人教A版数学必修一高一上学期期末复习
人教A版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷含答案解析(18)

人教A 版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷(共22题)一、选择题(共10题)1. 下面关于函数 f (x )=log 12x ,g (x )=(12)x和 ℎ(x )=x −12 在区间 (0,+∞) 上的说法正确的是( ) A . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越慢 B . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越快 C . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越慢 D . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越快2. 甲用 1000 元人民币购买了一手股票,随即他将这手股票卖给乙,获利 10%,而后乙又将这手股票卖给甲,但乙损失了 10%,最后甲又按乙卖给甲的价格的九成将这手股票卖给了乙.在上述股票交易中 ( ) A .甲刚好盈亏平衡 B .甲盈利 9 元 C .甲盈利 1 元D .甲亏本 1.1 元3. 若 a =0.32,b =log 20.3,c =20.3,则 a ,b ,c 三者的大小关系是 ( ) A . b <c <a B . b <a <c C . a <c <b D . a <b <c4. 已知当 x ∈[0,1] 时,函数 y =(mx −1)2 的图象与 y =√x +m 的图象有且只有一个交点,则正实数 m 的取值范围是 ( ) A . (0,1]∪[2√3,+∞) B . (0,1]∪[3,+∞) C . (0,√2]∪[2√3,+∞) D . (0,√2]∪[3,+∞)5. 已知函数 f (x )={15x +1,x ≤1lnx,x >1,则方程 f (x )=kx 恰有两个不同的实根时,实数 k 的取值范围是 ( ) A . (0,1e )B . (0,15)C . [15,1e )D . [15,1e ]6. 若函数 f (x )=2x +a 2x −2a 的零点在区间 (0,1) 上,则 a 的取值范围是 ( ) A . (−∞,12)B . (−∞,1)C . (12,+∞)D . (1,+∞)7. 已知定义在 R 上的函数 f (x )={x 2+2,x ∈[0,1)2−x 2,x ∈[−1,0),且 f (x +2)=f (x ).若方程 f (x )−kx −2=0 有三个不相等的实数根,则实数 k 的取值范围是 ( )A . (13,1)B . (−13,−14)C . (−1,−13)∪(13,1)D . (−13,−14)∪(14,13)8. 定义域为 R 的偶函数 f (x ),满足对任意的 x ∈R 有 f (x +2)=f (x ),且当 x ∈[2,3] 时,f (x )=−2x 2+12x −18,若函数 y =f (x )−log a (∣x∣+1) 在 R 上至少有六个零点,则 a 的取值范围是 ( ) A . (0,√33) B . (0,√77) C . (√55,√33)D . (0,13)9. 方程 log 3x +x =3 的解所在的区间是 ( ) A . (0,1) B . (1,2) C . (2,3) D . (3,+∞)10. 函数 f (x )=√1−x 2lg∣x∣的图象大致为 ( )A .B .C .D .二、填空题(共6题)11. 已知函数 f (x )={√4−x 2,x ∈(−2,2]1−∣x −3∣,x ∈(2,4],满足 f (x −3)=f (x +3),若在区间 [−4,4] 内关于x 的方程 3f (x )=k (x −5) 恰有 4 个不同的实数解,则实数 k 的取值范围是 .12. 已知关于 x 的一元二次方程 x 2+(2m −1)x +m 2=0 有两个实数根 x 1 和 x 2,当 x 12−x 22=0时,m 的值为 .13. 已知 A ={x∣ 3x <1},B ={x∣ y =lg (x +1)},则 A ∪B = .14. 已知函数 f (x )={x 2+4x −1,x ≤02x −3−k,x >0,若方程 f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解,则实数 k 的取值范围是 .15. 设函数 f (x )={−4x 2,x <0x 2−x,x ≥0,若 f (a )=−14,则 a = ,若方程 f (x )−b =0 有三个不同的实根,则实数 b 的取值范围是 .16. 设函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]= ,若方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 .三、解答题(共6题)17. 如图,直角边长为 2 cm 的等腰直角三角形 ABC ,以 2 cm/s 的速度沿直线向右运动.(1) 求该三角形与矩形 CDEF 重合部分面积 y (cm 2)与时间 t 的函数关系(设 0≤t ≤3). (2) 求出 y 的最大值.(写出解题过程)18. 已知函数 f (x )=a x +k 的图象过点 (1,3),它的反函数的图象过点 (2,0).(1) 求函数 f (x ) 的解析式; (2) 求 f (x ) 的反函数.19. 已知函数 g (x )=log a x ,其中 a >1.(注:∑∣m (x i )−m (x i−1)∣n i=1=∣m (x 1)−m (x 0)∣+∣m (x 2)−m (x 1)∣+⋯+∣m (x n )−m (x n−1)∣) (1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,求 a 的取值范围;(2) 设 m (x ) 是定义在 [s,t ] 上的函数,在 (s,t ) 内任取 n −1 个数 x 1,x 2,⋯,x n−2,x n−1,且 x 1<x 2<⋯<x n−2<x n−1,令 x 0=s ,x n =t ,如果存在一个常数 M >0,使得 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,则称函数 m (x ) 在区间 [s,t ] 上具有性质 P . 试判断函数 f (x )=∣g (x )∣ 在区间 [1a ,a 2] 上是否具有性质 P ?若具有性质 P ,请求出 M的最小值;若不具有性质 P ,请说明理由.20. 已知函数 g (x )=ax 2−2ax +1+b (a ≠0,b <1),在区间 [2,3] 上有最大值 4,最小值 1,设f (x )=g (x )x.(1) 求常数 a ,b 的值;(2) 方程 f (∣2x −1∣)+k (2∣2x −1∣−3)=0 有三个不同的解,求实数 k 的取值范围.21. 已知函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2.(1) 求实数 m ,n 的值;(2) 若不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,求实数 k 的取值范围.22. 已知函数 f (x )=(12)ax,a 为常数,且函数的图象过点 (−1,2).(1) 求 a 的值;(2) 若 g (x )=4−x −2,且 g (x )=f (x ),求满足条件的 x 的值.答案一、选择题(共10题)1. 【答案】C【解析】观察函数f(x)=log12x,g(x)=(12)x和ℎ(x)=x−12在区间(0,+∞)上的图象(图略),由图可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.同样,函数g(x)的图象在区间(0,+∞)上递减较慢,且递减速度越来越慢.函数ℎ(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.【知识点】对数函数及其性质、指数函数及其性质2. 【答案】C【解析】由题意知甲两次付出为1000元和(1000×1110×910)元,两次收入为(1000×1110)元和(1000×1110×910×910)元,因为1000×1110+1000×1110×910×910−1000−1000×1110×910=1,所以甲盈利1元.【知识点】函数模型的综合应用3. 【答案】B【解析】因为0<a=0.32<0.30=1,b=log20.3<log21=0,c=20.3>20=1,所以b<a<c.【知识点】指数函数及其性质、对数函数及其性质4. 【答案】B【解析】应用排除法.当m=√2时,画出y=(√2x−1)2与y=√x+√2的图象,由图可知,两函数的图象在[0,1]上无交点,排除C,D;当m=3时,画出y=(3x−1)2与y=√x+3的图象,由图可知,两函数的图象在[0,1]上恰有一个交点.【知识点】函数的零点分布5. 【答案】C【解析】因为方程f(x)=kx恰有两个不同实数根,所以y=f(x)与y=kx有2个交点,又因为k表示直线y=kx的斜率,x>1时,y=f(x)=lnx,所以yʹ=1x;设切点为(x0,y0),则k=1x0,所以切线方程为y−y0=1x0(x−x0),又切线过原点,所以y0=1,x0=e,k=1e,如图所示:结合图象,可得实数k的取值范围是[15,1e ).【知识点】函数零点的概念与意义6. 【答案】C【解析】因为f(x)单调递增,所以f(0)f(1)=(1−2a)(2+a2−2a)<0,解得a>12.【知识点】零点的存在性定理7. 【答案】C【知识点】函数的零点分布8. 【答案】A【解析】当x∈[2,3]时,f(x)=−2x2+12x−18=−2(x−3)2,图象为开口向下,顶点为(3,0)的抛物线.因为函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,令g(x)=log a(∣x∣+1),因为f(x)≤0,所以g(x)≤0,可得0<a<1.要使函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,如图要求g(2)>f(2).log a(2+1)>f(2)=−2⇒log a3>−2,可得3<1a2⇒−√33<a<√33,a>0,所以 0<a <√33.【知识点】函数的零点分布9. 【答案】C【解析】把方程的解转化为函数 f (x )=log 3x +x −3 对应的零点.令 f (x )=log 3x +x −3,因为 f (2)=log 32−1<0,f (3)=1>0,所以 f (2)f (3)<0,且函数 f (x ) 在定义域内是增函数,所以函数 f (x ) 只有一个零点,且零点 x 0∈(2,3),即方程 log 3x +x =3 的解所在的区间为 (2,3). 故选C .【知识点】零点的存在性定理10. 【答案】B【解析】(1)由 {1−x 2≥0,∣x ∣≠0且∣x ∣≠1, 得 −1<x <0 或 0<x <1,所以 f (x ) 的定义域为 (−1,0)∪(0,1),关于原点对称.又 f (x )=f (−x ),所以函数 f (x ) 是偶函数,图象关于 y 轴对称,排除A ; 当 0<x <1 时,lg ∣x ∣<0,f (x )<0,排除C ;当 x >0 且 x →0 时,f (x )→0,排除D ,只有B 项符合. 【知识点】对数函数及其性质、函数图象、函数的奇偶性二、填空题(共6题) 11. 【答案】 (−2√217,−38)∪{0}【知识点】函数的零点分布12. 【答案】 14【解析】由题意得 Δ=(2m −1)2−4m 2=0,解得 m ≤14. 由根与系数的关系,得 x 1+x 2=−(2m −1),x 1x 2=m 2.由 x 12−x 22=0,得 (x 1+x 2)(x 1−x 2)=0. 若 x 1+x 2=0,即 −(2m −1)=0,解得 m =12. 因为 12>14,可知 m =12 不合题意,舍去;若 x 1−x 2=0,即 x 1=x 2,由 Δ=0,得 m =14.故当 x 12−x 22=0 时,m =14.【知识点】函数零点的概念与意义13. 【答案】 R【解析】由 3x <1,解得 x <0,即 A =(−∞,0). 由 x +1>0,解得 x >−1,即 B =(−1,+∞). 所以 A ∪B =R .【知识点】对数函数及其性质、交、并、补集运算14. 【答案】 (−2,−32]∪(−1,2)【解析】当 x ≤0 时,f (x )−k ∣x −1∣=x 2+4x −1−k (1−x )=x 2+(4+k )x −k −1, 当 0<x <1 时,f (x )−k ∣x −1∣=2x −3−k −k (1−x )=(k +2)x −3−2k ,当 x ≥1 时,f (x )−k ∣x −1∣=2x −3−k −k (x −1)=(2−k )x −3,设 g (x )=f (x )−k ∣x −1∣,则 g (x )={x 2+(4+k )x −k −1,x ≤0(k +2)x −3−2k,0<x <1(2−k )x −3,x ≥1,f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解等价于g (x ) 有且仅有 2 个零点, 若 g (x ) 一个零点位于 (0,1),即 0<2k+3k+2<1⇒k ∈(−32,−1),若 g (x ) 一个零点位于 [1,+∞),即 {2−k >0,22−k≥1⇒k ∈[−1,2),可知 g (x ) 在 (0,1),[1,+∞) 内不可能同时存在零点,即当 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点;当 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, ① 当 g (x ) 在 (−∞,0] 上有且仅有一个零点时,(1)当 Δ=(4+k )2+4(k +1)=0 时,k =−2 或 k =−10, 此时 g (x ) 在 (0,+∞) 上无零点, 所以不满足 g (x ) 有两个零点;(2)当 Δ=(4+k )2+4(k +1)>0,即 k <−10 或 k >−2 时, 只需 g (0)=−k −1<0,即 k >−1,所以当 k >−1 时,g (x ) 在 (−∞,0] 上有且仅有一个零点, 因为 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点, 所以 k ∈(−1,2) 时,g (x ) 有且仅有 2 个零点;② 当 g (x ) 在 (−∞,0] 上有两个零点时,只需 {Δ=(4+k )2+4(k +1)>0,−4+k 2<0,g (0)=−k −1≥0⇒k ∈(−2,−1],因为 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, 所以 k ∈(−2,−32] 时,g (x ) 有且仅有 2 个零点, 综上所述:k ∈(−2,−32]∪(−1,2).【知识点】函数的零点分布15. 【答案】 −14或 12; (−14,0)【解析】若 −4a 2=−14,解得 a =−14; 若 a 2−a =−14,解得 a =12,故 a =−14或12;当 x <0 时,f (x )<0;当 x >0 时,f (x )=(x −12)2−14,f (x ) 的最小值是 −14,若方程 f (x )−b =0 有三个不同的实根,则 b =f (x ) 有 3 个交点,故 b ∈(−14,0).【知识点】函数的零点分布、分段函数16. 【答案】 14; (14,12)【解析】函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]=f (e 0)=f (1)=14.x ≤0 时,f (x )≤1;x >0,f (x )=−x 2+x +14,对称轴为 x =12,开口向下;函数的最大值为 f (12)=12,x →0 时,f (0)→14.方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 (14,12).【知识点】函数的零点分布、分段函数三、解答题(共6题) 17. 【答案】(1) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6,综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.(2) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6, 综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.当 0≤t ≤1 时,y max =2×12=2,当 1<t <2 时,y max =2,当 2≤t ≤3 时,对称轴 t 0=2,则 t =2 时,y max =2,综上:y max =2.【知识点】函数模型的综合应用、建立函数表达式模型18. 【答案】(1) f (x )=2x +1.(2) f −1(x )=log 2(x −1)(x >1).【知识点】反函数、指数函数及其性质19. 【答案】(1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,即 x ∈[0,1] 时,log a (a x +2)>1 恒成立,因为 a >1,所以 a x +2>a 恒成立,即 a −2<a x 在区间 [0,1] 上恒成立,所以 a −2<1,即 a <3,所以 1<a <3,即 a 的取值范围是 (1,3).(2) 函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P .因为 f (x )=∣g (x )∣ 在 [1,a 2] 上单调递增,在 [1a ,1] 上单调递减,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,当存在某一个整数 k ∈{1,2,3,⋯,n −1},使得 x k =1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (1a )−f (1)]+[f (a 2)−f (1)]=1+2= 3. 当对于任意的 k ∈{1,2,3,…,n −1},x k ≠1 时,则存在一个实数 k 使得 x k <1<x k+1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (x 0)−f (x k )]+∣f (x k )−f (x k+1)∣+f (x n )−f (x k+1). ⋯⋯(∗)当 f (x k )>f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k+1)=3−2f (x k+1)<3,当 f (x k )<f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k )=3−2f (x k )<3,当 f (x k )=f (x k+1) 时,(∗)式=f (x n )+f (x 0)−f (x k )−f (x k+1)=3−f (x k )−f (x k+1)<3,综上,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,均有 ∑∣m (x i )−m (x i−1)∣n i=1≤3,所以存在常数 M ≥3,使 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,所以函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P ,此时 M 的最小值为 3.【知识点】函数的单调性、指数函数及其性质、函数的最大(小)值、对数函数及其性质20. 【答案】(1) 因为 a ≠0,所以 g (x ) 的对称轴为 x =1,所以 g (x ) 在 [2,3] 上是单调函数,所以 {g (2)=1,g (3)=4 或 {g (2)=4,g (3)=1,解得 a =1,b =0 或 a =−1,b =3(舍). 所以 a =1,b =0.(2) f (x )=x 2−2x+1x =x +1x −2.令 ∣2x −1∣=t ,显然 t >0, 所以 t +1t −2+k (2t −3)=0 在 (0,1) 上有一解,在 [1,+∞) 上有一解.即 t 2−(2+3k )t +1+2k =0 的两根分别在 (0,1) 和 [1,+∞) 上.令 ℎ(t )=t 2−(2+3k )t +1+2k ,若 ℎ(1)=0,即 1−2−3k +1+2k =0,解得 k =0,则 ℎ(t )=t 2−2t +1=(t −1)2,与 ℎ(t ) 有两解矛盾.所以 {ℎ(0)>0,ℎ(1)<0,即 {1+2k >0,−k <0, 解得 k >0. 所以实数 k 的取值范围是 (0,+∞).【知识点】函数的最大(小)值、函数的零点分布21. 【答案】(1) 由函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2,可得 {1−3m +n =0,4−6m +n =0, 解得 {m =1,n =2.(2) 由(1)可得 f (x )=x 2−3x +2,由不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,可得不等式 f (x )>k 在 x ∈[0,5] 上恒成立,可将 f (x )=x 2−3x +2 化为 f (x )=(x −32)2−14,所以 f (x )=x 2−3x +2 在 x ∈[0,5] 上的最小值为 f (32)=−14,所以 k <−14.【知识点】函数的最大(小)值、函数的零点分布22. 【答案】(1) 由已知得 (12)−a=2,解得 a =1.(2) 由(1)知 f (x )=(12)x,又 g (x )=f (x ),所以 4−x −2=(12)x,即 (14)x −(12)x−2=0,即 [(12)x ]2−(12)x−2=0,令 (12)x=t (t >0),则 t 2−t −2=0,所以 t =−1 或 t =2,又 t >0,所以 t =2,即 (12)x=2,解得 x =−1.【知识点】指数函数及其性质。
【课件】第一单元集合与常用逻辑用语知识点复习课件高一上学期数学人教A版(2019)必修第一册

第1章 集合与常用逻辑用语
N*
N
Z
Q
R
什么是集合?什么是元素?
“对象”
集合中的“对象”所指的范围非常广泛,现实生活中
我看到的、听到的、想到的、触摸到的事物和抽象的符号
等等,都可以看做对象。比如数、点、图形、多项式、方
程、函数、人等等、
“总体”
集合是一个整体,已暗含“所有”“全部”“全体”
互异性
一个给定的集合当中的元素是互不相同的,即集合中的元素不会重复
出现
无序性
集合中的元素排列没有顺序之分,只要某两个集合当中的元素相同,
那么它们就是相等的集合。{1,2,3}和{3,2,1}是同样的集合
集合和元素怎么表示?它们之间有什么关系?
一般来说:
用大写拉丁字母A、B、C…等表示集合
用小写拉丁字母, , …等表示元素
元素与集合的关系:
如果是是集合A的元素,那么就说属于集合A,记作∈A;
如果是不是集合A的元素,那么就说不属于集合A,记作∉A;
比如,3∈自然数集;4∉奇数集
常用的数集比如自然数集怎么表示?
【自然数集】全体自然数组成的集合,包括0,1,2…等,记作N,也叫非负整数集
【正整数集】全体正整数组成的集合,记作N*或N+;
y 2 ≥ 0”
【3】全称量词命题中一般含有全称量词,但是有些全称量词命题中的全称
量词是省略的,理解时需要把它补充出来,例如“平行四边形的对角
线互相平分”应理解为“所有的平行四边形对角线都互相平分”
全称量词命题怎么判断真假?
要判断全称量词命题“∀x ∈ M, p x ”是真命题,需要对集合中每一个
2022-2023学年高一上学期数学人教A版必修一第五章《三角函数》试卷

新人教A 版 必修一 三角函数单元素养测评卷(原卷+答案)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各对角中,终边相同的是( )A .32 π和2k π-32 π(k ∈Z )B .-π5 和225π C .-79 π和119 π D .203 π和1229π 2.已知α是第二象限角,sin α=35,则cos α=( ) A .-35 B .-45 C .35 D .453.已知角α的终边上一点P (x 0,-2x 0)(x 0≠0),则sin αcos α=( )A .25B .±25C .-25D .以上答案都不对 4.圆的一条弦的长等于半径,则这条弦所对的圆周角的弧度数为( )A .1B .12C .π6 或5π6D .π3 或5π35.函数f (x )=cos ⎝⎛⎭⎫π2-x 是( )A .奇函数,在区间⎝⎛⎭⎫0,π2 上单调递增B .奇函数,在区间⎝⎛⎭⎫0,π2 上单调递减 C .偶函数,在区间⎝⎛⎭⎫0,π2 上单调递增 D .偶函数,在区间⎝⎛⎭⎫0,π2 上单调递减 6.若cos ⎝⎛⎭⎫α-π4 =35,sin 2α=( ) A .2425 B .-725 C .-2425 D .7257.在△ABC 中,若tan A +tan B +2 tan A ·tan B =2 ,则tan 2C =( )A .-2B .2C .-22D .228.函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,将y =f (x )的图象向左平移π6个单位长度得到函数y =g (x )的图象,则函数y =g (x )的解析式是( )A.g (x )=sin 2xB .g (x )=sin (2x +π3) C .g (x )=sin (2x -π3) D .g (x )=sin (2x +2π3) 二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.已知角α的终边与单位圆相交于点P (45 ,-35),则( ) A .cos α=45 B .tan α=-34C .sin (α+π)=35D .cos (α-π2 )=3510.已知θ∈(0,π),sin θ+cos θ=15,则下列结论正确的是( ) A .sin θ-cos θ=-75 B .cos θ=-35C .tan θ=-34D .θ∈⎝⎛⎭⎫π2,π 11.[2022·广东佛山高一期末]已知cos ⎝⎛⎭⎫π6+α =13,则( ) A .sin ⎝⎛⎭⎫π6+α =223 B .cos ⎝⎛⎭⎫5π6-α =-13C .sin ⎝⎛⎭⎫π3-α =13D .角α可能是第二象限角12.函数f (x )=sin x -3 cos x ,把图象上各点的横坐标缩短到原来的12,得到函数g (x )的图象,则下列说法正确的是( )A .函数g (x )的最小正周期为πB .函数g (x )的图象关于直线x =k π2 +5π12,k ∈Z 对称 C .函数g (x )在区间⎝⎛⎭⎫0,π3 上单调递增D .若x ∈⎣⎡⎦⎤π4,π2 ,则g (x )的值域为⎣⎡⎦⎤12,32 三、填空题(本题共4小题,每小题5分,共20分.)13.若cos (2π-α)=13,则sin ⎝⎛⎭⎫3π2-α =________. 14.已知θ是第三象限角,且满足⎪⎪⎪⎪sin θ2 =sin θ2 ,则θ2的终边在第________象限. 15.梅州城区某公园有一座摩天轮,其旋转半径30米,最高点距离地面70米,匀速运行一周大约18分钟.某人在最低点的位置坐上摩天轮,则第12分钟时,他距地面大约为________米.16.已知一扇形的弧长为2π9 ,面积为2π9,则其半径r =________,圆心角为________. 四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知sin α=55 ,α∈⎝⎛⎭⎫π2,π . (1)求tan α,sin 2α的值;(2)求cos ⎝⎛⎭⎫α-π3 的值.18.(本小题满分12分)[2022·山东烟台高一期末]在平面直角坐标系xOy 中,角α的顶点在坐标原点O ,始边与x 轴的非负半轴重合,角α的终边经过点A (a ,3),cos α=-45. (1)求a 和tan α的值; (2)求sin (-α)+2sin (π2+α)3sin (3π2+α)+sin (π-α) 的值.19.(本小题满分12分)已知tan ⎝⎛⎭⎫π4+α =2,tan β=12. (1)求tan α的值;(2)求sin (α+β)-2sin αcos β2sin αsin β+cos (α+β)的值.20.(本小题满分12分)[2022·广东茂名高一期末]已知函数f (x )=2cos ⎝⎛⎭⎫2x -π3 ,x ∈R , (1)求f (x )的最小正周期;(2)求f (x )的单调递减区间.21.(本小题满分12分)已知-π<α<0,且满足________.从①sin α=55 ;②cos α+sin α=-55 ;③tan α=-2.三个条件中选择合适的一个,补充在上面的问题中,然后作答补充完整的题目.(1)求cos α-sin α的值;(2)若角β的终边与角α的终边关于y 轴对称,求cos β+sin βcos β-sin β的值.22.(本小题满分12分)[2022·福建泉州高一期末]函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π2)在一个周期内的图象如图所示,O 为坐标原点,M ,N 为图象上相邻的最高点与最低点,P ⎝⎛⎭⎫-12,0 也在该图象上,且|OM |=172,|MN |=25 . (1)求f (x )的解析式;(2)f (x )的图象向左平移1个单位后得到g (x )的图象,试求函数F (x )=f (x )·g (x )在⎣⎡⎦⎤14,53 上的最大值和最小值.。
期末知识点总结和方法专练 不等式-2022-2023学年高一上学期数学人教A版(2019)必修第一册

2022-2023 高一数学上期末知识点总结和方法专练---不等式一、不等式的性质 (1)基本性质①a >b ⇔b <a(对称性) ②a >b ,b >c ⇒a >c(传递性) ③a >b ⇒a+c >b+c(加法单调性)④a >b ,c >0⇒ac >bc,a >b ,c <0⇒ac <bc(乘法单调性) (2)运算性质①a >b ,c >d ⇒a +c >b+d(同向不等式相加) ②a >b ,c <d ⇒a -c >b -d(异向不等式相减) ③a >b >0,c >d >0⇒ac >bd(同向不等式相乘) ④a >b >0,0<c <d ⇒c a >db(异向不等式相除) ⑤a >b >0⇒n a >n b (n ∈Z ,且n >1)(开方法则) ⑥a >b >0⇒a n >b n (n ∈Z ,且n >1)(乘方法则)【例1】 已知a <0,-1<b <0,那么下列不等式成立的是__________.(填序号) ① a >ab >ab 2 ② ab 2>ab >a ③ ab >a >ab 2 ④ ab >ab 2>a【例2】设a ,b ,c ∈R ,且a >b ,则__________.(填序号)① ac >bc ② 1a <1b ③ a 2>b 2 ④ a 3>b 3【例3】已知a,b ∈R,且a<b<0,那么 ( )【例4】已知12<a <60, 15<b <36,求a -b 及ab 的取值范围.【例5】已知a <b <0,那么下列不等式成立的是( )A .a 3<b 3B .a 2<b 2C .(-a )3<(-b )3D .(-a )2<(-b )2【例6】若角α,β满足-π2<α<β<π3,则α-β的取值范围是________.211A.B.01C.D.a b a ab b a bba b<<<>>【例7】(多选)已知a b c d ,,,均为实数,则下列命题正确的是( )A .若,a b c d >>,则ac bd >B .若0,0ab bc ad >->,则0c da b -> C .若,a b c d >>,则a d b c ->- D .若,0a b c d >>>,则a bd c >【例8】 若ln ln a b >,则下列不等式成立的是( ) A .11a b a b-<- B .24a bb a +<C .()2021lg lg b a a b -<-D .lg lg 2021b a b a --<【例9】 若01,1a b c <<<>,则( ) A .a b c c < B .cc ba ab <C .b a bc a c-<- D .log log a b c c <【例10】若a>b>0,且ab=1,则下列不等式成立的是A .21log ()2a ba ab b +<<+ B . 21log ()2a b a b a b <+<+ C . 21log ()2a b a a b b +<+< D . 21log ()2a ba b a b +<+<【例11】已知0<a +b <π2,-π2<a -b <π3,求2a 和3a -b3的取值范围.【例12】已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ .【例13】已知则的取值范围是 ( )二.一元二次不等式的概念及形式设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:0>∆ 0=∆ 0<∆二次函数c bx ax y ++=2 (0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x <有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax{}21x x xx <<∅∅● 一元二次不等式的解法:先将二次项系数化为正数,解出对应方程的两根,根据不等号方向写出解集(大于取两边,小于取中间)注意:二次项系数为字母或两根表达式含字母时要类讨论开口方向及根的大小。
一元二次函数、方程和不等式章节复习与小结课件-2024-2025学年高一上学期数学人教A版必修第一册

c 0
ac>bc
a b
,
⇒
c 0
a b
性质5同向可加性:
⇒ a+c>b+d .
c d
a b 0
性质6同向同正可乘性:
ac>bd
⇒
c d 0
an>bn
性质7可乘方性:a>b>0⇒
性质8可开方性:a>b>0⇒
n
anb
ac<bc .
.
(n∈N,n≥1).
2
+1}上的最大值小于 0,又抛物线 y=x2+mx-1 开口向上,
m2+m2-1<0,
所以只需
m+12+mm+1-1<0,
2m2-1<0,
2
即 2
解得- <m<0.]
2m +3m<0,
2
(2)[ 解]
由 y=x2+(m-4)x+4-2m
=(x-2)m+x2-4x+4,
g=(x-2)m+x2-4x+4 可看作以 m 为自变量的一次函数.
3.若关于 x 的不等式 ax2+2x+2>0 在 R 上恒成立,
求实数 a 的取
值范围.
解:当 a=0 时,原不等式可化为 2x+2>0,其解集不为 R,故 a=0 不满足
a>0,
题意,舍去;当 a≠0 时,要使原不等式的解集为 R,只需
Δ=22-4×a<0,
1
,+∞
1
解得 a> .综上,所求实数 a 的取值范围为 2
能.解答此类问题关键是创设应用不等式的条件,合理拆分项或配
凑因式是常用的解题技巧,而拆与凑的目的在于使等号能够成立.
1 9
16
2.已知 x>0,y>0,且 + =1,则 x+y 的最小值为________.
期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)

2020-2021学年高一数学第一册单元提优卷(人教A 版(2019))期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .42.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x∃>≥-,D .10ln 1x x x∃><-,.3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2B .[)(]0,11,4C .[)0,1D .(]1,45.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .27.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<012.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,)(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.15.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫⎪⎝⎭的值是____________.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(284f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是____________.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.18.(本题满分12分)已知集合,2|2162xA x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈-⎪⎝⎭,求sin 2α的值.20.(本题满分12分)已知函数()0.52log 2axf x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.21(本题满分12分)【江苏省盐城市第一中学2020届高三下学期6月调研考试数学试题某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?22.(本题满分12分)已知函数2()2sin cos 0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调增区间;(2)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.2020-2021学年高一数学第一册单元提优卷期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .2.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x ∃>≥-,D .10ln 1x x x∃><-,【答案】D【解析】因为全称命题的否定是特称命题,所以命题“0x ∀>,1ln 1x x ≥-”的否定为“0x ∃>,1ln 1x x<-”.故选D .3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦【答案】D【解析】若0a =,则()3f x x =-,()f x 在区间[)1,-+∞上是增函数,符合.若0a ≠,因为()f x 在区间[)1,-+∞上是增函数,故0112a a a>⎧⎪-⎨≤-⎪⎩,解得103a <≤.综上,103a ≤≤.故选:D .4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2 B .[)(]0,11,4 C .[)0,1D .(]1,4【答案】C【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠.所以10022x x -≠⎧⎨≤≤⎩,解得01x ≤<.故答案为C .5.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位【答案】B【解析】cos 2sin(2)sin 2()24y x x x ππ==+=+,因此把函数cos 2y x =的图象向右平移4π个单位,再向上平移1个单位可得sin 21y x =+的图象,故选B6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .2【答案】B【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =.故选:B7.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-【答案】D 【解析】∵3sin(3)cos()0πθπθ-++-=,∴3sin cos 0θθ--=,即cos 3sin θθ=-,∴sin cos cos 2θθθ2222sin cos sin (3sin )3cos sin (3sin )sin 8θθθθθθθθ⋅-===----.故选:D .8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .【答案】C【解析】由函数sin (0)y ax b a =+>的图象可得201,23b a πππ<<<<,213a ∴<<,故函数log ()a y xb =-是定义域内的减函数,且过定点(1,0)b +.结合所给的图像可知只有C 选项符合题意.故选:C .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B .10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D .11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<0【答案】A【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =k >.综上,k 的取值范围为(,0))-∞+∞ .故选:D .二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.【答案】13【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1315.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是____________.【答案】2【解析】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭.故答案为:2.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(2)84f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是_____.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数【答案】④【解析】函数()1cos 2sin 21244f x x x x ππ⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭,当(0,3π)∈x 时,当6x π=时,23x π=不能使函数取得最值,所以不是函数的对称轴,①错;当5,24x π⎡⎤∈π⎢⎥⎣⎦时,52,2x ⎡⎤∈ππ⎢⎥⎣⎦,函数先增后减,②不正确;若()1f x =-,那么cos 2x =不成立,所以③错;当3 2a =π时,()12f x a x +=函数是偶函数,④正确,三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.【答案】(1)证明见解析;(2)1.【解析】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.18.(本题满分12分)已知集合,|2162x A x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.【答案】(1)1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭;(2)3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.【解析】(1)1|42A x x ⎧⎫=-<<⎨⎬⎩⎭,0a =时,{|21}B x x =-<<,∴1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭(2)∵A B φ⋂=,∴当B φ=时,3221a a -≥+,即3a ≥,符合题意;当B φ≠时,31213242a a a <⎧⎪⎨+≤--≥⎪⎩或,解得34a ≤-或23a ≤<,综上,a 的取值范围为3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈- ⎪⎝⎭,求sin 2α的值.【答案】(1)()f x 的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)4sin 26α=.【解析】(1)因为()()211cos 2111sin sin cos sin 2sin 2cos 222222x f x x x x x x x -=+-=+-=-22sin 2cos cos 2sin sin 224424x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当()2242x k k Z πππ-=+∈,即()38x k k Z ππ=+∈时,函数()y f x =取最大值2,所以函数()y f x =的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)因为()26f α=,则sin 2246πα⎛⎫-= ⎪⎝⎭,即1sin 243πα⎛⎫-= ⎪⎝⎭,因为3,88ππα⎛⎫∈- ⎪⎝⎭,所以2,422πππα⎛⎫-∈- ⎪⎝⎭,则cos 243πα⎛⎫-= ⎪⎝⎭,所以sin 2sin 2sin 2cos cos 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1432326+=+⋅=.20.(本题满分12分)已知函数()0.52log 2ax f x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.【答案】(1)1a =-;(2)(),1-∞【解析】(1)因为函数()0.52log 2ax f x x -=-为奇函数,所以()()220.50.50.52224log log log 0224ax ax a x f x f x x x x-+-+-=+==----,所以222414a x x-=-,即21a =,1a =或1-,当1a =时,函数()0.50.52log log 12x f x x -==--,无意义,舍去,当1a =-时,函数()0.52log 2x f x x +=-定义域(-∞,-2)∪(2,+∞),满足题意,综上所述,1a =-。
2020-2021学年高一数学人教A版必修第一册期末复习重难点知识集锦 集合与常用逻辑用语

第一章集合与常用逻辑用语重难点知识集锦1.1集合的概念一、重难点解析1.教学重点:了解集合的含义与表示.2.教学难点:区别元素与集合的概念,能选用怡当方法表示集合.二、重点知识1.元素与集合的相关概念(1)元素:一般地,把研究对象统称为元素,常用小写的拉丁字母a,b,c…表示.(2)集合:一些元素组成的总体,简称集,常用大写拉丁字母A,B,C…表示.(3)集合相等:指构成两个集合的元素是一样的.(4)集合中元素的特性:确定性、互异性和无序性.2.元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)不属于:如果a不是集合A中的元素,就说a不属于集合A,记作a∉A.3.常见的数集及表示符号4.集合的表示方法(1)列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(2)描述法,用集合所含元素的共同特征表示集合的方法称为描述法.一般形式为A={x∈I | p},其中x 叫做代表元素,I是代表元素x的取值范围,p是各元素的共同特征.1.2集合间的基本关系一、重难点解析1.教学重点:集合间的包含与相等关系,子集与真子集的概念,空集的概念.2.教学难点:元素与子集,即属于与包含之间的区别.二、重点知识1. 集合与集合的关系(1)子集:对于两个集合A ,B ,如果集合 A 中任意一个元素都是集合 B 中的元素,就称集合A 为集合B 的子集.记作:A B ⊆或B A ⊇.读作:“A 包含于B ”(或“B 包含A ”).(2)集合相等:如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等.记作A = B .即:若A B ,且B A ,则A = B .2. 真子集:对于两个集合A 与B ,如果集合A B ⊆,但存在元素x B ∈,且x A ∉,就称集合A 是集合B 的真子集.记作:A B (或B A ).3. 空集:一般地,我们把不含任何元素的集合叫做空集,记为∅.空集是任何集合的子集.4. 子集性质:(1)任何一个集合是它本身的子集,即A A ⊆.(2)对于集合A ,B ,C ,如果A B ⊆,且B C ⊆,那么A C ⊆.5. 结论:含n 个元素的集合的所有子集的个数是2n ,所有真子集的个数是21n -.1.3集合间的基本运算一、重难点解析1.教学重点:理解两个集合的并集与交集的含义,会用集合语言表达数学对象或数学内容.2.教学难点:区别交集与并集的概念及符号表示,二、重点知识1.集合的运算性质a .,,A A A A A A B B A ∅⋃=⋃=⋃=⋃;b .,,A A A A A B B A ∅∅⋂=⋂=⋂=⋂;c .()(),U U A C A A C A U ∅⋂=⋃=;d .,A B A A B A B A B A ⋂=⇔⊆⋃=⇔⊆.2.集合运算中的常用方法(1)数轴法:若已知的集合是不等式的解集,用数轴法求解.(2)图象法:若已知的集合是点集,用图象法求解.(3)V enn 图法:若已知的集合是抽象集合,用Venn 图法求解.1.4充分条件与必要条件一、重难点解析1教学重点:充分理解充要条件的概念2教学难点:命题条件的充要性判断二、重点知识1.定义:若p⇒q且q⇒p,则记作p⇔q,此时p是q的充分必要条件,简称充要条件. 2.条件与结论的等价性:如果p是q的充要条件,那么q也是p的充要条件.3.概括:如果p⇔q,那么p与q互为充要条件.命题按条件和结论的充分性、必要性可分四类:①充分必要条件(充要条件),即p⇒q且q⇒p;②充分不必要条件,即p⇒q且q p.③必要不充分条件,即p q且q⇒p.④既不充分又不必要条件,即p q且q p.1.5全称量词与存在量词一、重难点解析1.教学重点:理解全称量词和存在量词的意义;能判断全称命题和存在命题的真假2.教学难点:全称命題和存在命题真假的判定二、重点知识1.四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.2. 含逻辑联结词的命题的真假判断∨”有真则真,其余为假;(1)命题“p q∧”有假则假,其余为真;(2)命题“p q(3)¬p和p为真假对立的命题.3. 全(特)称命题及其否定(1)全称命题p:∀x∈M,p(x).它的否定¬p:∃x0∈M,¬p(x0) ;(2)特称命题p:∃x0∈M,p(x).它的否定¬p:∀x∈M,¬p(x) ;(3)命题p∨q的否定是(¬p)∧(¬q);命题p∧q的否定是(¬p)∨(¬q).。
高中数学人教版A版必修一学案:第二单元 章末复习课 Word版含答案

章末复习课网络构建核心归纳1.指数函数的图象和性质一般地,指数函数y =a x(a >0且a ≠1)的图象与性质如下表所示.数的范围,通常要用分类讨论思想.(2)a >1时,a 值越大,图象向上越靠近y 轴,递增速度越快;0<a <1时,a 值越小,图象向上越靠近y 轴,递减速度越快.(3)在同一坐标系中有多个指数函数图象时,图象的相对位置与底数大小有如下关系:在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小.即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x =1时,y =a 去理解,如图.2.对数函数的图象和性质对数函数y =log a x (a >0且a ≠1)与指数函数y =a x(a >0且a ≠1)互为反函数,其图象关于直线y =x 对称.(如图)4.幂函数的性质(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1). (2)如果α>0,则幂函数的图象过原点,并且在区间[0,+∞)上为增函数.(3)如果α<0,则幂函数的图象在区间(0,+∞)上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 从原点趋向于+∞时,图象在x 轴上方无限地逼近x 轴.(4)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.要点一 指数、对数的运算指数式的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算,其次若出现分式则要注意分子、分母因式分解以达到约分的目的.对数运算首先注意公式应用过程中范围的变化,前后要等价,熟练地运用对数的三个运算性质并结合对数恒等式,换底公式是对数计算、化简、证明常用的技巧.【例1】 (1)化简:a 43 -8a 13 b4b 23 +23ab +a 23 ÷⎝ ⎛⎭⎪⎫1-23b a ×3ab ; (2)求值:12lg 3249-43lg 8+lg 245.解 (1)原式=a 13 a -8bb 13 2+2a 13 b 13 +a 132×a 13a 13 -2b 13×a 13 b 13=a 13a -8b a -8b×a 13 ×a 13 b 13 =a 3b .(2)法一 12lg 3249-43lg 8+lg 245=lg 427-lg 4+lg 7 5=lg ⎝⎛⎭⎪⎫427×14×75 =lg 10=12lg 10=12.法二 原式=12(5lg 2-2lg 7)-43·32lg 2+12(2lg 7+lg 5)=52lg 2-lg 7-2lg 2+lg7+12lg 5 =12lg 2+12lg 5=12(lg 2+lg 5) =12lg 10=12. 【训练1】 (1)化简:(8)-23 ×(3102)92 ÷105;(2)计算:2log 32-log 3329+log 38-25log 53.解 (1)原式=⎝⎛⎭⎫232 -23 ×⎝⎛⎭⎫1023 92 ÷1052 =2-1×103×10-52 =2-1×1012 =102.(2)原式=log 34-log 3329+log 38-5log 59=log 3⎝ ⎛⎭⎪⎫4×932×8-9=-7. 要点二 指数函数、对数函数、幂函数的图象问题 函数图象的画法4解析 法一 当x =0时,y =0,故可排除选项A ,由1-x >0,得x <1,即函数的定义域为(-∞,1),排除选项B ,又易知函数在其定义域上是减函数,故选C .法二 函数y =2log 4(1-x )的图象可认为是由y =log 4x 的图象经过如下步骤变换得到的:(1)函数y =log 4x 的图象上所有点的横坐标不变.纵坐标变为原来的2倍,得到函数y =2log 4x 的图象;(2)把函数y =2log 4x 关于y 轴对称得到函数y =2log 4(-x )的图象;(3)把函数y =2log 4(-x )的图象向右平移1个单位,即可得到y =2log 4(1-x )的图象,故选C .答案 C【训练2】在同一直角坐标系中,函数f(x)=x a(x≥0),g(x)=log a x的图象可能是( )解析法一当a>1时,y=x a与y=log a x均为增函数,但y=x a递增较快,排除C;当0<a<1时,y=x a为增函数,y=log a x为减函数,排除A.由于y=x a递增较慢,所以选D.法二幂函数f(x)=x a的图象不过(0,1)点,故A错;B项中由对数函数f(x)=log a x的图象知0<a<1,而此时幂函数f(x)=x a的图象应是增长越来越慢的变化趋势,故B错;D对;C项中由对数函数f(x)=log a x的图象知a>1,而此时幂函数f(x)=x a的图象应是增长越来越快的变化趋势,故C错.答案 D要点三大小比较问题数的大小比较常用方法:(1)比较两数(式)或几个数(式)大小问题是本章的一个重要题型,主要考查数、指数函数、对数函数幂函数图象与性质的应用及差值比较法与商值比较法的应用.常用的方法有单调性法、图象法、中间搭桥法、作差法、作商法.(2)当需要比较大小的两个实数均是指数幂或对数式时,可将其看成某个指数函数、对数函数或幂函数的函数值,然后利用该函数的单调性比较.(3)比较多个数的大小时,先利用“0”和“1”作为分界点,即把它们分为“小于0”,“大于等于0小于等于1”,“大于1”三部分,再在各部分内利用函数的性质比较大小.π,c=π-2,则( )【例3】设a=log2π,b=log12A.a>b>c B.b>a>c C.a>c>b D.c>b>a解析因为π>2,所以a=log2π>1,所以b=log1π<0.因为π>1,所以0<π-2<1,即20<c<1,所以a>c>b.答案 C【训练3】 设a =log 123,b =⎝ ⎛⎭⎪⎫130.2,c =213 ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c解析 a =log 123<0,0<b =⎝ ⎛⎭⎪⎫130.2<1,c =213 >1,故有a <b <c . 答案 A要点四 函数的定义域与值域 函数值域(最值)的求法(1)直观法:图象在y 轴上的“投影”的范围就是值域的范围. (2)配方法:适合二次函数.(3)反解法:有界量用y 来表示.如y =1-x 21+x 2中,由x 2=1-y 1+y ≥0可求y 的范围,可得值域.(4)换元法:通过变量代换转化为能求值域的函数,特别注意新变量的范围. (5)单调性:特别适合于指、对数函数的复合函数. 【例4】 (1)函数f (x )=1log 2x -的定义域为( ) A .(-∞,2) B .(2,+∞) C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)(2)设0≤x ≤2,y =4x -12 -3·2x+5,试求该函数的最值. (1)解析 由题意知⎩⎪⎨⎪⎧log 2x -,x -2>0,解得⎩⎪⎨⎪⎧x ≠3,x >2,所以函数f (x )的定义域为(2,3)∪(3,+∞).答案 C(2)解 令k =2x(0≤x ≤2),∴1≤k ≤4.则y =22x -1-3·2x+5=12k 2-3k +5.又y =12(k -3)2+12,k ∈[1,4],∴y =12(k -3)2+12,在k ∈[1,3]上是减函数,在k ∈[3,4]上是增函数,∴当k =3时,y min =12;当k =1时,y max =52.即函数的最大值为52,最小值为12.【训练4】 (1)若f (x )=1log 0.5x +,则函数f (x )的定义域为( )A .⎝ ⎛⎭⎪⎫-12,+∞ B .(0,+∞)C .⎝ ⎛⎭⎪⎫-12,0D .⎝ ⎛⎦⎥⎤-12,0(2)函数f (x )=ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为________.解析 (1)f (x )=1log 0.5x +的定义域为:⎩⎨⎧⎭⎬⎫x ⎩⎪⎨⎪⎧2x +1>0,log 0.5x +,即⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎩⎪⎨⎪⎧ x >-12,2x +1<1, 解得{x |-12<x <0}.故选C .(2)由条件知⎩⎪⎨⎪⎧1+1x>0,x ≠0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1⇒x ∈(0,1].答案 (1)C (2)(0,1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学上学期期末复习
第1讲 集合的概念和运算
【考点梳理】
1.集合的基本概念
(1)集合元素的三个特征:确定性、
、无序性. (2)元素与集合的关系是属于或不属于关系,用符号 或 表示. (3)集合的表示法:列举法、 、图示法、区间法.
(4)常用数集:自然数集N ;正整数集N +(或N *);整数集Z ;有理数集Q ;实数集R. (5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、
. 2.集合间的基本关系
(1)子集:对任意的A x ∈,都有B x ∈,则A
B (或A B ⊇). (2)真子集:若B A ⊆,且B A ≠,则A
B (或B A ). (3)空集:空集是任意一个集合的 ,是任何非空集合的 .即∅⊆∅,A B (∅
≠B ). (4)集合相等:若B A ⊆,且A B ⊆,则B A =.
3.集合的基本运算及其性质
(1)并集:=B A {x | }.
(2)交集:},|{B x A x x B A ∈∈=且 .
(3)补集:A C U ={|x },U 为全集,A C U 表示A 相对于全集U 的补集.
(4)集合的运算性质 ①⇔=⊆⇔=A B A A B A B A ,
; ②∅= A A A A ,= ;
③A A A A A =∅= ,; ④A C A A C A U U ,∅==
,A A C C U U =)(. 【考点自测】
1.设集合}|{},1,0,1{2x x x N M ==-=,则N M =( )
A .}1,0,1{-
B .}1,0{
C .}1{
D .}0{
2.已知集合},023|{2R x x x x A ∈=+-=,},50|{N x x x B ∈<<=,则满足条件B C A ⊆⊆的集合C 的个数为( )
⊃ ≠ ⊂ ≠
A .1
B .2
C .3
D .4
3.设全集}6,|{*<∈=x N x x U ,集合}5,3{},3,1{==B A ,则)(B A C U 等于( )
A .{1,4}
B .{1,5}
C .{2,5}
D .{2,4}
4.设集合}3123|{≤-≤-=x x A ,集合B 为函数)1lg(-=x y 的定义域,则B A =( )
A .)2,1(
B .[1,2]
C .)2,1[
D .]2,1(
5.已知全集}4,3,2,1,0{=U ,集合}3,2,1{=A ,}4,2{=B ,则B A C U )(为( )
A .{1,2,4}
B .{2,3,4}
C .{0,2,4}
D .{0,2,3,4}
6.已知集合}023|{>+∈=x R x A ,}0)3)(1(|{>-+∈=x x R x B ,则B A =( )
A .)1,(--∞
B .)32
,1(-- C .)3,32
(- D .),3(+∞
7.已知全集}1,log |{2>==x x y y U ,集合}3,1|{>=
=x x
y y P ,则P C U =( ) A .),31[+∞ B .)31,0( C .),0(+∞ D .),3
1[)0,(+∞-∞ 8.已知集合),(},2log |{2a B x x A -∞=≤=,若B A ⊆,则实数a 的取值范围是),(+∞c ,其中c =
.
9.已知集合}5,4,3,2,1{=A ,},,|),{(A y x A y A x y x B ∈-∈∈=,
则B 中所含元素的个数为( ) A .3 B .6 C .8 D .10
10.已知集合}121|{},72|{-<<+=≤≤-=m x m x B x x A ,若A B ⊆,求实数m 的取值范围.。