氮气吸脱附实验概况

合集下载

氮气吸附脱附测量比表面积.

氮气吸附脱附测量比表面积.

Page12测试方法类在相同的吸附和脱附条件下,被测样品和标准样品的比表面积正比于 其峰面积大小。计算公式如下:
Sx:被测样品比表面积 S0:标准样品比表面积, Ax:被测样品脱附峰面积 A0:标准样品脱附峰面积 Wx:被测样品质量 W0:标准样品质量
Page
13
测试方法分类
优点:无需实际标定吸附氮气量体积和进行复杂的理论计算即可求得 比表面积;测试操作简单,测试速度快,效率高 缺点:当标样和被测样品的表面吸附特性相差很大时,如吸附层数不 同,测试结果误差会较大。直接对比法仅适用于与标准样品吸附特性 相接近的样品测量,由于BET法具有更可靠的理论依据,目前国内外 更普遍认可BET法比表面积测定。
Page
6
测试方法分类
比表面积测试方法有两种分类标准
1.一是根据测定样品吸附气体量多少方法的不同,可分为:连续流动法 、容量法及重量法,重量法现在基本上很少采用; 2.再者是根据计算比表面积理论方法不同可分为:直接对比法比表面积 分析测定、Langmuir法比表面积分析测定和BET法比表面积分析测定等 。同时这两种分类标准又有着一定的联系,直接对比法只能采用连续流 动法来测定吸附气体量的多少,而BET法既可以采用连续流动法,也可 以采用容量法来测定吸附气体量。
Page 9
测试方法分类
吸附峰或脱附峰的面积大小正比于样品表面吸附的氮气量的多少,可 通过定量气体来标定峰面积所代表的氮气量。通过测定一系列氮气分 压P/P0下样品吸附氮气量,可绘制出氮等温吸附或脱附曲线,进而求 出比表面积。通常利用脱附峰来计算比表面积。
特点:连续流动法测试过程操作简单,消除系统误差能力强,同时具 有可采用直接对比法和BET方法进行比表面积理论计算。

n2 物理吸附-脱附表征

n2 物理吸附-脱附表征

n2 物理吸附-脱附表征
物理吸附-脱附表征是指利用吸附-脱附技术来研究材料的表面
性质和孔隙结构。

这种技术主要用于研究吸附剂、催化剂和多孔材
料等。

在物理吸附-脱附表征中,常用的技术包括氮气吸附法(BET 法)、氩气吸附法、比表面积测定法、孔体积测定法等。

首先,物理吸附-脱附表征可以通过氮气吸附法来评估材料的比
表面积。

氮气吸附法是利用氮气在不同相对压力下吸附到材料表面
的原理来测定材料的比表面积。

通过绘制吸附等温线和脱附等温线,可以计算出材料的比表面积,进而了解材料的表面活性和孔隙结构。

其次,物理吸附-脱附表征也可以通过氩气吸附法来评估材料的
孔体积。

氩气吸附法利用氩气分子在不同相对压力下进入材料孔隙
的原理,来测定材料的孔体积分布。

通过分析吸附等温线和脱附等
温线的形状,可以得到材料的孔体积分布信息,从而了解材料的孔
隙结构特征。

另外,物理吸附-脱附表征还可以结合比表面积测定法和孔体积
测定法来全面评估材料的吸附性能。

比表面积和孔体积是影响材料
吸附性能的重要因素,通过综合分析两者的数据,可以更全面地了
解材料的吸附-脱附特性,为材料的应用提供重要参考。

总的来说,物理吸附-脱附表征是一种重要的材料表征技术,通过测定材料的比表面积和孔体积等参数,可以全面了解材料的表面性质和孔隙结构特征,为材料的研究和应用提供重要的参考依据。

氮气吸附脱附测量比表面积

氮气吸附脱附测量比表面积
Page 6
测试方法分类
比表面积测试方法有两种分类标准 1. 一是根据测定样品吸附气体量多少方法的不同,可分为:连续流动法
、容量法及重量法,重量法现在基本上很少采用;
2. 再者是根据计算比表面积理论方法不同可分为:直接对比法比表面积 分析测定、Langmuir法比表面积分析测定和BET法比表面积分析测 定等。同时这两种分类标准又有着一定的联系,直接对比法只能采用 连续流动法来测定吸附气体量的多少,而BET法既可以采用连续流动 法,也可以采用容量法来测定吸附气体量。
测试方法分类
由上式可以看出,BET方程建立了单层饱和吸附量Vm与多层吸附量V 之间的数量关系,为比表面积测定提供了很好的理论基础。
BET方程是建立在多层吸附的理论基础之上,与许多物质的实际吸附 过程更接近,因此测试结果可靠性更高。实际测试过程中,通常实测 3-5组被测样品在不同气体分压下多层吸附量V,以P/P0为X轴,为Y 为Y轴,由BET方程做图进行线性拟合,得到直线的斜率和截距,从 而求得Vm值计算出被测样品比表面积。
Page 14
测试方法分类
BET比表面积测定法 BET理论计算是建立在Brunauer、Emmett和Teller三人从经典统计
理论推导出的多分子层吸附公式基础上,即著名的BET方程:
Page 15
P: 吸附质分压 P0: 吸附剂饱和蒸汽压 V: 样品实际吸附量 Vm: 单层饱和吸附量
C:与样品吸附能力相关的常数
Page 10
测试方法分类
容量法
பைடு நூலகம்
容量法中,测定样品吸附气体量多少是利用气态方程来计算。在
预抽真空的密闭系统中导入一定量的吸附气体,通过测定出样品吸脱
附导致的密闭系统中气体压力变化,利用气态方程P*V/T=nR换算出

氮气吸脱附曲线

氮气吸脱附曲线

氮气吸脱附曲线氮气的吸附和脱附曲线是氮气的收缩-膨胀特性的重要反映。

氮气的动力学特性主要是受到量子化,量子化和保守力的影响,受到操作压力和温度的影响。

在此基础上,本文将重点介绍氮气的吸附脱附曲线的形成原理,以及吸附脱附曲线特性,并从本质上讨论氮气收缩-膨胀特性。

一、氮气吸附脱附曲线的形成原理氮气的吸附和脱附曲线是由操作压力和温度的变化而形成的。

在操作压力和温度变化的条件下,氮气的量子效应受到抑制,氮气的温度改变了温度参数的调节,也改变了气体的结构本质;而在低压和温度环境下,氮气的量子化作用受到抑制,并且量子作用强度变小,随着操作压力和温度的增加,氮气的量子化作用逐渐增强,量子作用本质也改变,从而形成氮气的吸附脱附曲线。

吸附脱附曲线是由多个氮气分子投射到容器内造成氮气分子的撞击碰撞,在多个氮气分子的碰撞环境中,一些氮气分子能够以一定的能量,并在不同的温度条件和压力条件下,与容器的壁面有效结合,也就是吸附,而另一些氮气分子能够以一定的能量,并在不同的温度和压力条件下,从容器中释放出来,也就是脱附,这就是氮气吸附脱附曲线的形成原理。

二、氮气吸附脱附曲线的特性氮气的吸附脱附曲线的特性主要表现在以下几个方面:1、在低温低压条件下,氮气的吸附脱附曲线表现出一种S型特性,即随着温度的升高,氮气的吸附脱附量也增加;2、在中温中压的条件下,氮气的吸附脱附曲线比较平缓,即随着温度的升高,氮气的吸附脱附量并不会增加;3、在高温高压条件下,氮气的吸附脱附曲线表现出一种有自发现象的特性,即在高温高压条件下,氮气的吸附脱附量会有一种自发的现象,也就是随着温度的升高,氮气的吸附脱附量会急剧增加。

三、氮气收缩-膨胀特性的本质氮气收缩-膨胀是指氮气在不同的温度压力环境下的体积的变化情况,这与氮气的量子特性有关,也与氮气的量子化作用有关。

在温度和压力不变的情况下,氮气的量子特性不变,氮气的体积也不变,但是当温度和压力发生变化的时候,氮气的量子化作用也会受到影响,氮气的体积就会发生变化,这种变化就会形成氮气收缩-膨胀现象。

n2吸附脱附等温线

n2吸附脱附等温线

n2吸附脱附等温线N2吸附脱附等温线是一种非常重要的表征物质吸附性能的方法,它可以揭示吸附剂和被吸附物质之间的相互作用和特性,为材料科学和化学领域的研究提供有力的支持。

下面我们来详细了解一下N2吸附脱附等温线的含义和应用。

一、N2吸附脱附等温线的基本概念N2吸附脱附等温线是指在一定温度下,将氮气吸附在样品表面并测量其吸附量和压力的变化,绘制出的吸附等温线图,也称为氮气吸附等温线。

其中,吸附等温线的坐标轴分别表示吸附剂(N2)的相对压力和吸附剂占据吸附剂和被吸附物质之间孔隙体积的百分比,即孔隙率。

通过N2吸附脱附等温线,我们可以获得吸附材料的许多物理性质,如孔径分布、比表面积、介孔体积、孔隙体积分布等等。

此外,它还可以用于评估吸附材料的性能,如吸附机理、吸附剂敏感性、吸附剂稳定性等等。

二、N2吸附脱附等温线的类型N2吸附脱附等温线通常可以分为五种类型,分别是:1.类型I等温线:由于大孔单一,吸附剂分子直接填充孔隙,通常见于膨胀型和树脂类物质。

2.类型II等温线:在低相对压力下出现很平缓的区域,表示大孔口发生准孔道狭窄,通常见于有孔型结构物质。

3.类型III等温线:表明孔径分布主要集中在介孔范围内,峰值很明显,通常见于沸石类、硅铝酸盐和金属有机骨架类材料等。

4.类型IV等温线:表示孔径分布主要在微孔范围内,吸附值随着相对压力增加快速上升,并达到饱和。

该类型等温线通常见于炭类和氧化钨等材料。

5.类型V等温线:由于孔径很小,需要强烈的吸附力才能使吸附剂进入其孔内。

该类型等温线通常见于碳分子筛和介孔硅材料等。

三、N2吸附脱附等温线的应用N2吸附脱附等温线在科学研究和工业应用中具有广泛的应用。

以下为具体应用:1. 材料表征:N2吸附脱附等温线可以揭示材料的孔径分布、比表面积、孔隙体积分布等,为材料表征提供了重要的信息。

2. 催化剂研究:N2吸附脱附等温线可以对催化剂进行活性研究,评估催化剂的比表面积和孔隙结构等性质,进而优化催化剂性能。

氮气吸附脱附测量比表面积

氮气吸附脱附测量比表面积

Page 12
测试方法分类
在相同的吸附和脱附条件下,被测样品和标准样品的比表面积正比于 其峰面积大小。计算公式如下:
Sx:被测样品比表面积 S0:标准样品比表面积, Ax:被测样品脱附峰面积 A0:标准样品脱附峰面积 Wx:被测样品质量 W0:标准样品质量
Page 13
测试方法分类
优点:无需实际标定吸附氮气量体积和进行复杂的理论计算即可求得 比表面积;测试操作简单,测试速度快,效率高 缺点:当标样和被测样品的表面吸附特性相差很大时,如吸附层数不 同,测试结果误差会较大。直接对比法仅适用于与标准样品吸附特性 相接近的样品测量,由于BET法具有更可靠的理论依据,目前国内外 更普遍认可BET法比表面积测定。
Page 4


氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。通 过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效” 的概念是指:样品的比表面积是通过其表面密排包覆(吸附)的氮气 分子数量和分子最大横截面积来表征。
实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理 论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表 面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出 被测样品的比表面积。计算公式如下:
Page 6
测试方法分类
比表面积测试方法有两种分类标准
1. 一是根据测定样品吸附气体量多少方法的不同,可分为:连续流动 法、容量法及重量法,重量法现在基本上很少采用; 2. 再者是根据计算比表面积理论方法不同可分为:直接对比法比表面 积分析测定、Langmuir法比表面积分析测定和BET法比表面积分析 测定等。同时这两种分类标准又有着一定的联系,直接对比法只能 采用连续流动法来测定吸附气体量的多少,而BET法既可以采用连 续流动法,也可以采用容量法来测定吸附气体量。

氮气等温吸脱附计算比表面积、孔径分布、样品要求、经典书目、论文

氮气等温吸脱附计算比表面积、孔径分布、样品要求、经典书目、论文

氮⽓等温吸脱附计算⽐表⾯积、孔径分布、样品要求、经典书⽬、论⽂来源⼁⼩⽊⾍论坛⽬的:是让⼤家对氮⽓等温吸脱附有⼀个基本的理解和概念,不会讲太多源头理论,内容不多,⼒求简明实⽤。

本⼈有幸接触吸脱附知识的理论和实践,做个总结⼀是长久以来的⼼愿,⼆则更希望能和⼤家共同学习、探讨和提⾼。

由于内容是⾃⼰的总结和认识,很可能会有部分错误,希望⼤家能给予建议、批评和指导,好对内容做进⼀步的完善。

注意我们拿到的数据,只有吸脱附曲线是真实的,⽐表⾯积、孔径分布、孔容之类的都是带有主观⼈为⾊彩的数据。

经常听到有同学说去做个BET,其实做的不是BET,是氮⽓等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的⼀⼩段⽤传说中的BET公式处理了⼀下,得到单层吸附量数据Vm,然后据此算出⽐表⾯积,如此⽽已。

◆六类吸附等温线类型⼏乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四⼈将⼤量等温线归为五类,阶梯状的第六类为Sing增加。

每⼀种类型都会有⼀套说法,其实可以这么理解,以相对压⼒为X轴,氮⽓吸附量为Y轴,再将X轴相对压⼒粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、⾼压(0.90-1.0)三段。

那么吸附曲线在:低压端偏Y轴则说明材料与氮有较强作⽤⼒(І型,ІІ型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈І型;低压端偏X轴说明与材料作⽤⼒弱(ІІІ型,Ⅴ型)。

中压端多为氮⽓在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒⼦堆积产⽣的孔,有序或梯度的介孔范围内孔道。

BJH⽅法就是基于这⼀段得出的孔径数据;⾼压段可粗略地看出粒⼦堆积程度,如І型中如最后上扬,则粒⼦未必均匀。

平常得到的总孔容通常是取相对压⼒为0.99左右时氮⽓吸附量的冷凝值。

N2 吸附脱附

N2 吸附脱附

氮气等温吸脱附计算比★★注意★★我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。

经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。

◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。

每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。

那么吸附曲线在:低压端偏Y轴则说明材料与氮有较强作用力(І型,ІІ型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈І型;低压端偏X轴说明与材料作用力弱(ІІІ型,Ⅴ型)。

中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。

BJH方法就是基于这一段得出的孔径数据;高压段可粗略地看出粒子堆积程度,如І型中如最后上扬,则粒子未必均匀。

平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。

◆几个常数※液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm※标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL※STP每mL氮气分子铺成单分子层占用面积4.354平方米例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距)◆以SBA-15分子筛的吸附等温线为例加以说明此等温线属IUPAC 分类中的IV型,H1滞后环。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比表面S/(m2/m3) 6 ×102 6 ×103 6 ×105 6 ×107 6 ×109
可见达到nm级的超细微粒具有巨大的比表面积,因而具有许多独特的
表面效应,成为新材料和多相催化方面的研究热点。
用BET法测定固体比表面,最常用的吸附质是氮化点77.2K附近。低温可以避 免化学吸附的发生。将相对压力控制在0.05~0.25之间,是因为当相对压力低 于0.05时,不易建立多层吸附平衡;高于0.25时,容易发生毛细管凝聚作用。
BJH模型(Barrett-Joiner- Halenda)
假定吸附层厚度t只与相对压力有关而与孔半径无关
滞后现象hysteresis:吸附曲线和脱附曲线不重合
Adv. Funct. Mater. 2008nal Hexagonally-Ordered Mesoporous Carbon Nitrides with Tunable Pore Diameter, Surface Area and NitrogenContent
J. Phys. Chem. C,201, 114, 9353
KIT-6-130
J. Phys. Chem. C,201, 114, 9353
rise to type H2 hysteresis due to pore blocking/percolation independent pore model delayed condensation
氮气等温吸脱附实验原理以及应用
Wen Chao
2011.9.29
BET
单位重量催化剂的表面积,以m2 g-1表示
① 固体表面是均匀的 ② 吸附分子间无相互作用力 ③ 当p=p0时吸附层厚度趋于无穷大 ④ 吸附平衡时,每一层的蒸发速度等于其 凝聚速度
• V是在压力为p时的平衡吸附量 • Vm是单层覆盖时的吸附量 • c > 20,气体在固体表面的吸附热与冷凝热的
中孔孔结构的计算 - 毛细凝聚法 大孔孔结构的计算 - 压汞法 微孔孔结构 层厚法
毛细凝聚现象 孔 = 毛细管;孔中的吸附 = 毛细凝聚
Kelvin公式:ln (p/p0) = - (2V cos)/rRT 表面张力,V 液体摩尔体积,r 半径, 接触角 接触角, 接触角, 0-90o, 90-180 o, 浸润, 不浸润, 凹月面状 凸月面状
固体表面由于多种原因总是凹凸不平的,凹坑深度大于凹坑直径就成为孔。
孔分布: 各种孔径的孔体积占总体积的多少 大孔(>50nm); 中孔(2-50nm); 微孔(<2nm) 孔分布曲线: (吸附总量-孔径) 微分量-半径(dV/dr-r) 最可几孔径:比例最大的孔 吸附气体都能浸润吸附剂固体 , 发生毛细凝聚 浸润, 接触角0-90o, cos > 0, ln (p/p0) < 0 ,p < p0, 未达到饱和蒸汽压就发生凝聚。 如果能在实验中测出不同压力时的吸附量, 就可以利用Kelvin公式计算它的孔径分布。
Probing Adsorption, Pore Condensation, and Hysteresis Behavior of Pure Fluids in Three-Dimensional Cubic Mesoporous KIT-6 Silica (a) Nitrogen sorption isotherms (at 77.4 K) in selected KIT-6 samples (aged at varying temperatures from 50 to 130 °C). (b) NLDFT pore size distributions (calculated from the desorption branch) from nitrogen (77.4 K) and argon (87.3 K) for selected KIT-6 samples agedat various temperatures. The NLDFT pore sizes (equilibrium) are 5.5,7.3, 8.4, and 10.1 nm, for 50, 80, 100, and 130 °C, respectively.
Adv. Funct. Mater. 2008, 18, 816–827
Adv. Funct. Mater. 2008, 18, 816–827
Circles:MCN-1-100, squares: MCN-1-130, and triangles: MCN-1-150
J. Phys. Chem. C,201, 114, 9353
J. Phys. Chem. C,201, 114, 9353
J. Phys. Chem. C,201, 114, 9353
Comparative plot representing the pressures observed for capillary pore condensation (ads.) and evaporation (des.) in the cases of hexagonal mesoporous silica (MCM-41, SBA-15) materials and the respective 3-D cubic mesoporous silica (MCM-48, KIT-6) materials, as a function of mesopore size. The three different hysteresis regime regions are indicated.
差值较大, 差值较小,
说明气体与固体表面相互作用强 • c ~ 1,气体在固体表面的吸附热与冷凝热的 说明气体与固体表面相互作用弱
把边长为1cm的立方体逐渐分割成小立方体的情况:
边长l/m 1×10-2 1×10-3 1×10-5 1×10-7 1×10-9
立方体数 1 103 109 1015 1021
相关文档
最新文档