小学思维数学讲义:余数性质(二)-带详解

合集下载

小学思维数学讲义:余数性质(二)-带详解

小学思维数学讲义:余数性质(二)-带详解

余数性质(二)1. 学习余数的三大定理及综合运用2. 理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2. 当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。

余数的知识点总结

余数的知识点总结

余数的知识点总结一、余数的概念余数的概念最早出现在我们学习除法的时候。

当我们用一个数除以另一个数时,商是一个整数,余数是一个小于被除数的正整数。

例如,当我们将13除以4时,商是3,余数是1。

因此,13÷4=3……1。

这里的1就是余数。

余数的概念可以用数学符号“mod”来表示,即a≡b(mod m),其中a是被除数,b是余数,m是除数。

这个符号读作“a同余b模m”。

例如,13≡1(mod 4)。

二、余数的性质1. 余数的范围余数的范围是0到除数-1之间。

例如,当我们将13除以4时,余数的范围就是0到3。

这是因为余数小于除数,所以余数的范围是有限的。

2. 余数的性质余数可以满足一些基本的性质,例如:如果a≡b(mod m)且c≡d(mod m),那么a+c≡b+d(mod m)。

这意味着如果两个数在模m下同余,那么它们的和也在模m下同余。

这个性质在数论和离散数学中有着重要的应用。

3. 余数的运算余数的运算规则和整数的运算规则是一样的。

例如,对于任意的整数a、b和m,有(a+b) mod m = ((a mod m) + (b mod m)) mod m。

这意味着在计算余数时,我们可以先对每个数取余,然后再进行加法或乘法运算,最后再取一次余数,结果不变。

三、余数的应用1. 时钟和日历在时钟和日历的应用中,余数概念起着非常重要的作用。

例如,一小时后的时间可以用(当前时间+1)mod 12来表示,从而得到12小时制的时间。

又如,计算日期间隔的时候,我们可以用(未来日期-当前日期)mod 7来表示,得到相对于当前日期的天数差。

2. 整数的性质余数概念也常常用来证明整数的性质。

例如,我们可以用余数来证明一个数的奇偶性。

对于任何整数a,a≡0(mod 2)当且仅当a是偶数;a≡1(mod 2)当且仅当a是奇数。

3. 数论问题在数论中,余数的概念是至关重要的。

例如,欧拉定理和费马小定理就是建立在余数的基础上。

小升初余数知识点总结

小升初余数知识点总结

小升初余数知识点总结一、余数的概念1. 余数的定义余数是指在做除法的时候,被除数除以除数所得的余数。

例如,8÷3=2……2,这里的2就是余数。

其中,8为被除数,3为除数。

2. 余数的表示方法一般来说我们用R表示余数,其中R=a(mod b),a为被除数,b为除数,R为余数。

二、余数的性质1. 余数的范围余数的取值范围是从0到除数-1。

例如,当除数为5时,余数的取值范围为0-4。

2. 余数与除数的关系当被除数能被除数整除时,余数为0。

当被除数不能被除数整除时,余数一定小于除数。

三、余数的计算方法1. 除法计算在实际计算中,利用长除法进行除法计算,得到被除数、除数和商,将商取整得到整数商,用被除数减去整数商乘以除数,得到余数。

2. 余数的取值余数是通过除法计算得到的,可以用公式R=a(mod b)来表示。

3. 余数的性质除数为正整数时,余数的绝对值小于除数的绝对值。

四、余数的应用1. 余数的判断余数可以帮助我们判断一个数能否被另一个数整除。

当余数为0时,被除数能被除数整除。

2. 余数的运算在计算中,我们往往通过余数的运算来进行数字的整体运算。

例如,通过余数的运算可以判断数字的奇偶性。

3. 余数的应用余数在生活和实际问题中应用广泛。

例如,在排列问题、电话号码归属地查询、日期计算等方面均能应用余数的知识。

五、余数的题型1. 余数的计算通过给定的被除数和除数,计算余数。

2. 余数的应用通过余数的概念和计算方法,解决实际问题。

3. 余数的分析通过实际问题,了解余数的应用和意义。

六、小结余数是一个非常基础而重要的数学概念,它不仅仅是一个基本的数学运算符号,更是数学思维和逻辑问题的基础。

在小升初阶段,需要掌握余数的概念、计算方法以及应用,通过余数问题的解决,提高学生的数学思维和逻辑问题解决能力。

同时,掌握余数知识有助于学生更好地理解整数的概念和运算,为未来的学习打下理论基础。

公式推导—余数的性质

公式推导—余数的性质

小学奥数公式推导—余数的性质目的:通过自己推导公式,更好的理解小学奥数的公式和解题方法,熟悉代数方法。

今天介绍一下余数的性质,余数的概念和性质是非常重要的,是数论的基础。

我们都知道:①和的余数=余数的和②积的余数=余数的积例如:633÷7=90 余3702÷7=100 余2那么633+702的和除以7的余数就是3+2=5那么633×702的积除以7的余数是3×2=6(如果和或乘积大于7,那么再对7取余数)这两个知识很容易背下来,用几遍就熟练了,可是却很少有孩子去考虑为什么有这个规律。

下面我们抽象一下,试着用字母来代替数把这两个数写成7m+a与7n+b(孩子们可以多练习用字母来表示数,比如偶数可以表示成2n,奇数可以表示成2n-1,3的倍数表示成3n等等。

)①和的余数=余数的和(7m+a)+(7n+b)=7m+7n+a+b前两项都是7的倍数,所以余数就取决于a+b②积的余数=余数的积(7m+a)(7n+b)接下来把括号打开,只需要明白乘法分配律即可(如果刚开始接触,括号打不开,可以把其中一个括号当作一个整体,进行2次去括号。

)7m7n+7mb+7na+ab我们发现前三项都是7的倍数,所以不影响整个和除以7的余数。

(或者利用性质①四项和的余数就是0+0+0+ab)所以就是ab除以7的余数。

如果理解了积的余数,可以利用它研究一下乘方,例如求703的703次方除以7的余数。

根据②,这个余数可以简化成3的703次方(幂同余定理,就不描述术语了,孩子不容易理解):3的1次方除以7余33的2次方除以7余23的3次方除以7余6(利用3X2)3的4次方除以7余4(利用6X3)3的5次方除以7余5(利用4X3)3的6次方除以7余1(利用5X3)3的7次方除以7余3(开始循环)利用周期就可以求出答案。

(肯定会出现循环,因为除以7的余数只有0-6,7次以内肯定会循环)以后看见这种题应该能做出来了吧。

余数知识点总结

余数知识点总结

余数知识点总结一、余数的定义在进行整数除法时,如果被除数不能被除数整除,我们就会得到一个余数。

例如,当我们用10除以3时,商是3,余数是1,因为10除以3得到3余1。

一般来说,对于任意的整数a和b(b不为0),都存在唯一的整数q和r,使得a=bq+r,其中q是商,r是余数。

二、余数的性质1. 余数的范围余数r的范围是0到b-1。

这是因为如果r=b-1,那么a=bq+r=bq+(b-1)=(q+1)b-1。

所以当r大于等于b时,我们可以用b来替换掉r,而商q则加1。

所以余数r必然小于b。

2. 余数的相等性如果两个整数a和b除以同一个整数m得到相同的余数,那么它们的差也一定能被m整除,即如果a%m=b%m,则(a-b)%m=0。

3. 余数的加法性两个整数a和b的余数之和等于它们的和的余数,即(a+b)%m=(a%m+b%m)%m。

4. 余数的乘法性两个整数a和b的余数之积等于它们的积的余数,即(a*b)%m=(a%m*b%m)%m。

5. 余数的幂运算如果要计算a的n次幂的余数,我们可以先计算a%m的n次幂的余数,然后再对m取余。

即a^n%m=(a%m)^n%m。

6. 余数的倒数两个整数a和b互素,即它们的最大公约数是1,那么a在模b意义下一定有倒数。

即对于方程ax≡1 mod b,一定存在整数x满足条件。

三、余数的应用1. 余数的运算余数在算术运算中有着广泛的应用,可以用于简化复杂的运算。

例如在大数运算中,我们往往会对结果取模,以减小结果的数值大小,提高运算效率。

2. 余数的模运算模运算是指对一个数除以另一个数后得到的余数。

在计算机科学中,模运算常常被用于实现循环、加密和散列等操作。

例如在密码学中,模运算可以用于加解密算法中的步骤之一。

3. 余数的逆元余数的逆元是指在模意义下存在的一个数,使得与它相乘后得到的余数是1。

余数的逆元在密码学和数论中有着重要的应用,例如在RSA算法中,逆元的存在性是保证算法有效性的关键。

余数的性质及其计算

余数的性质及其计算

余数的性质及其计算余数是数学运算中的一个概念,通常在整除运算中使用。

当一个数被另一个数整除时,余数就是剩下的不被整除的部分。

1.余数的范围:余数的范围是0到除数减1、例如,当除数为7时,余数的范围为0到62.余数的符号:余数的符号与被除数的符号一致。

例如,当被除数为正数,除数为负数时,余数为负数;当被除数为负数,除数为正数时,余数为正数。

3.余数的递减性:当被除数递减一定倍数的除数时,余数也会递减相应的倍数。

例如,当被除数从10递减10倍除数时,余数也会从0递减10。

4.余数的计算方法:余数的计算方法通常有两种,一种是使用除法算术运算符求余,另一种是使用模运算符求余。

-除法算术运算符求余:余数可以通过被除数除以除数得到。

例如,12除以5,商为2余2,余数为2-模运算符求余:模运算符(%)可以直接计算余数。

例如,12%5=25.余数的应用:余数在很多数学问题中有广泛应用,如判断一个数是否是另一个数的倍数,确定一个数的奇偶性等。

余数也可以用于计算和数论问题,例如将一个数分解为素因子的乘积。

一个常见的问题是,如何计算一个大数除以一个较小的数的余数?当被除数较大时,我们常常使用长除法来计算余数。

长除法的步骤如下:1.将被除数按位数与除数对齐,从左至右逐位进行计算。

2.用除数除以被除数的第一位,得到一个商和一个余数。

3.将余数带到被除数的下一位,继续做除法运算,得到新的商和新的余数。

4.重复步骤3,直到计算完所有位数。

5.最终的余数就是最后一次除法运算的余数。

尽管这种方法可以得到正确的结果,但对于大数来说,计算过程可能会比较复杂和繁琐。

在计算机编程中,我们通常使用取模运算符(%)来计算余数,这种方法更加简单和高效。

总结起来,余数是数学运算中的一个概念,表示一个数被另一个数整除后的剩余部分。

余数具有一些性质,如范围、符号、递减性等。

计算余数可以使用除法算术运算符或模运算符。

对于大数的计算,常使用长除法来计算余数。

三年级上册数学思维训练讲义-第二讲 有余数的除法(含答案)

三年级上册数学思维训练讲义-第二讲 有余数的除法(含答案)

第二讲 有余数的除法第一部分:趣味数学小朋友们,笔算加法、减法、乘法都要从个位算起,可是笔算除法却要从最高位算起,你想知道这是怎么一回事儿吗?相信你看了下面的资料,一定会有所了解的!除法为什么要从高位算起?假如要把9个苹果平均分给3个小朋友,我们可以先拿出3个,1人一个;再拿出3个,1人一个;还剩下3个,1人一个,正好分完。

把上述分的过程用连减算式表示出来就是:9-3-3-3=0,减了3次,正好减完。

如果用除法算式表示就是9÷3=3。

所以,除法计算也可以用连减法来求商,把被除数作为被减数,除数作为相同的减数,连减的最多次数就是商。

可是,如果用减法计算369÷3,一共要减去123个3,实在是太麻烦了,改用除法计算多简便啊!原来,除法从高位算起是为了减得更快些,更快地求出商。

小朋友们,你明白了吗?有余除法:把一些书平均分给几个小朋友,要使每个小朋友分得的本数最多,这些书分到最后会出现什么情况呢?一种是全部分完,还有一种是有剩余,并且剩余的本数必须比小朋友的人数少,否则还可以继续分下去。

每次除得的余数必须比除数小,这就是有余数除法计算中特别要注意的。

除法为什么要从高位除起数学谜语(开心一刻) 剃头(猜一数学名词) 除法解这类题的关键是要先确定余数,如果余数已知,就可以确定除数,然后再根据被除数与除数、商和余数的关系求出被除数。

在有余数的除法中,要记住:(1)余数必须小于除数;(2)被除数=商×除数+余数。

第二部分:奥数小练【例题1】 [ ]÷6=8……[ ],根据余数写出被除数最大是几?最小是几?【思路导航】除数是____,根据____________,余数可填_____________.根据____________,又已知商、除数、余数,可求出最大的被除数为6×8+5=53,最小的被除数为____________。

列式如下:______________________答:被除数最大是53,最小是______。

五年级奥数学练习试卷思维培训资料余数问题 (2)

五年级奥数学练习试卷思维培训资料余数问题 (2)

第五讲余数问题内容概述从此讲开始,我们来进一步研究数论的有关知识。

小学奥数中的数论问题,涉及到整数的整除性、余数问题、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

在整数的除法中,只有能整除和不能整除两种情况。

当不能整除时,就产生余数,余数问题在小学数学中非常重要。

一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r(也就是a=b×q+r), 0≤r<b;当r=0时,我们称a能被b整除;当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的商余数问题和整除性问题是有密切关系的,因为只要我们去掉余数那么就能和整除性问题联系在一起了。

余数有如下一些重要性质,我们将通过例题给大家讲解。

例题讲析【例1】(清华附中小升初分班考试)甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数。

分析:法1:因为甲=乙×11+32,所以甲+乙=乙×11+32+乙=乙×12+32=1088;则乙=(1088-32)÷12=88,甲=1088-乙=1000。

法2:将余数先去掉变成整除性问题,利用倍数关系来做:从1088中减掉32以后,1056就应当是乙数的(11+1)倍,所以得到:乙数=1056÷12=88 ,甲数=1088-88=1000 。

【例2】(第十届迎春杯决赛)一个自然数除以8得到的商加上这个数除以9的余数,其和是13.求所有满足条件的自然数.分析:设这个数为n,除以9所得余数r≤8,所以除以8得到的商q≥13—8=5,又显然q≤13.q=5时,r=8,n=5×8+4=44;q=6时,r=7,n=6×8+4=52;q=7时,r=6,n=7×8+4=60;q=8时,r=5,n=8×8+4=68;q=9时,r=4,n=9×8+4=76;q=10时,r=3,n=10×8+4=84;q=11时,r=2,n=11×8+4=92;q=12时,r=1,n=12×8+4=100;q=13时,r=0,n=13×8+4=108.满足条件的自然数共有9个:108,100,92,84,76,68,60,52,44.【例3】(北京八中小升初入学测试题)有一个整数,用它去除70,110,160得到的三个余数之和是50。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余数性质(二)1. 学习余数的三大定理及综合运用2. 理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2. 当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。

上述检验方法恰好用到的就是我们前面所讲的余数的加法定理,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同。

而我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”。

知识点拨 教学目标所以我们总结出弃九发原理:任何一个整数模9同余于它的各数位上数字之和。

以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。

利用十进制的这个特性,不仅可以检验几个数相加,对于检验相乘、相除和乘方的结果对不对同样适用 注意:弃九法只能知道原题一定是错的或有可能正确,但不能保证一定正确。

例如:检验算式9+9=9时,等式两边的除以9的余数都是0,但是显然算式是错误的但是反过来,如果一个算式一定是正确的,那么它的等式2两端一定满足弃九法的规律。

这个思想往往可以帮助我们解决一些较复杂的算式迷问题。

模块一、余数性质的综合运用【例 1】 20032与22003的和除以7的余数是________.【考点】余数性质的综合运用 【难度】3星 【题型】填空【关键词】南京市,少年数学智力冬令营【解析】 找规律.用7除2,22,32,42,52,62,…的余数分别是2,4,1,2,4,1,2,4,1,…,2的个数是3的倍数时,用7除的余数为1;2的个数是3的倍数多1时,用7除的余数为2;2的个数是3的倍数多2时,用7除的余数为4.因为20033667222⨯+=,所以20032除以7余4.又两个数的积除以7的余数,与两个数分别除以7所得余数的积相同.而2003除以7余1,所以22003除以7余1.故20032与22003的和除以7的余数是415+=.【答案】5【巩固】2008222008+除以7的余数是多少? 【考点】余数性质的综合运用 【难度】3星 【题型】解答【解析】328=除以7的余数为1,200836691=⨯+,所以200836691366922(2)2⨯==⨯+,其除以7的余数为:669122⨯=;2008除以7的余数为6,则22008除以7的余数等于26除以7的余数,为1;所以2008222008+除以7的余数为:213+=.【答案】3【巩固】 ()30313130+被13除所得的余数是多少?【考点】余数性质的综合运用 【难度】3星 【题型】解答【解析】 31被13除所得的余数为5,当n 取1,2,3,时5n 被13除所得余数分别是5,12,8,1,5,12,8,1以4为周期循环出现,所以305被13除的余数与25被13除的余数相同,余12,则3031除以13的余数为12;30被13除所得的余数是4,当n 取1,2,3,时,4n 被13除所得的余数分别是4,3,12,9,10,1,4,3,12,9,10,以6为周期循环出现,所以314被13除所得的余数等于14被13除所得的余数,即4,故3130除以13的余数为4;所以()30313130+被13除所得的余数是124133+-=.【答案】3【例 2】 M 、N 为非零自然数,且20072008M N +被7整除。

M N +的最小值为 。

【考点】余数性质的综合运用 【难度】4星 【题型】填空【关键词】走美杯,6年级,决赛,第7题,10分 【解析】2007除以7的余数是5,2008除以7的余数是6,所以56M N +能被7整除,经试算,M N +最小值为325+= 【答案】5例题精讲【例 3】 1234200512342005+++++除以10所得的余数为多少?【考点】余数的加减法定理 【难度】3星 【题型】解答【解析】 求结果除以10的余数即求其个位数字.从1到2005这2005个数的个位数字是10个一循环的,而对一个数的幂方的个位数,我们知道它总是4个一循环的,因此把所有加数的个位数按每20个(20是4和10的最小公倍数)一组,则不同组中对应的个位数字应该是一样的.首先计算123420123420+++++的个位数字,为1476563690163656749094+++++++++++++++++++=的个位数字,为4,由于2005个加数共可分成100组另5个数,100组的个位数字和是4100400⨯=的个位数即0,另外5个数为20012001、20022002、20032003、20042004、20052005,它们和的个位数字是1476523++++=的个位数 3,所以原式的个位数字是3,即除以10的余数是3.【答案】3【例 4】 已知n 是正整数,规定!12n n =⨯⨯⨯,令1!12!23!32007!2007m =⨯+⨯+⨯++⨯,则整数m 除以2008的余数为多少?【考点】余数性质的综合运用 【难度】3星 【题型】解答【关键词】清华附中【解析】 1!12!23!32007!2007m =⨯+⨯+⨯++⨯1!212!313!412007!20081=⨯-+⨯-+⨯-++⨯-()()()()2!1!3!2!4!3!2008!2007!=-+-+-++-2008!1=-2008能够整除2008!,所以2008!1-的余数是2007.【答案】2007【例 5】 设n 为正整数,2004n k =,k 被7除余数为2,k 被11除余数为3,求n 的最小值.【考点】余数性质的综合运用 【难度】3星 【题型】解答【解析】 2004被7除余数为2,被11除余数也为2,所以2n 被7除余数为2,被11除余数为3.由于122=被7除余2,而328=被7除余1,所以n 除以3的余数为1;由于82256=被11除余3,1021024=被11除余1,所以n 除以10的余数为8.可见2n +是3和10的公倍数,最小为[]3,1030=,所以n 的最小值为28.【答案】28【例 6】 试求不大于100,且使374n n ++能被11整除的所有自然数n 的和.【考点】余数性质的综合运用 【难度】3星 【题型】解答【解析】 通过逐次计算,可以求出3n 被11除的余数,依次为:13为3,23为9,33为5,43为4,53为1,…,因而3n 被11除的余数5个构成一个周期:3,9,5,4,1,3,9,5,4,1,……;类似地,可以求出7n 被11除的余数10个构成一个周期:7,5,2,3,10,4,6,9,8,1,……;于是374n n ++被11除的余数也是10个构成一个周期:3,7,0,0,4,0,8,7,5,6,……;这就表明,每一个周期中,只有第3、4、6个这三个数满足题意,即3,4,6,13,14,16,......,93,94,96n =时374n n ++能被11整除,所以,所有满足条件的自然数n 的和为:346131416...9394961343...2831480+++++++++=+++=.【答案】1480【例 7】 对任意的自然数n ,证明2903803464261n n n n A =--+能被1897整除.【考点】余数性质的综合运用 【难度】3星 【题型】解答【解析】 略【答案】18977271=⨯,7与271互质,因为29035(mod7)≡,8035(mod7)≡,4642(mod7)≡,2612(mod7)≡,所以,290380346426155220(m nn n n n n n n A =--+≡--+≡,故A 能被7整除.又因为2903193(mod271)≡,803261(mod271)≡,464193(mod271)≡,所以29038034642611932611932610(mod 271)n n n n n n n n A =--+≡--+≡,故A 能被271整除.因为7与271互质,所以A 能被1897整除.【例 8】 若a 为自然数,证明2005194910()a a -.【考点】余数性质的综合运用 【难度】3星 【题型】解答【解析】 略【答案】1025=⨯,由于2005a 与1949a 的奇偶性相同,所以200519492()a a -.20051949194956(1)a a a a -=-,如果a 能被5整除,那么1949565(1)a a -;如果a 不能被5整除,那么a 被5除的余数为1、2、3或者4,4a 被5除的余数为41、42、43、44被5除的余数,即为1、16、81、256被5除的余数,而这四个数除以5均余1,所以不管a 为多少,4a 被5除的余数为1,而56414()a a =,即14个4a 相乘,所以56a 除以5均余1,则561a -能被5整除,有1949565(1)a a -.所以200519495()a a -.由于2与5互质,所以2005194910()a a -.【例 9】 有一位奥运会志愿者,向看台上的一百名观众按顺序发放编号1,2,3,……100,同时还向每位观众赠送一个单色喇叭.他希望如果两位观众的编号之差是质数,那么他们拿到的喇叭就是不同颜色的.为了实现他自己的愿望,他最少要准备 种颜色的喇叭.【考点】余数性质的综合运用 【难度】4星 【题型】填空【关键词】迎春杯,五年级,初赛,第11题【解析】 编号1、3、6、8这四个编号两两之间的差都是质数,所以这四个编号的观众应该使用不同颜色的喇叭.所以他最少应该准备4种不同颜色的喇叭,然后按编号被4除后的余数分派不同颜色喇叭.【答案】4种模块二、弃九法【例 10】 将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位数:1234567891011121320072008,试求这个多位数除以9的余数.【考点】弃九法 【难度】3星 【题型】解答【解析】 以19992000这个八位数为例,它被9除的余数等于()19992000+++++++被9除的余数,但是由于1999与()1999+++被9除的余数相同,2000与()2000+++被9除的余数相同,所以19992000就与()19992000+被9除的余数相同.由此可得,从1开始的自然数1234567891011121320072008被9除的余数与前2008个自然数之和除以9的余数相同.根据等差数列求和公式,这个和为:()12008200820170362+⨯=,它被9除的余数为1.另外还可以利用连续9个自然数之和必能被9整除这个性质,将原多位数分成123456789,101112131415161718,……,199920002001200220032004200520062007,2008等数,可见它被9除的余数与2008被9除的余数相同.因此,此数被9除的余数为1.【答案】1【巩固】 连续写出从1开始的自然数,写到2009时停止,得到一个多位数:123456789101119992000,请说明:这个多位数除以3,得到的余数是几?为什么?【考点】弃九法 【难度】3星 【题型】解答【关键词】希望杯【分析】 因为连续3个自然数可以被3整除,而且最后一个自然数都是3的倍数,因为1998是3的倍数,所以12345678910111998是3的倍数,又因为12345678910111999200012345678910111998000000001998119982=++++,所以123456789101119992000除以3,得到的余数是0.【答案】0【例 11】 将12345678910111213......依次写到第1997个数字,组成一个1997位数,那么此数除以9的余数是 ________.【考点】弃九法 【难度】3星 【题型】填空【关键词】小学数学奥林匹克【解析】 本题第一步是要求出第1997个数字是什么,再对数字求和.19~共有9个数字,1099~共有90个两位数,共有数字:902180⨯= (个), 100999~共900个三位数,共有数字:90032700⨯= (个),所以数连续写,不会写到999,从100开始是3位数,每三个数字表示一个数,(19979180)3602......2--÷=,即有602个三位数,第603个三位数只写了它的百位和十位.从100开始的第602个三位数是701,第603个三位数是9,其中2未写出来.因为连续9个自然数之和能被9整除,所以排列起来的9个自然数也能被9整除,702个数能分成的组数是:702978÷= (组),依次排列后,它仍然能被9整除,但702中2未写出来,所以余数为9-27 =.【答案】7【例 12】 有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和。

相关文档
最新文档