2h高处有一活塞销.当气缸内充有某种理想气体时,A、B中的活塞距底部均为h,此时气体温度为T0=300K,外界大气压为P0=1.0×105Pa.现缓慢升高气体温度,(g取10m/s2,)求:

①当气缸B中的活塞刚好被活塞销卡住时,气体的温度;

②当气缸A中的活塞刚要滑动时,气体的温度T2.

25.如图所示,粗细均匀的试管的横截面积为S,质量为m的活塞可在其内部无摩擦地滑动,它封闭了一段气柱,当试管水平放置且静止时,管内封闭气柱的长度为L,现使试管在水平面内以角速度ω绕位于试管开口端的轴OO'匀速转动,此时活塞与转轴OO'间的距离为L活塞不漏气,运动中封闭气体的温度不变,大气压强为p0,求:

(i)试管转动时封闭气体的压强;

(ii)试管转动时封闭气柱的长度。

26.如图所示,一个绝热气缸竖直放在水平地面上,缸体质量M=10kg,活塞质量m=4kg,活塞横截面积S=2×10﹣3m2.活塞上面的气缸里封闭了一定质量的理想气体,活塞下面与劲度系数k=2×103N/m的轻弹簧相连.气缸底部有一个小气孔O与外界相通,大气压强P0=1.0×105Pa.当气缸内气体温度为400K时,弹簧恰好为自然长度,此时缸内气柱长度L1=20cm,g取10m/s2,若缸体始终竖直,活塞始终没有漏气且与缸壁无摩擦.求:

①缓慢加热缸体内气体,当气缸恰好对地面无压力的时候,求弹簧的形变量及缸内气体的压强?

②当缸内气柱长度L3=30cm时,缸内气体温度为多少?

27.A,B是体积相同的气缸,B内有一导热的、可在气缸内无摩擦滑动的、体积不计的活塞C,D为不导热的阀门.起初,阀门关闭,A内装有压强P1=2.0×105pa温度T1=300K的氮气.B内装有压强P2=1.0×105Pa,温度T2=600K的氧气.打开阀门D,活塞C向右移动,最后达到平衡,以V1和V2分别表示平衡后氮气和氧气的体积,则V1:V2等于多少?(假定氧气和氮气均为理想气体,并与外界无热交换,连接气缸的管道体积可忽略)

28.如图所示,一个内壁光滑的导热气缸倾斜放置,气缸侧面与水平方向成53°角,周围环境温度为27℃,现将一个质量为1kg、截面积与气缸横向面积相同的活塞缓慢放在气缸口,活塞与气缸紧密接触且不漏气。已知活塞面积为4.0×10﹣4 m2,大气压强为1.0×105 Pa,g取10m/s2,气缸高为0.3m,绝对零度为﹣273℃,假设气缸内的气体为理想气体。sin 37°=0.6,求:

①活塞静止时气缸内的气体体积;

②现在活塞上放置一个4kg的砝码,再让周围环境温度缓慢升高,要使活塞再次回到气缸顶端,则环境温度为多高?

29.如图所示,容器A和汽缸B都能导热,均处于27℃的环境中,汽缸B上方与大气连通,大气压强为P0=1.0×105Pa.开始时阀门K关闭。A内为真空,其容积V A=1.2L,B内活塞横截面积S=100cm2、质量m=1kg,活塞下方充有理想气体,其体积V s=4.8L.活塞上方恰与汽缸上部接触但没有弹力。A与B间连通细管体积不计,打开阀门K后使活塞缓慢下移。不计摩擦,g取10m/s2。

①求稳定后活塞的位置及活塞下移过程中汽缸B内气体对活塞做的功。

②稳定后将阀门K再次关闭,然后把整个装置放置于207℃的恒温槽中。求活塞稳定后汽缸B内气体的压强。

30.如图,可自由移动的活塞将密闭气缸分为体积相等的上下两部分A和B,初始时A、B中密封的理想气体温度均为800K,B中气体压强P=1.25×l05 Pa,活塞质量m=2.5kg,气缸横截面积S=10cm2,气缸和活塞均由绝热材料制成.现利用控温装置(未画出)保持B中气体温度不变,缓慢降低A中气体温度,使A中气体体积变为原来的,若不计活塞与气缸壁之间的摩擦,求稳定后A中气体的温度.(g=10m/s2)

31.如图所示,体积为V、内壁光滑的圆柱形导热气缸顶部有一质量和厚度均可忽略的活塞;气缸内密封有温度为3T0、压强为2P0的理想气体.P0和T0分别为大气的压强和温度.已知:容器内气体的所有变化过程都是缓慢的,求:缸内气体与大气达到热平衡时外界对气体所做的功W.

32.如图所示,一圆柱形绝热气缸竖直放置,通过绝热活塞封闭着一定质量的理想气体。活塞的质量为m,横截面积为S,与容器底部相距h.此时封闭气体的温度为T1,现通过电热丝缓慢加热气体,当气体吸收热量Q时,气体温度上升到T2,已知大气压强为P0,重力加速度为g,不计活塞与气缸的摩擦,求:

(1)活塞上升的高度;

(2)加热过程中气体的内能增加量。

33.竖直平面内有一直角形内径相同的导热良好的细玻璃管如图所示,A端封闭,C端开口,AB=BC=l0,且此时A,C端等高.平衡时,管内水银如图,竖直平面内有一直角形内径相同的细玻璃管,A端封闭,C端开口,AB=BC=l0,且此时A、C端等高.管内水银总长度为l0,玻璃管AB内封闭有长为的空气柱.已知大气压强为l0汞柱髙,环境温度为300K.(管内封入的气体可视为理想气体)

①如果使玻璃管绕B点在竖直平面内逆时针缓慢地转动,并缓慢升高环境温度,求AB管水平时,若要保持AB管内气体长度不变,则温度需要升高到多少?

②如果使玻璃管绕B点在竖直平面内逆时针缓慢地转动.并保持环境温度不变,求AB管水平时,管内气体的压强为多少?

34.如图所示,直立的气缸中有一定质量的理想气体,活塞的质量为m,横截面积为S,气缸内壁光滑且缸壁导热良好,周围环境温度保持不变。开始时活塞恰好静止在A处,现轻放一物体在活塞上,活塞下移。经过足够长时间后,活塞系统停在B点,已知AB=h,B处到气缸底部的距离为h,大气压强为p0,重力加速度为g.求:

(i)物体将活塞压至B处平衡时,缸内气体的压强p2;整个过程中,缸内气体是吸热还是放热,简要说明理由;

(i)已知初始温度为27℃,若升高环境温度至T1,活塞返回A处达稳定状态,T1的值是多大。

35.为了更方便监控高温锅炉外壁的温度变化,在锅炉的外壁上镶嵌一个导热性能良好的气缸,气缸内气体温度可视为与锅炉外壁温度相等。气缸开口向上,用质量为m=1kg的活塞封闭一定质量的理想气体,活塞横截面积为S=1cm2.当气缸内温度为300K时,活塞与气缸底间距为L,活塞上部距活塞处有一用轻质绳悬挂的重物M.当绳上拉力为零时,警报器报警。已知室外空气压强P0=1.0×105Pa,活塞与器壁之间摩擦可忽略。求:

(i)当活塞刚刚碰到重物时,锅炉外壁温度为多少?

(ii)若锅炉外壁的安全温度为1000K,那么重物的质量应是多少?

36.如图所示,U形管右管的截面积为左管的两倍,外界大气压强p0=75cmHg.左端管口封闭,封有长h0=30cm的气柱,左右两管水银面高度差H=15cm,环境温度t0=27℃。

①求环境温度升高到多少摄氏度时,两侧水银面等高;

②若环境温度保持不变而在右侧管中加入水银,使两侧水银面等高,求右侧水银面升高的高度。

37.如图所示,在竖直放着的高为H的圆柱形气缸内用质量m的活塞密封住一定质量的理想气体,活塞与容器壁之间无摩擦、容器的横截面积为S.开始时气体的温度为T0,活塞位于气缸中部,现对气缸缓慢加热,当活塞缓慢上升到距离

顶部H处时再次平衡,此过程气体吸收的热量为Q=P0HS,外界大气压始终为P0、重力加速度为g。求:

(i)此过程中气缸内气体内能的变化量△U;

(ii)平衡时气体的温度T1。

38.如图所示,一固定的直立气缸由上、下两个连通的圆筒构成,圆筒的长度均为2L.质量为2m、面积为2S的导热良好的活塞A位于上部圆筒的正中间,质量为m、面积为S的绝热活塞B位于下部圆筒的正中间,两活塞均可无摩擦滑动,活塞B的下方与大气连通。最初整个系统处于静止状态,A上方的理想气体的温度为T.已知大气压强恒为p0=,重力加速度大小为g,气缸壁、管道均不导热,外界温度保持不变,圆筒之间的管道的体积忽略不计,不考虑话塞的厚度。现在对话塞A 上方的气体缓慢加热,求:

(i)当活寨B下降到气缸底部时,活塞A上方气体的温度;

(ii)当温度缓慢升高到1.8T时,活塞A相对初始位置下降的距离。

39.如图所示,总长度为15cm的气缸放置在水平桌面上。活塞的质量m=20kg,横截面积S=100cm2,活塞可沿气缸壁无摩擦地滑动但不漏气,开始时活塞与气缸底的距离12cm.外界气温为27℃,大气压强为1.0×105 Pa.将气缸缓慢地转到开口向上的竖直位置,待稳定后对缸内气体逐渐加热,使活塞上表面刚好与气缸口相平,取g=10m/s2,求:

①活塞上表面刚好与气缸口相平时气体的温度为多少?

②在对气缸内气体加热的过程中,吸收了189J的热量,则气体增加的内能是多少?

40.如图甲所示,粗细均匀、横截面积为S的导热光滑足够长的细玻璃管竖直放置,管内用质量为m的水银柱密封着长为L的理想气柱.已知环境温度为T1,大气压强为P0,重力加速度为g.

(i)若仅将环境温度降为,求稳定后的气柱长度;

(ⅱ)若环境温度T1不变,将玻璃管放于水平桌面上并让其以加速度a向左做匀加速直线运动(如图乙所示),求稳定后的气柱长度.

41.如图所示,开口向上竖直放置的内壁光滑绝热气缸,汽缸下面有加热装置。开始时整个装置处于平衡状态,缸内理想气体Ⅰ、Ⅱ两部分高度均为L0,温度均为T0.已知活塞A导热、B绝热,A、B质量均为m,横截面积为S,外界大气压强为p0保持不变,环境温度保持不变。现对气体Ⅱ缓慢加热,当A上升h时停止加热。求:

①此时气体Ⅱ的温度;

②若在活塞A上逐渐添加铁砂,当铁砂质量等于m时,气体Ⅰ的高度。

42.如图所示,一位消防员在火灾现场的房屋内发现一个容积为V0的废气的氧

气罐(视为容积不变),经检测,内部封闭气体的压强为1.2p0,为了消除安全隐患,消防员拟用下面两种处理方案:

①冷却法:经科学冷却,使罐内气体变为27℃、一个标准大气压p0,求气体温度降低了多少摄氏度;

②放气法:保持罐内气体温度不变,缓慢地放出一部分气体,使气体压强回落到p0,求氧气罐内剩余气体的质量与原来总质量的比值.

43.如图所示,一直立的汽缸用一质量为m的活塞封闭一定量的理想气体,活塞横截面积为S,汽缸内壁光滑且缸壁是导热的,开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点。(已知AB=h,大气压强为p0,重力加速度为g )

①求活塞停在B点时缸内封闭气体的压强;

②设周围环境温度保持不变,求整个过程中通过缸壁传递的热量Q(一定量理想气体的内能仅由温度决定)。

44.如图所示,两玻璃管内径相同,底部用细管相连,开始两管内水平面相平,水银柱长10cm,管内空气柱高20cm,用阀门将右管口封闭,用活塞封闭左管口,缓慢推动活塞压缩左管内气体,使左管内的水印恰好全部进入右管,然后保持活塞位置不动,已知大气压为75cmHg,细管容器忽略不计,环境温度保持不变,求:

①左管活塞下移的距离(结果保留两位有效数字);

②将右管上端的阀门缓慢开启,计算说明右管内水银是否会溢出。

45.如图所示,在水平地面上固定一个内壁光滑、内横截面积为S的气缸,气缸上顶部开﹣很小的孔与外界大气相通,已知外界的大气压强为P0.缸内有﹣质量为m、不计厚度的光滑圆柱形活塞,当活塞下面气体的热力学温度为T0时,活塞位于气缸的中央。若通过缸内底部的电热丝缓慢加热气体,求:

(i)当活塞恰好到达气缸顶部时,活塞下面气体的温度T1;

(ii)当活塞下面的气体的温度达到T2=3T0时,其压强的大小。

46.如图所示,一定质量的理想气体经历了AB、BPC、CA三个变化过程,回到初始状态.已知在p﹣V图象中AB是一段以O′点为圆心的圆弧,理想气体在状态A时的温度为127℃.求:

(1)理想气体状态P时的温度T p.

(2)从A到B过程中气体放出的热量(已知p﹣V图象与横轴所围成面积表示功).

47.如图所示,玻璃管A上端封闭,B上端开口且足够长,两管下端用橡皮管连接起来,A管上端被一段水银柱封闭了一段长为6cm的气体,外界大气压为75cmHg,左右两水银面高度差为5cm,温度为t1=27℃.

①保持温度不变,上下移动B管,使A管中气体长度变为5cm,稳定后的压强为多少?

②稳定后保持B不动,为了让A管中气体体积回复到6cm,则温度应变为多少?

48.一定质量的理想气体体积V与热力学温度T的关系图象如图所示,气体在状态A时的压强p0=1.0×105 Pa,线段AB与V轴平行。

(1)求状态B时的压强为多大?

(2)气体从状态A变化到状态B过程中,对外界做的功为10J,求该过程中气体吸收的热量为多少?

49.如图所示,粗细均匀的弯曲玻璃管A、B两端开口,管内有一段水银柱,右管内气体柱长为40cm,中管内水银面与管口A之间气体柱长为42cm,先将口B 封闭,再将左管竖直插入水银槽中,设整个过程温度不变,稳定后右管内水银面比中管内水银面高4cm,求

(1)稳定后右管内的气体压强P

(2)左管A端插入水银槽的深度h.(大气压强P0=76cmHg)

50.如图所示,气缸开口向右、固定在水平桌面上,气缸内用活塞封闭了一定质量的理想气体,活塞横截面积为S=1×10﹣3m2;活塞与气缸壁导热良好,轻绳跨过定滑轮将活塞和地面上的质量为m=1kg重物连接。开始时绳子刚好伸直且张

力为零,活塞离缸底距离为L1=27cm,被销子K固定在图示位置,此时气缸内气体的压强P1=1.1×105pa,温度T1=330K,外界大气压强P0=1.0×105pa,g=10m/s2,不计一切摩擦和阻力;若在此时拔去销子K,降低气缸内气体的温度,求:Ⅰ、重物刚好离开地面时,气体的温度为多少?

Ⅱ、重物缓慢上升2cm,气体的温度为多少?

高考物理超经典力学题集萃

高考物理经典力学计算题集萃 =10m/s沿x1.在光滑的水平面内,一质量m=1kg的质点以速度v 0 轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求(1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点 时的速度. 2.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F. 3.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少? 4.如图1-72所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度) 5.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2) 6.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人

备战2020年高考物理计算题专题复习《向心力的计算》(解析版)

《向心力的计算》 一、计算题 1.如图所示,长为L的细绳一端与一质量为m的小球可看成质点 相连,可绕过O点的水平转轴在竖直面内无摩擦地转动.在最 低点a处给一个初速度,使小球恰好能通过最高点完成完整的圆 周运动,求: 小球过b点时的速度大小; 初速度的大小; 最低点处绳中的拉力大小. 2.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直 轨道相切,半径,物块A以的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动。P点左侧轨道光滑,右侧轨道呈粗糙段,光滑段交替排列,每段长度都为。物块与各粗糙段间的动摩擦因数都为,A、B的质量均为重力加速度g 取;A、B视为质点,碰撞时间极短。 求A滑过Q点时的速度大小V和受到的弹力大小F; 若碰后AB最终停止在第k个粗糙段上,求k的数值; 求碰后AB滑至第n个光滑段上的速度与n的关系式。

3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管 道内径的小球,小球在管道内做圆周运动,从B点脱离后做平抛运动,经过秒后又恰好垂直与倾角为的斜面相碰到。已知圆轨道半径为,小球的质量为,g取求 小球在斜面上的相碰点C与B点的水平距离 小球经过圆弧轨道的B点时,受到轨道的作用力的大小和方向? 小球经过圆弧轨道的A点时的速率。 4.如图所示,倾角为的粗糙平直导轨与半径为R的光 滑圆环轨道相切,切点为B,整个轨道处在竖直平面内。一 质量为m的小滑块从轨道上离地面高为的D处无初速 下滑进入圆环轨道,接着小滑块从圆环最高点C水平飞出, 恰好击中导轨上与圆心O等高的P点,不计空气阻力。求: 小滑块在C点飞出的速率; 在圆环最低点时滑块对圆环轨道压力的大小; 滑块与斜轨之间的动摩擦因数。

2019高考物理真题汇编——计算题

目录 牛顿第二定律 (2) 功能 (3) 动量 (3) 力学综合 (3) 动量能量综合 (4) 带电粒子在电场中的运动 (6) 带电粒子在磁场中的运动 (7) 电磁感应 (8) 法拉第电磁感应定律(动生与感生电动势) (8) 杆切割 (8) 线框切割 (9) 感生电动势 (9) 电磁感应中的功能问题 (10) 电磁科技应用 (11) 热学 (12) 光学 (14) 近代物理 (15) 思想方法原理类 (16)

牛顿第二定律 1.【2019天津卷】完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并 取得成功。航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示。为了便于研究舰载机的起飞过程,假设上翘甲板BC是与水平甲板AB相切的一段圆弧,示意如图2,AB长L1=150m,BC水平投影L2=63m,图中C点切线方向与水平方向的夹角θ=12°(sin12°≈0.21)。若舰载机从A点由静止开始做匀加速直线运动,经t=6s到达B点进入BC.已知飞行员的质量m=60kg,g=10m/s2,求 (1)舰载机水平运动的过程中,飞行员受到的水平力所做功W; (2)舰载机刚进入BC时,飞行员受到竖直向上的压力F N多大。 2.【2019江苏卷】如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐。 A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下。接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下。最大静摩擦力等于滑动摩擦力,重力加速度为g。求: (1)A被敲击后获得的初速度大小v A; (2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a B′; (3)B被敲击后获得的初速度大小v B。

高考物理物理学史知识点经典测试题含答案(2)

高考物理物理学史知识点经典测试题含答案(2) 一、选择题 1.下列叙述正确的是() A.开普勒三定律都是在万有引力定律的基础上推导出来的 B.爱伊斯坦根据他对麦克斯韦理论的研究提出光速不变原理,这是狭义相对论的第二个基本假设 C.伽利略猜想自由落体的运动速度与下落时间成正比,并直接用实验进行了验证 D.红光由空气进入水中,波长变长,颜色不变 2.了解物理规律的发现过程,学会像科学家那样观察和思考,往往比掌握知识本身更重要。以下符合史实的是( ) A.焦耳发现了电流的磁效应 B.法拉第发现了电磁感应现象,并总结出了电磁感应定律 C.惠更斯总结出了折射定律 D.英国物理学家托马斯杨利用双缝干涉实验首先发现了光的干涉现象 3.在物理学建立、发展的过程中,许多物理学家的科学发现推动了人类历史的进步,关于科学家和他们的贡献,下列说法正确的是() A.古希腊学者亚里士多德认为物体下落的快慢由它们的重量决定,伽利略在他的《两种新科学的对话》中利用逻辑推断,使亚里士多德的理论陷入了困境 B.德国天文学家开普勒对他导师第谷观测的行星数据进行了多年研究,得出了万有引力定律 C.英国物理学家卡文迪许利用“卡文迪许扭秤”首先较准确的测定了静电力常量 D.牛顿首次提出“提出假说,数学推理实验验证,合理外推”的科学推理方法 4.科学发现或发明是社会进步的强大推动力,青年人应当崇尚科学在下列关于科学发现或发明的叙述中,存在错误的是 A.安培提出“分子电流假说”揭示了磁现象的电本质 B.库仑发明了“扭秤”,准确的测量出了带电物体间的静电力 C.奥斯特发现了电流的磁效应,揭示了电与磁的联系 D.法拉第经历了十年的探索,实现了“电生磁”的理想 5.关于物理学家做出的贡献,下列说法正确的是() A.奥斯特发现了电磁感应现象 B.韦伯发现了电流的磁效应,揭示了电现象和磁现象之间的联系 C.洛伦兹发现了磁场对电流的作用规律 D.安培观察到通电螺旋管和条形磁铁的磁场很相似,提出了分子电流假说 6.理想实验有时更能深刻地反映自然规律。伽利略设想了一个理想实验,其中有一个是经验事实,其余是推论。 ①减小第二个斜面的倾角,小球在这斜面上仍然要达到原来原来释放时的高度。 ②两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面。 ③如果没有摩擦,小球将上升到原来释放时的高度。 ④继续减小第二个斜面的倾角,最后使它成水平面,小球要沿水平面作持续的匀速运动。

2020高考物理计算题专题练习题含答案

计算题 1.如图所示的电路中,用电动势E=6V,内阻不计的电池组向电阻R0=20Ω,额电压U0=4.5V的灯泡供电,求: (1)要使系统的效率不低于η0=0.6,变阻器的阻值及它应承受的最大电流是多大? (2)处于额定电压下的灯泡和电池组的最大可能效率是多少?它们同时适当选择的变阻器如何连接,才能取得最大效率? 2.环保汽车将为2008年奥运会场馆服务。某辆以蓄电池为驱动能源的环保汽车,总质量3 m=?。当它在水平路面上以v=36km/h的速度匀速行驶310kg 时,驱动电机的输入电流I=50A,电压U=300V。在此行驶状态下 ; (1)求驱动电机的输入功率P 电 (2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P机,求汽车所受阻力与车重的比值(g取10m/s2);

(3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积。结合计算结果,简述你对该设想的思考。 已知太阳辐射的总功率260410W P =?,太阳到地球的距离111.510m r =?,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%。

3.太阳与地球的距离为1.5×1011m,太阳光以平行光束入射到地面。地球表面2/3的面积被水面所覆盖,太阳在一年中辐射到地球表面水面部分的总能量W约为1.87×1024J。设水面对太阳辐射的平均反射率为7%,而且将吸收到的35%能量重新辐射出去。太阳辐射可将水面的水蒸发(设在常温、常压下蒸发1 kg水需要2.2×106 J的能量),而后凝结成雨滴降落到地面。 (1)估算整个地球表面的年平均降雨量(以毫米表示,球面积为4πR2 地球的半径R=6.37×106 m)。 (2)太阳辐射到地球的能量中只有约50%到达地面,W只是其中的一部分。太阳辐射到地球的能量没能全部到达地面,这是为什么?请说明二个理由。

2020高考物理计算题专题训练含答案

计算题 1.为了使航天员能适应在失重环境下是的工作和生活,国家航天局组织对 航天员进行失重训练。故需要创造一种失重环境;航天员乘坐到民航客机 上后,训练客机总重5×104kg,以200m/s速度沿300倾角爬升到7000米 高空后飞机向上拉起,沿竖直方向以200m/s 的初速度向上作匀减速直线 运动,匀减速的加速度为g,当飞机到最高点后立即掉头向下,仍沿竖直 方向以加速度为g加速运动,在前段时间内创造出完全失重,当飞机离地 2000米高时为了安全必须拉起,后又可一次次重复为航天员失重训练。若 飞机飞行时所受的空气阻力f=Kv(k=900N·s/m),每次飞机速度达到 350m/s 后必须终止失重训练(否则Array飞机可能失速)。 求:(1)飞机一次上下运动为航天员创 造的完全失重的时间。 (2)飞机下降离地4500米时飞机 发动机的推力(整个运动空间重力加速 度不变)。 (3)经过几次飞行后,驾驶员想在保持其它不变,在失重训练时间不 变的情况下,降低飞机拉起的高度(在B点前把飞机拉起)以节约燃油, 若不考虑飞机的长度,计算出一次最多能节约的能量。

2.如图所示是一种测定风速的装置,一个压力传感器固定在竖直墙上,一弹簧一端固定在传感器上的M 点,另一端N 与导电的迎风板相连,弹簧穿在光滑水平放置的电阻率较大的金属细杆上,弹簧是不导电的材料制成的。测得该弹簧的形变量与压力传感器示数关系见下表。 迎风板面积S =0.50m 2,工作时总是正对着风吹来的方向。电路的一端与迎风板相连,另一端在M 点与金属杆相连。迎风板可 在金属杆上滑动,且与金属杆接触良好。定值电阻R =1.0Ω,电源的电动势E =12V ,内阻r =0.50Ω。闭合开关,没有风吹时,弹簧处于原长L 0=0.50m ,电压 传感器的示数U 1=3.0V ,某时刻由于风吹迎风板,电压传感器的示数变为 U 2=2.0V 。求: (1)金属杆单位长度的电阻; 形变量(m ) 0 0.1 0.2 0.3 0.4 压 力(N ) 0 130 260 390 520

高考物理计算题

考前题 1.(18分)如图所示,O 点为固定转轴,把一个长度为l 的细绳上端固定在O 点,细绳下端系一个质量为m 的小摆球,当小摆球处于静止状态时恰好与平台的右端点B 点接触,但无压力。一个质量为M 的小钢球沿着光滑的平台自左向右运动到B 点时与静止的小摆球m 发生正碰,碰撞后摆球在绳的约束下作圆周运动,且恰好能够经过最高点A ,而小钢球M 做平抛运动落在水平地面上的C 点。测得B 、C 两点间的水平距离DC=x ,平台的高度为h ,不计空气阻力,本地的重力加速度为g ,请计算: (1)碰撞后小钢球M 做平抛运动的初速度大小; (2)小把球m 经过最高点A 时的动能; (3)碰撞前小钢球M 在平台上向右运动的速度大小。 1.解析 (1)设M 做平抛运动的初速度是v , 2 21,gt h vt x = = h g x v 2= (2)摆球m 经最高点A 时只受重力作用, l v m mg A 2 = 摆球经最高点A 时的动能为A E ; mgl mv E A A 2 1212= = (3)碰后小摆球m 作圆周运动时机械能守恒, mgl mv mv A B 22 12 1 22+= gl v B 5= 设碰前M 的运动速度是 v ,M 与m 碰撞时系统的动量守恒 B mv Mv Mv +=0 gl M m h g x v 52+ = 2.如图,光滑轨道固定在竖直平面内,水平段紧贴地面,弯曲段的顶部切线水平、离地高为h ;滑块A 静止在水平轨道上, v 0=40m/s 的子弹水平射入滑块A 后一起沿轨道向右运动,并从轨道顶部水平抛出.已知滑块A 的质量是子弹的3倍,取g=10m/s 2,不计空气阻力.求: (1)子弹射入滑块后一起运动的速度; (2)水平距离x 与h 关系的表达式; (3)当h 多高时,x 最大,并求出这个最大值.

高考物理计算题(共29题)

高考物理计算题(共29 题) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

学生错题之计算题(共29题) 计算题力学部分:(共12题) (2) 计算题电磁学部分:(共13题) (15) 计算题气体热学部分:(共3题) (35) 计算题原子物理部分:(共1题) (38) 计算题力学部分:(共12题) 1.长木板A静止在水平地面上,长木板的左端竖直固定着弹性挡板P,长木板A的上表面分为三个区域,其中PO段光滑,长度为1 m;OC段粗糙,长度为1.5 m;CD段粗糙,长度为1.19 m。可视为质点的滑块B静止在长木板上的O点。已知滑块、长木板的质量均为1 kg,滑块B与OC段动摩擦因数为0.4,长木板与地面间的动摩擦因数为0.15。现用水平向右、大小为11 N的恒力拉动长木板,当弹性挡板P将要与滑块B相碰时撤去外力,挡板P与滑块B发生弹性碰撞,碰后滑块B最后停在了CD段。已知质量相等的两个物体发生弹性碰撞时速度互换,g=10 m/s2,求: (1)撤去外力时,长木板A的速度大小; (2)滑块B与木板CD段动摩擦因数的最小值; (3)在(2)的条件下,滑块B运动的总时间。 答案:(1)4m/s (2)0.1(3)2.45s 【解析】(1)对长木板A由牛顿第二定律可得,解得; 由可得v=4m/s; (2)挡板P与滑块B发生弹性碰撞,速度交换,滑块B以4m/s的速度向右滑行,长木板A静止,当滑上OC段时,对滑块B有,解得 滑块B的位移; 对长木板A有; 长木板A的位移,所以有,可得或(舍去) (3)滑块B匀速运动时间;

滑块B在CD段减速时间; 滑块B从开始运动到静止的时间 2.如图所示,足够宽的水平传送带以v0=2m/s的速度沿顺时针方向运行,质量m=0.4kg的小滑块被光滑固定挡板拦住静止于传送带上的A点,t=0时,在小滑块上施加沿挡板方向的拉力F,使之沿挡 板做a=1m/s2的匀加速直线运动,已知小滑块与传送带间的动摩擦因数,重力加速度g=10m /s2,求: (1)t=0时,拉力F的大小及t=2s时小滑块所受摩擦力的功率; (2)请分析推导出拉力F与t满足的关系式。 答案: (1)0.4N;(2) 【解析】(1)由挡板挡住使小滑块静止的A点,知挡板方向必垂直于传送带的运行方向; t=0时对滑块:F=ma 解得F=0.4N;t=2s时, 小滑块的速度v=at=2m/s摩擦力方向与挡板夹角,则θ=450 此时摩擦力的功率P=μmgcos450v, 解得 (2)t时刻,小滑块的速度v=at=t, 小滑块所受的摩擦力与挡板的夹角为 由牛顿第二定律 解得(N)

高考物理-计算题专题突破

计算题专题突破 计算题题型练3-4 1.一列横波在x轴上传播,t1=0和t2=0.005 s时的波形如图中的实线和虚线所示. (1)设周期大于(t2-t1),求波速; (2)设周期小于(t2-t1),并且波速为6 000 m/s,求波的传播方向. 解析:当波传播时间小于周期时,波沿传播方向前进的距离小于一个波长;当波传播时间大于周期时,波沿传播方向前进的距离大于一个波长,这时从波形的变化上看出的传播距离加上n个波长才是波实际传播的距离. (1)因Δt=t2-t1T,所以波传播的距离大于一个波长,在0.005 s内传播的距离为 Δx=vΔt=6 000×0.005 m=30 m. 而Δx λ= 30 m 8 m=3 3 4,即Δx=3λ+ 3 4λ.

因此可得波的传播方向沿x轴负方向. 答案:(1)波向右传播时v=400 m/s;波向左传播时v=1 200 m/s(2)x轴负方向 2. (厦门一中高三检测)如图所示,上下表面平行的玻璃砖折射率为n=2,下表面镶有银反射面,一束单色光与界面的夹角θ=45°射到玻璃表面上,结果在玻璃砖右边竖直光屏上出现相距h=2.0 cm的光点A和B(图中未画出). (1)请在图中画出光路示意图(请使用刻度尺); (2)求玻璃砖的厚度d. 解析:(1)画出光路图如图所示. (2)设第一次折射时折射角为θ1,

2020年高考物理计算题强化专练-热学解析版

计算题强化专练-热学 一、计算题(本大题共5小题,共50.0分) 1.如图所示,质量为m=6kg的绝热气缸(厚度不计),横截面积为S=10cm2,倒扣在 水平桌面上(与桌面有缝隙),气缸内有一绝热的“T”型活塞固定在桌面上,活塞与气缸封闭一定质量的理想气体,活塞在气缸内可无摩擦滑动且不漏气.开始时,封闭气体的温度为t0=27℃,压强P=0.5×105P a,g取10m/s2,大气压强为 P0=1.0×105P a.求: ①此时桌面对气缸的作用力大小; ②通过电热丝给封闭气体缓慢加热到t2,使气缸刚好对水平桌面无压力,求t2的值 . 2.如图所示,用质量为m=1kg、横截面积为S=10cm2的活塞在气 缸内封闭一定质量的理想气体,活塞与气缸壁之间的摩擦忽 略不计。开始时活塞距气缸底的高度为h=10cm且气缸足够 高,气体温度为t=27℃,外界大气压强为p0=1.0×105Pa,取 g=10m/s2,绝对零度取-273℃.求: (i)此时封闭气体的压强; (ii)给气缸缓慢加热,当缸内气体吸收4.5J的热量时,内能 的增加量为2.3J,求此时缸内气体的温度。

3.如图所示,竖直放置的U形管左端封闭,右端开口,左管横截面积为右管横截面 积的2倍,在左管内用水银封闭一段长为l,温度为T的空气柱,左右两管水银面高度差为hcm,外界大气压为h0cmHg . (1)若向右管中缓慢注入水银,直至两管水银面相平(原右管中水银没全部进入水平 部分),求在右管中注入水银柱的长度h1(以cm为单位); (2)在两管水银面相平后,缓慢升高气体的温度至空气柱的长度变为开始时的长度l ,求此时空气柱的温度T′. 4.一内壁光滑、粗细均匀的U形玻璃管竖直放置,左端开口,右端封闭,左端上部 有一轻活塞.初始时,管内水银柱及空气柱长度如图所示.已知大气压强p0=75cmHg ,环境温度不变. (1)求右侧封闭气体的压强p右; (2)现用力向下缓慢推活塞,直至管内两边水银柱高度相等并达到稳定.求此时右侧封闭气体的压强p右; (3)求第(2)问中活塞下移的距离x.

高考物理复习计算题专练

计算题专练(一)] 近四年全国Ⅰ卷计算题涉及的考点与内容[分值题分值年份第24题第25两辆玩具小车牵(运动学19分 (滑轨、动力学13分)电磁感应2013年)连运动问题类平抛运动、带电粒子在运动学(公路上两车安全20分分2014年 12)(距离问题)动力学电场中运动两物体多阶段板块模型:安培力电路和力学问题(年12分匀变速运动组合问题(动2015分20)作用下导体棒平衡)力学轻弹簧+斜面+光滑圆电(双棒模型+三角体)(乙卷年2016()力的平磁感应定律应用、弧轨道18)平抛运动、牛顿14分分定律、动能定理衡方程 例题展示abθ仅(上沿相连,1.(2016·全国乙卷·24)如图1两固定的绝缘斜面倾角均为,.两细金属棒maLcdmc;用两根不可伸长的柔软轻导,质量分别为2和))和(仅标出端长度均为标出端abdca并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,,线将它们连成闭合回路B,方向垂直于斜面向上,已知.使两金属棒水平右斜面上存在匀强磁场,磁感应强度大小为μR,重力加两根导线刚好不在磁场中,回路电阻为,两金属棒与斜面间的动摩擦因数均为abg求:.速度大小为,已知金属棒匀速下滑 图1 ab上的安培力的大小;作用在金属棒 (1)(2)金属棒运动速度的大小. abcdabcdcd也做匀速由于、、棒被平行于斜面的导线相连,故速度总是相等,(1)解析 FabFab棒上,右斜面对,作用在棒的支持力的大小为直线运动.设导线的张力的大小为N1T FcdFab 棒,受力分析如图甲所示,棒的支持力大小为,对于左斜面对的安培力的大小为,N2由力的平衡条件得 6 / 1 乙甲 mgθμFFF =++2①sin TN1 F mg θcos 2 =②N1cd棒,受力分析如图乙所示,由力的平衡条件得对于

(完整word版)高考物理经典大题练习及答案

14.(7分)如图14所示,两平行金属导轨间的距离 L=0.40 m,金属导轨所在的平面与水平面夹角θ=37°,在 导轨所在平面内,分布着磁感应强度B=0.50 T、方向垂直于 导轨所在平面的匀强磁场.金属导轨的一端接有电动势 E=4.5 V、内阻r=0.50 Ω的直流电源.现把一个质量m=0.040 kg的导体棒ab放在金属导轨上,导体棒恰好静止.导体棒 与金属导轨垂直、且接触良好,导体棒与金属导轨接图14 触的两点间的电阻R0=2.5 Ω,金属导轨电阻不计,g取 10 m/s2.已知sin 37°=0.60,cos 37°=0.80,求: (1)通过导体棒的电流; (2)导体棒受到的安培力大小; (3)导体棒受到的摩擦力 15.(7分)如图15所示,边长L=0.20m的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R0=1.0 Ω, 金属棒MN与正方形导线框的对角线长度恰好相等,金属棒MN的电 阻r=0.20 Ω.导线框放置在匀强磁场中,磁场的磁感应强度B=0.50 T,方向垂直导线框所在平面向里.金属棒MN与导线框接触良好,且 与导线框的对角线BD垂直放置在导线框上,金属棒的中点始终在BD 连线上.若金属棒以v=4.0 m/s的速度向右匀速运动,当金属棒运动 至AC的位置时,求(计算结果保留两位有效数字): 图15 (1)金属棒产生的电动势大小; (2)金属棒MN上通过的电流大小和方向; (3)导线框消耗的电功率. 16.(8分)如图16所示,正方形导线框abcd的质量为m、边长为l, 导线框的总电阻为R.导线框从垂直纸面向里的水平有界匀强磁场的上 方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直 平面内,cd边保持水平.磁场的磁感应强度大小为B,方向垂直纸面向 里,磁场上、下两个界面水平距离为l已.知cd边刚进入磁场时线框 恰好做匀速运动.重力加速度为g. (1)求cd边刚进入磁场时导线框的速度大小. (2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克 服安培力做功的功率等于导线框消耗的电功率.图16 (3)求从导线框cd边刚进入磁场到ab边刚离开磁场的过程中,导 线框克服安培力所做的功. 17.(8分)图17(甲)为小型旋转电枢式交流发电机的原理图,其矩形线圈在匀强磁场中绕垂直于磁场方向的固定轴OO′匀速转动,线圈的匝数n=100、电阻r=10 Ω,线圈的两端经集流环与电阻R连接,电阻R=90 Ω,与R并联的交流电压表为理想电表.在t=0时刻,线圈平面与磁场方向平行,穿过每匝线圈的磁通量φ随时间t按图17(乙)所示正弦规律变化.求: (1)交流发电机产生的 电动势最大值;

高考物理二轮复习 计算题专题训练

计算题专题训练 第1组 1.(2012·惠州一中月考)如图所示,一弹丸从离地高度H =1.95 m 的A 点以v 0=8.0 m/s 的初速度水平射出,恰以平行于斜面的速度射入静止在固定斜面顶端C 处的一木块中,并立 即与木块具有相同的速度(此速度大小为弹丸进入木块前一瞬间速度的1 10 )共同运动,在斜 面下端有一垂直于斜面的挡板,木块与它相碰没有机械能损失,碰后恰能返回C 点。已知斜面顶端C 处离地高h =0.15 m ,求:(1)A 点和C 点间的水平距离。(2)木块与斜面间的动摩擦因数μ。(3)木块从被弹丸击中到再次回到C 点的时间t 。 2.(2012·广州一模,35)如图所示,有小孔O 和O ′的两金属板正对并水平放置,分别与平行金属导轨连接,Ⅰ、Ⅱ、Ⅲ区域有垂直导轨所在平面的匀强磁场。金属杆ab 与导轨垂直且接触良好,并一直向右匀速运动。某时刻ab 进入Ⅰ区域,同时一带正电小球从O 孔竖直射入两板间。ab 在Ⅰ区域运动时,小球匀速下落;ab 从Ⅲ区域右边离开磁场时,小球恰好从O ′孔离开。已知板间距为3d ,导轨间距为L ,Ⅰ、Ⅱ、Ⅲ区域的磁感应强度大小相等、宽度均为d 。带电小球质量为m ,电荷量为q ,ab 运动的速度为v 0,重力加速度为g 。求: (1)磁感应强度的大小。 (2)ab 在Ⅱ区域运动时,小球的加速度大小。 (3)小球射入O 孔时的速度v 。 第2组 3.如图所示,AB 、BC 、CD 三段轨道交接处均由很小的圆弧平滑连接,其中轨道AB 、CD 段是光滑的,水平轨道BC 的长度L =5 m ,轨道CD 足够长且倾角θ=37°,A 点离轨道BC 的高度为H =4.30 m 。质量为m 的小滑块自A 点由静止释放,已知小滑块与轨道BC 间的动摩擦 因数μ=0.5,重力加速度g 取10 m/s 2 ,sin 37°=0.6,cos 37°=0.8,求: (1)小滑块第一次到达C 点时的速度大小; (2)小滑块第一次与第二次通过C 点的时间间隔; (3)小滑块最终停止位置距B 点的距离。 4.如图所示,磁感应强度为B =2.0×10-3 T 的磁场分布在xOy 平面上的MON 三角形区域,其中M 、N 点距坐标原点O 均为1.0 m ,磁场方向垂直纸面向里。坐标原点O 处有一个粒子源,不断地向xOy 平面发射比荷为q m =5×107 C/kg 的带正电粒子,它们的速度大小都是v =5×104

北京高考物理 第一道计算题 力学

力学计算题汇编——动力学、曲线运动 例1.(2016年西城期末)如图所示,斜面AC长L= 1m,倾角θ=37°,CD段为与斜面平滑连接的水平地面。一个质量m = 2kg的小物块从斜面顶端A由静止开始滑下。小物块与斜面、地面间的动摩擦因数均为μ = 0.5。不计空气阻力,g = 10m/s2,sin37°= 0.6,cos37°= 0.8。求: (1)小物块在斜面上运动时的加速度大小a; (2)小物块滑到斜面底端C点时的速度大小v; (3)小物块在水平地面上滑行的最远距离x。 练习1-1、如图所示,斜面AC长L = 1m,倾角θ =37°,CD段为与斜面平滑连接的水平地面。一个质量m = 2kg的小物块从斜面顶端A点由静止开始滑下。小物块与斜面、地面间的动摩擦因数均为μ= 0.5。不计空气阻力,重力加速度g取10m/s2,sin37° = 0.6,cos37° = 0.8。求: (1)小物块在斜面上运动时的加速度大小a; (2)小物块滑到斜面底端C点时的速度大小v; (3)小物块在水平地面上滑行的时间t。 练习1-2.(2018年潞河期中)如图所示,一个质量m=10 kg的物体放在水平地面上。对物体施加一个F =50N的拉力,使物体做初速为零的匀加速直线运动。已知拉力与水平方向的夹角θ=37°,物体与水平地面间的动摩擦因数μ=0.50,sin37°=0.60,cos37°=0.80,取重力加速度g=10m/s2。 (1)求物体运动的加速度大小; (2)求物体在 2.0 s末的瞬时速率; (3)若在 2.0 s末时撤去拉力F,求此后物体沿水平地面可滑行的最大距离。 F

练习1-3、(2016东城一模)某次对新能源汽车性能进行的测试中,汽车在水平测试平台上由静止开始沿直线运动。汽车所受动力随时间变化关系如图1所示,而速度传感器只传回第10 s 以后的数据(如图2所示)。已知汽车质量为1000 kg ,汽车所受阻力恒定。求: (1)汽车所受阻力的大小; (2)10 s 末汽车速度的大小; (3)前20 s 汽车位移的大小。 例2、(2010年北京高考题)如图,跳台滑雪运动员经过一段加速滑行后从O 点水平飞出,经过3.0 s 落到斜坡上的A 点。已知O 点是斜坡的起点,斜坡与水平面的夹角 =37°,运动员的质量m =50 kg 。不计空气阻力。(取sin37°=0.60,cos37°=0.80;g 取10 m/s 2 )求: (1)A 点与O 点的距离L ; (2)运动员离开O 点时的速度大小; (3)运动员落到A 点时的动能。 练习2-1、(2016年海淀二模)如图所示,一个少年脚踩滑板沿倾斜街梯扶手从A 点由静止滑下,经过 一段时间后从C 点沿水平方向飞出,落在倾斜街梯扶手上的D 点。已知C 点是一段倾斜街梯扶手的起点,倾斜的街梯扶手与水平面的夹角θ= 37°,CD 间的距离s =3.0m ,少年的质量m =60kg 。滑板及少年均可视为质点,不计空气阻力。取sin37° = 0.60,cos37° = 0.80,重力加速度g =10 m/s 2 ,求: (1)少年从C 点水平飞出到落在倾斜街梯扶手上D 点所用的时间t ; (2)少年从C 点水平飞出时的速度大小v C ; (3)少年落到D 点时的动能E k 。 第22题图2 0 5 10 15 v /m·s -1 20 t /s 第22题图1 0 5 10 3.0 15 F /×103N 20 t /s 1.0 2.0 A B C D θ

高考物理经典考题300道(10)

一、计算题(解答写出必要的文字说明、方程式和重要的演算步骤。只写出最后答案的不能得分。有数值计算的题,答案中必须明确写出数值和单位。本题包含55小题,每题?分,共?分) 1.如图所示,在光滑的水平面上,有两个质量都是M 的小车A 和B ,两车间用轻质弹簧相连,它们以共同的速度向右运动,另有一质量为 0M 的粘性物体,从高处自由下落,正好落 至A 车并与之粘合在一起,在此后的过程中,弹簧获得最大弹性势能为E ,试求A 、B 车开始匀速运动的初速度 0v 的大小. 解析:物体 0M 落到车A 上并与之共同前进,设其共同速度为1v , 在水平方向动量守恒,有 100)(v M M M v += 所以 0 01v M M M v += 物体0M 与A 、B 车共同压缩弹簧,最后以共同速度前进,设共同速度为2v ,根据动量守 恒有 200)2(2v M M Mv += 所以 0222v M M M v += 当弹簧被压缩至最大而获得弹性势能为E ,根据能量守恒定律有: ()()202102202121221 Mv v M M v M M E ++=++ 解得 ()()002 0022M M M M MM E v ++= . 2.如图所示,质量为M 的平板小车静止在光滑的水平地面上,小车左端放一个质量为m 的木块,车的右端固定一个轻质弹簧.现给木块一个水平向右的瞬时冲量I ,木块便沿小车向右滑行,在与弹簧相碰后又沿原路返回,并且恰好能到达小车的左端.试求: (1)木块返回到小车左端时小车的动能. (2)弹簧获得的最大弹性势能. 解:(1)选小车和木块为研究对象.由于m 受到冲量I 之后系统水平方向不受外力作用,系统动量守恒.则v m M I )(+=

[原创]高考物理计算题专题(传送带专题)doc高中物理

[原创]高考物理计算题专题(传送带专题)doc 高 中物理 1、水平的传送带以4M/S 的速度匀速运动,主动轮B 与被动轮A 的轴距是12M ,现在将一物体放在A 轮正上方,顺时针运动,与传送带的动摩擦因数为0.2 ,那么物体〔设成P)通过多长时刻可运动到B 轮上方?〔g=10m/s2) 2.水平传送带长4.5m,以3m/s 的速度作匀速运动。质量m=1kg 的物体与传送带间的动摩擦因数为0.15,那么该物体从静止放到传送带的一端开始,到达另一端所需时刻为多少?这一过程中由于摩擦产生的热量为多少?这一过程中带动传送带转动的机器做多少功? (g 取10m/s2)。 3.如下图,一平直的传送带以速度v =2m/s 匀速运动, 传送带把A 处的工件运送到B 处, A 、B 相距L =10m 。从A 处把工件无初速地放到传送带上,通过时刻t =6s,能传送到B 处,要用最短的时刻把工件从A 处传送到B 处,求传送带的运行速度至少多大? 4.一水平的浅色长传送带上放置一煤块〔可视为质点〕,煤块与传送带之间的动摩擦因数为μ。初始时,传送带与煤块差不多上静止的。现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动。通过一段时刻,煤块在传送带上留下了一段黑色痕迹后,煤块相关于传送带不再滑动。求此黑色痕迹的长度。 5、如图示,质量m=1kg 的物体从高为h=0.2m 的光滑轨道上P 点由静止开始下滑,滑到水平传送带上的A 点,物体和皮带之间的动摩擦因数为μ=0.2,传送带AB 之间的距离为L=5m,传送带一直以v=4m/s 的速度匀速运动, 求: (1)物体从A 运动到B 的时刻是多少? (2)物体从A 运动到B 的过程中,摩擦力对物体做了多少功? (3)物体从A 运动到B 的过程中,产生多少热量? (4)物体从A 运动到B 的过程中,带动传送带转动的电动机多做了多少功?

【高考快递】2019高考物理总复习计算题增分练五含答案

计算题增分练(五) (满分32分 20分钟) 1.如图所示,半径为l 的金属圆环水平放置,圆心处及圆环边缘通过导线分别与两条平行的倾斜金属轨道相连.圆环区域内分布着磁感应强度为B ,方向竖直向下的匀强磁场,圆环上放置一金属棒a ,一端在圆心处,另一端恰好搭在圆环上,可绕圆心转动.倾斜轨道部分处于垂直轨道平面向下的匀强磁场中,磁感应强度大小也为B ,金属棒b 放置在倾斜平行导轨上,其长度与导轨间距均为2l .当棒a 绕圆心以角速度ω顺时针(俯视)匀速旋转时,棒b 保持静止.已知棒b 与轨道间的动摩擦因数为μ=0.5,可认为最大静摩擦力等于滑动摩擦力;棒b 的质量为m ,棒a 、b 的电阻分别为R 、2R ,其余电阻不计;斜面倾角为θ=37°,sin 37°=0.6,cos 37°=0.8,重力加速度为g ,求 (1)金属棒b 两端的电压; (2)为保持b 棒始终静止,棒a 旋转的角速度大小的范围. 解析:(1)E =Bl v ① v =0+l ω2 ② U =2R R +2R ·E ③ ①②③式联立,解得:U =13Bl 2ω ④ (2)I =E R +2R ⑤ F 安=BI ·2l ⑥ 由①②⑤⑥式联立,解得:F 安=B 2l 3ω3R ⑦ 为保持b 棒始终静止,棒a 旋转的角速度最小设为ω1,最大为ω2: mg sin θ=μmg cos θ+B 2l 3ω13R ⑧ mg sin θ+μmg cos θ=B 2l 3ω23R ⑨

3mgR 5B 2l 3≤ω≤3mgR B 2l 3 ⑩ 答案:(1)13Bl 2ω (2)3mgR 5B 2l 3≤ω≤3mgR B 2l 3 2.如图甲所示,光滑斜面OA 与倾斜传送带AB 在A 点相接,且OAB 在一条直线上,与水平面夹角α=37°,轻质弹簧下端固定在O 点,上端可自由伸长到A 点.在A 点放一个物体,在力F 的作用下向下缓慢压缩弹簧到C 点,该过程中力F 随压缩距离x 的变化如图乙所示.已知物体与传送带间动摩擦因数μ=0.5,传送带AB 部分长为5 m ,顺时针转动,速度v =4 m/s ,重力加速度g 取10 m/s 2 .(sin 37°=0.6,cos 37°=0.8)求: (1)物体的质量m ; (2)弹簧从A 点被压缩到C 点过程中力F 所做的功W ; (3)若在C 点撤去力F ,物体被弹回并滑上传送带,问物体在传送带上最远能到何处? 解析:(1)由图象可知:mg sin 37°=30 N ① 解得m =5 kg (2)图乙中图线与横轴所围成的面积表示力F 所做的功: W =390×? ????0.5-1282 J -30×1282 J =90 J ② (3)撤去力F ,设物体返回至A 点的速度大小为v 0, 从A 出发到第二次返回A 处的过程应用动能定理: W =12mv 2 ③ 解得:v 0=6 m/s 由于v 0>v ,物体所受摩擦力沿传送带向下,设此阶段加速度大小为a 1,由牛顿第二定律:mg sin 37°+μmg cos 37°=ma 1 ④ 解得:a 1=10 m/s 2 速度减为v 时,设沿斜面向上发生的位移大小为x 1,由运动学规律: x 1=v 2 0-v 22a 1 ⑤ 解得:x 1=1 m 此后摩擦力改变方向,由于mg sin 37°>μmg cos 37°,所以物块所受合外力仍沿传送带向下,设此后

高考物理 第一道大题

高考第一道计算题 研究 试题预测 1、一般都有问题情景,但情景相对会比较简单。有利于足够的保底分 2、由于题的位置,一般都为中低档题,并且落点都比较低。 3、有从单一设问过渡到组合式设问的趋势,有利于分步骤得分。 4、考虑到知识点的覆盖,一般仍以考查重点知识和基本方法为核心,但应注意主干知识与非主干知识的结合,通过知识综合考查能力。 5、考虑到与后两题的搭配,一般仍以重点模型的基本层面的考查为核心,但应注意基本模型和实际情景结合及基本模型之间的简单组合。通过模型组合考查能力,一般为单物体多过程。 (1)每个同学要认识和熟悉该类考题的特点。做到心中有数。 (2) 重点放在审题准确和书写规范及计算无误的训练。力求得到全分。 近年高考计算题第1题选评 1.天空有近似等高的浓云层。为了测量云层的高度,在水平地面上与观测者的距离为d=3.0km 处进行一次爆炸,观测者听到由空气直接传来的爆炸声和由云层反射来的爆炸声时间上相差Δt =6.0s 。 试估算云层下表面的高度。已知空气中的声速v=13 km/s 。 -点评:考查匀速运动规律和反射定律,问题情景涉及测量云层高度。难度等级:★★ 2原地起跳时,先屈腿下蹲,然后突然蹬地。从开始蹬地到离地是加速过程(视为匀加速)加速过程中重心上升的距离称为“加速距离”。离地后重心继续上升,在此过程中重心上升的最大距离称为“竖直高度”。现有下列数据:人原地上跳的“加速距离”d 1=0.50m ,“竖直高度”h 1=1.0m ;跳蚤原地上跳的“加速距离”d 2=0.00080m ,“竖直高度”h 2=0.10m 。假想人具有与跳蚤相等的起跳加速度,而“加速距离”仍为0.50m ,则人上跳的“竖直高度”是多少? 点评:考查匀变速运动规律,问题情景涉及比较人和跳蚤的跳高能力。难度等级:★★★ 3一水平放置的水管,距地面高h =l.8m ,管内横截面积S =2.0cm 2。有水从管口处以不变的速度v =2.0m/s 源源不断地沿水平方向射出,设出口处横截面上各处水的速度都相同,并假设水流在空中不散开。取重力加速度g =10m /s 2,不计空气阻力。求水流稳定后在空中有多少立方米的水。 点评:考查平抛运动和流量概念,问题情景涉及流量理解。难度等级:★★★ 4.图中MN 表示真空室中垂直于纸面的平板,它的一侧有匀强磁场,磁 场方向垂直于纸面向里,磁感应强度大小为B 。一带电粒子从平板上狭缝O 处以垂直于平板的初速v 射入磁场区域,最后到达平板上的P 点。已知B 、 v 以及P 到O 的距离l ,不计重力,求此粒子的电荷e 与质量m 之比。

高考物理经典压轴题集

1(20分) 如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向 2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上) 4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质 量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度 03 2 v 向下运动,经历同样过程,最后木块C 图 12

相关文档
最新文档