导数的实际应用
高中数学导数的应用

高中数学导数的应用导数是高中数学中的重要概念之一,它在许多实际问题中都有着广泛的应用。
本文将从几个不同的角度来讨论导数的应用。
一、函数的局部性质导数描述了函数在某一点附近的局部变化情况。
通过计算导数,我们可以判断函数在某点上是增函数还是减函数,从而了解函数的局部性质。
例如,对于一条直线函数,导数恒为常数,表示函数在任意一点上都是增函数或减函数;而对于一个二次函数,导数可以告诉我们函数的凹凸性质。
二、切线与法线导数还可以用来求解函数的切线和法线方程。
对于一条曲线,通过求解曲线上某一点的导数,我们可以得到切线的斜率,从而得到切线方程。
同样地,法线的斜率可以通过切线的斜率和导数的关系求解,进而得到法线方程。
这种应用在物理学中特别有用,例如计算质点在曲线上的运动轨迹时,我们需要知道质点的切线方程,以便求解其运动速度和加速度等物理量。
三、最值问题导数也可以用来解决函数的最值问题。
对于一个连续函数,其最值出现在导数为零的点或者定义域的端点上。
因此,通过求解导数为零的方程,我们可以得到函数的极值点,从而求解最值问题。
这一应用在经济学中尤为重要,例如在成本和收益问题中,我们需要确定某种产品的生产数量,以使总利润最大化。
四、曲线的凹凸性与拐点通过导数的符号变化,我们可以判断函数在某一区间上的凹凸性以及确定曲线的拐点。
当导数在某一区间上始终大于零时,函数在该区间上是凹函数;反之,当导数在某一区间上始终小于零时,函数在该区间上是凸函数。
而导数在某一点上发生跃变时,可以判断该点为函数的拐点。
这一应用在优化问题和工程设计中具有重要意义,例如在物体运动问题中,我们需要找到最优的运动轨迹,以使得物体的速度变化最小。
总结起来,导数的应用非常广泛。
无论是研究函数的局部性质、求解切线和法线方程、解决最值问题,还是分析曲线的凹凸性与拐点,导数都发挥着重要的作用。
因此,对于高中数学学习者来说,深入理解导数的概念和应用是非常重要的。
只有掌握了导数的应用,才能更好地解决实际问题,并在日后的学习和工作中受益。
导数在生活中的应用例子

导数在生活中的应用例子
一、在经济学中
1、供求曲线中的供求应变:当价格发生变化时,需求量会出现波动,
以及需求量对价格的变化也变化,供求曲线受到价格变化的影响。
这
就是导致供求应变的原因,而这个原因可以用微积分的偏导数来证明。
2、市场竞争:随着竞争者数量的增加,市场价格也会发生变化,价格
作为变量,市场最终决定价格时,就会出现供需冲突,从而引起价格
波动,这就用微积分中的导数来分析。
二、在金融学中
1、货币政策传导机制:货币政策的实施使得利率的变化对经济的影响,用微积分的意义来看,利率是一种曲线,当利率变化时,曲线的斜率
也会变化,这就是利率传导机制。
2、投资机会成本:投资机会成本指的是投资者在一定条件下所承担的
投资风险,当利率下降时,投资机会成本也会发生变化,而这一变化
可以用微积分中的导数来进行分析。
三、在制造业中
1、公差计算:在计算机装配工艺中,产品的尺寸关系到了其加工的质量,如果所用的部件的尺寸不符合公差要求,就会出现不良的加工结
果,这时处理的办法就是计算出来最大的容许偏差,而这个最大容许
偏差就是通过微积分的偏微分来计算出来的。
2、工艺优化:为了确保加工出来的产品的质量,就必须对付诸如温度、压力、用料等参数进行优化调整,这可以使用微积分来分析各参数对
最终结果的影响,以达到最优化调整的效果。
试述导数在解决实际问题中的应用

试述导数在解决实际问题中的应用在实际生活中,我们经常会遇到如何才能使“选址最佳”“用料最省”“流量最大”“效率最高”等优化问题。
这类问题在数学上就是最大值、最小值问题,一般都可以应用导数知识得到解决,下面通过具体实例谈谈导数在实际生活中的应用。
一、生活中的优化问题:例1:在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?分析:生活中的优化问题:根据实际意义建立好目标函数,体会导数在解决实际问题中的作用。
例1:在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?分析:这是一道实际生活中的优化问题,建立的目标函数是三次函数,用过去的知识求其最值往往没有一般方法,即使能求出,也要涉及到较高的技能技巧。
而运用导数知识,求三次目标函数的最值就变得非常简单。
思路:设箱底边长为x cm,则箱高602xh-=cm,得箱子容积V是箱底边长x的函数:23260()(060)2x xr x x h x-==<<,从求得的结果发现,箱子的高恰好是原正方形边长的16,这个结论是否具有一般性?二、最大利润问题例2: 已知某商品生产成本C 与常量q 的函数关系式为1004C q =+,价格p 与产量q 的函数关系式1258p q =-。
求产量q 为何值时,利润L 最大。
分析:利润L 等于收入R 减去成本C ,而收入R 等于产量乘价格,由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润。
解:收入211252588R q p q q q q ⎛⎫=⋅=-=- ⎪⎝⎭ 利润()212510048L R C q q q ⎛⎫=-=--+ ⎪⎝⎭ ()212110002008q q q =-+-<< '1214L q =-+ 令'0L =,即12104q -+= 求得唯一的极值点84q = 因为L 只有一个极值点,所以它是最大值。
导数的七种应用

导数的七种应用
导数是一个重要的数学概念,它表达了函数变化的方式。
由于它可以描述函数之间的关系,所以它在几乎所有的数学和科学领域中都有应用。
导数的七种应用是:
一、用于估算
导数可以用来估算函数的极值,从而使我们能够得出函数的极值点。
此外,还可以用导数来估算函数在任意点处的变化率。
二、用于求极值
使用导数,可以求出函数在某一点处的极值。
这使得可以确定某函数的最大值和最小值,以及求解它们所在的位置。
三、用于求解微分方程
导数也可以用来求解微分方程。
因为微分方程的形式是表示函数变化率的方程,所以它可以使用导数来求解。
四、用于图像的拟合
导数可以用来拟合任意函数的图像。
只需要知道函数的形式,就可以用导数来拟合图像。
五、用于求局部极大值或极小值
导数可以用来求局部极大值或极小值。
这是因为可以通过函数的导数来确定其极大值和极小值的位置。
六、用于解决线性递增/递减问题
通过导数,可以解决线性递增/递减问题。
这是由于递增/递减函数的导数表示其变化率,所以可以根据导数求解此类问题。
七、用于求微分
导数也可以用来求微分。
微分是求函数图像在某一点处的斜率,因此可以使用导数来求微分。
从上面我们可以看出,导数有着众多的应用,涵盖了数学和科学领域的众多研究领域。
运用它们,可以解决各种复杂问题,为科学和数学探索做出重要贡献。
导数在高中数学中的应用_数学教育

导数在高中数学中的应用_数学教育
导数是高中数学中非常重要的一章节,它不仅具有重要的理论
意义,而且在实际应用中也发挥着巨大的作用。
以下列举了一些导
数在高中数学中的应用:
1. 极值问题:通过求导数可得到函数的极值,即最值。
在应用
中常常需要求某个量的最大值或最小值,例如对于一个正方形,我
们需要求出其面积的最大值,就可以通过对正方形的边长求导得到。
2. 切线和法线:通过求导数我们可以得到某一点处的切线方程
及其斜率,同时又可以得到该点处的法线方程及其斜率,这对于研
究曲线的性质十分有用。
3. 曲率问题:导数还可以用来求曲线在某一点处的曲率,由此
可以得到曲线的曲率半径等重要参数,同时也可以帮助我们了解曲
线的形状。
4. 泰勒展开:泰勒展开是一种重要的数学工具,它可以利用函
数在某一点处的导数来逼近函数的值,从而在数值计算中起到非常
重要的作用。
总之,在高中数学中学习导数,不仅可以帮助我们深刻理解函
数的性质,同时也为我们今后的学习和工作打下了坚实的基础。
导数的实际应用

练习1 横截面为矩形的横梁的强度同它的 断面高的平方与宽的积成正比,要将直径 为d的圆木锯成强度最大的横梁,断面的 宽度和高度应是多少?
解:如图,设断面的宽为x, 高为h,则h2=d2-x2, 横梁的强度函数f(x)=kxh2
(k为强度系数, k>0),
h
d
x
所以f(x)=kx(d2-x2),0<x<d,
x
a
解:设小正方形边长
为x cm,则箱子容积
V (x) (a 2x)2 x, 0<x a 2
所以 V (x) 4x3 4ax2 a2x (0 x a )
2
V (x) 12x2 8ax a2
令 V (x) 12x2 8ax a2 0
解得x1=
在建立目标函数时,一定要注意确定函数的定义域.
在实际问题中,有时会遇到函数在区间内只有一个 点使 f (x) 0的情形,如果函数在这个点有极大(小)值, 那么不与端点值比较,也可以知道这就是最大(小)值. 这里所说的也适用于开区间或无穷区间.
满足上述情况的函数我们称之为“单峰函数”.
2、实际应用问题的表现形式,常常不是 以纯数学模式反映出来。
r)
2
rR (R r)2
0
即 2(R r) 0 ,解得R=r,
因此,当R=r 时,输出的功率最大。
练习3 圆柱形金属饮料罐的容积一定
时,它的高与底与半径应怎样选取,才
能使所用的材料最省?
解:设圆柱的高为h,底半径为R,
则表面积 S=2π Rh+2π R2
由V=π R2h,得
所说区间的也适用于开区间或无穷区间练习1横截面为矩形的横梁的强度同它的断面高的平方与宽的积成正比要将直径为d的圆木锯成强度最大的横梁断面的宽度和高度应是多少
导数在解决实际问题中的应用

导数在解决实际问题中的应用现实生活中,我们常用到“体积最大”、“用料最少”、“距离最短”、“利润最大”等最优问题,可以用导数来解决。
例1、统计表明,某种型号的汽车在匀速行驶中每小时的耗油量为y (升),关于行驶速度x (千米/小时)的函数解析式可以表示为:3138(0120).12800080y x x x =-+<≤已知甲、乙两地相距100千米.(I )当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (II )当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? 解:(I )当40x =时,汽车从甲地到乙地行驶了100 2.540=小时, 要耗油313(40408) 2.517.512800080⨯-⨯+⨯=(升).答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升. (II )当速度为x 千米/小时时,汽车从甲地到乙地行驶了100x 小时,设耗油量为()h x 升,依题意得3213100180015()(8).(0120),1280008012804h x x x x x x x =-+=+-<≤ 332280080'()(0120).640640x x h x x x x -=-=<≤ 令'()0,h x =得80.x =当(0,80)x ∈时,'()0,()h x h x <是减函数;当(80,120)x ∈时,'()0,()h x h x >是增函数.∴当80x =时,()h x 取到极小值(80)11.25.h = 因为()h x 在(0,120]上只有一个极值,所以它是最小值.答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.例2、求抛物线221x y =上与点)0,6(A 距离最近的点. 解:设),(y x M 为抛物线221x y =上一点, 则=+-=22)6(||y x MA 4241)6(x x +-. ||MA 与2||MA 同时取到极值.令42241)6(||)(x x MA x f +-==. 由0)62)(2()(2/=++-=x x x x f 得2=x 是唯一的驻点.当-∞→x 或+∞→x 时,2,)(,||=∴+∞→∴+∞→x x f MA 是)(x f 的最小值点,此时2221,22=⨯==y x . 即抛物线221x y =上与点)0,6(A 距离最近的点是(2,2).例3、烟囱向其周围地区散落烟尘而污染环境. 已知落在地面某处的烟尘浓度与该处至烟囱距离的平方成反比,而与该烟囱喷出的烟尘量成正比,现有两座烟囱相距20km ,其中一座烟囱喷出的烟尘量是另一座的8倍,试求出两座烟囱连线上的一点,使该点的烟尘浓度最小.解:不失一般性,设烟囱A 的烟尘量为1,则烟囱B 的烟尘量为8并设AC =)200(<<x x x CB -=∴20,于是点C 的烟尘浓度为)200()20(822<<-+=x x k x k y , 其中k 为比例系数. 332333/)20()80001200609(2)20(162x x x x x k x k x k y --+-⋅=-+-= 令0/=y ,有08000120060923=-+-x x x ,即0)4003)(203(2=+-x x .解得在(0,20)内惟一驻点320=x . 由于烟尘浓度的最小值客观上存在,并在(0,20)内取得,∴在惟一驻点320=x 处,浓度y 最小,即在AB 间距A 处km 320处的烟尘浓度最小. 例4、在甲、乙两个工厂,甲厂位于一直线河岸的岸边A 处,乙厂与甲厂在河的同侧,乙厂位于离河岸40 km 的B 处,乙厂到河岸的垂足D 与A 相距50 km ,两厂要在此岸边合建一个供水站C ,从供水站到甲厂和乙厂的水管费用分别为每千米3a 元和5a 元,问供水站C 建在岸边何处才能使水管费用最省?解:设∠BCD =Q ,则BC =θsin 40,CD =40cot θ,(0<θ<2π=, ∴AC =50-40cot θ设总的水管费用为f (θ),依题意,有f (θ)=3a (50-40·cot θ)+5a ·θsin 40=150a +40a ·θθsin cos 35- ∴f ′(θ)=40a ·θθθθθθθ22sin cos 5340sin )(sin )cos 35(sin )cos 35(-⋅='⋅--⋅'-a 令f ′(θ)=0,得cos θ=53 根据问题的实际意义,当cos θ=53时,函数取得最小值, 此时sin θ=54,∴cot θ=43, ∴AC =50-40cot θ=20(km ),即供水站建在A 、D 之间距甲厂20 km 处,可使水管费用最省.。
导数在生活中应用例子

导数在生活中应用例子
导数是微积分中的一个重要概念,它在生活中有着广泛的应用。
导数可以帮助我们理解和解决许多实际问题,比如物体的运动、变化率的计算等。
下面我们就来看一些导数在生活中的应用例子。
首先,导数可以帮助我们理解物体的运动。
比如一辆汽车在高速公路上行驶,我们可以通过对汽车的位置随时间的变化进行求导,来得到汽车的速度。
这样我们就可以通过导数来计算汽车的加速度、减速度等运动状态,从而更好地理解汽车的行驶情况。
其次,导数还可以用来计算变化率。
比如在经济学中,我们可以通过对某一商品的需求量随价格的变化进行求导,来得到需求量对价格的弹性。
这样我们就可以通过导数来计算商品的价格弹性,从而更好地了解市场需求的变化情况。
另外,导数还可以帮助我们优化问题。
比如在工程中,我们可以通过对某一工艺的成本函数进行求导,来得到成本函数的最小值点。
这样我们就可以通过导数来优化工艺成本,从而更好地提高工程效率。
总之,导数在生活中有着广泛的应用。
它可以帮助我们理解物体的运动、计算变化率、优化问题等,对于我们的生活和工作都有着重要的意义。
因此,学好导数对于我们更好地理解和解决实际问题是非常重要的。
希望大家能够在学习导数的过程中,能够更加深入地理解它在生活中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V′(x)>0,当
1 a<x<a时,V′ 6
(x)<0,
因此x=
1 6
a是极大值点,
1 a时,容 6
因此当截下的正方形边长是在某区间内
只有一个x0 使f ´(x0)=0,而且从实际问题本身又可
以知道函数在这点有极大(小)值,那么不与端点 比较, f ( x0 )就是所求的最大值或最小值. (所说区间的也适用于开区间或无穷区间)
这就是横梁强度的最大值,
6 这时h d x d 3
2 2
即当宽为 强度最大。
6 3 d,高为 d 3 3
时,横梁的
练习2 如图,已知电源的电动势为ε, 内电阻为r,问当外电阻取什么值时,输 出的功率最大? 解:由欧姆定律得电流强度
I
Rr
电源
r
R
在负载电路上的输出功率是 2 R 2 P=P(R)=I R= 2
2 2 2
R
因此,当R=r 时,输出的功率最大。
练习3 圆柱形金属饮料罐的容积一定 时,它的高与底与半径应怎样选取,才 能使所用的材料最省? 解:设圆柱的高为h,底半径为R, 则表面积 S=2π Rh+2π R2 V 由V=π R2h,得 h 2 R V 2 S ( R )=2 π R +2 π R 2 则 2V R = +2π R2 R
1 1 2 解:收入 R q p q 25 q 25q q 8 8
利润
1 2 L R C 25q q (100 4q) 8 1 2 q 21q 100 (0<q<100) 8
1 L q 21 4
2V 令 s( R) 2 4 R 0 R V 解得 R= 3 2 V V V 3 2 从而h= R 2 V 2 3 ( ) 2
即h=2R, 因为S(R)只有一个极值, 所以它是最小值 答:当罐的高与底直径相等时,所 用材料最省
已知某商品生产成本C与产量q的函数关 系式为C=100+4q,价格p与产量q的函数 关系式为.求产量q为何值时,利润L最 大?
在实际问题中,有时会遇到函数在区间内只有一个 点使 f ( x ) 0的情形,如果函数在这个点有极大(小)值, 那么不与端点值比较,也可以知道这就是最大(小)值. 这里所说的也适用于开区间或无穷区间. 满足上述情况的函数我们称之为“单峰函数”.
2、实际应用问题的表现形式,常常不是 以纯数学模式反映出来。
(R r)
实验表明,当ε,r 一定时,输出功率由 负载电阻R的大小决定, 当R很小时,电源的功率大都消耗在 内阻r上,输出的功率可以变的很小;R很 大时,电路中的电流强度很小,输出的功 率也会变的很小,因此R一定有一个适当
的数值,使输出的功率最大。
( R r ) 2 R( R r ) ]' 令 P '( R) [ 2 4 (R r) (R r) 2 rR 0 2 (R r) 2 即 (R r ) 0 ,解得R=r,
d x
在开区间(0,d)内,
令f ′(x)=k(d2-3x2)=0,
3 其中负根没有意义,舍去. 解得x=± d, 3 3 当0<x< d时,f ′ (x)>0,当 3 d<x<d时, 3 3
f ′ (x)<0,
因此在区间(0,d)内只有一个极大值点
x=
3 3 d,所以f(x)在x= d取得最大值, 3 3
a 所以 V ( x) 4x 4ax a x (0 x ) 2
3 2 2
V ( x) 12 x 8ax a
2
2
令 V ( x) 12 x2 8ax a 2 0
1 解得x1= a, x2= a(舍去), 2 1 1 在区间(0, a ) 内,且当 0< x < a 时, 2 6
练习1 横截面为矩形的横梁的强度同它的 断面高的平方与宽的积成正比,要将直径 为d的圆木锯成强度最大的横梁,断面的 宽度和高度应是多少? 解:如图,设断面的宽为x, h 高为h,则h2=d2-x2, 横梁的强度函数f(x)=kxh2 (k为强度系数, k>0), 所以f(x)=kx(d2-x2),0<x<d,
令L’=0 , 即 求得唯一的极值点 q=84.
答:产量为q=84时,利润L最大
1 q 21 0 4
1、实际问题中的应用.
在日常生活、生产和科研中,常常会遇到求函数的 最大(小)值的问题.建立目标函数,然后利用导数的方法 求最值是求解这类问题常见的解题思路. 在建立目标函数时,一定要注意确定函数的定义域.
首先,通过审题,认识问题的背景,抽象出问题的实质。
其次,建立相应的数学模型, 将应用问题转化为数学问题,再解。
3、求最大(最小)值应用题的一般方法
(1)分析实际问题中各量之间的关系,把实际问题化为 数学问题,建立函数关系式,这是关键一步。 (2)确定函数定义域,并求出极值点。 (3)比较各极值与定义域端点函数的大小, 结合实 际,确定最值或最值点。
导数的实际应用
例1:在边长为a cm的正方形铁片的 四角切去相等的正方形,再把它的边 沿虚线折起(如图),做成一个无盖的 方底箱子,箱底的边长是多少时,箱 底的容积最大?最大容积是多少?
x
a
解:设小正方形边长 为x cm,则箱子容积
a V ( x) (a 2 x) x, 0<x 2
2