二千以内勾股数表
千古第一定理--勾股定理

千古第一定理——勾股定理在西方,毕达哥拉斯的名字可以说尽人皆知,这主要来自所谓毕达哥拉斯定理,即直角三角形的三条边长度为a、b、c,则a2+b2=c2反过来,如果三角形的三条边a,b,c满足a2+b2=c2则它是个直角三角形.实际上,早在毕达哥拉斯之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据,有案可查.相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的种种传说都是后人辗转传播的,可以说真伪难辨.这个现象的确不太公平,其所以这样,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,自然就落在毕达哥拉斯的头上.他常常被推崇为“数论的始祖”,而在他之前的泰勒斯被称为“几何的始祖”,西方的科学史一般就上溯到此为止了.至于希腊科学的起源只是近一二百年才有更深入的研究.因此,毕达哥拉斯定理这个名称一时半会儿改不了.不过,在中国,因为我们的老祖宗也研究过这个问题,因此称为商高定理,而更普遍地则称为勾股定理.不管怎么说,勾股定理是数学中头一个最伟大的定理,它的重要性怎么说也不为过:(1)勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理.(2)勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数”与有理数的差别,这就是所谓第一次数学危机.(3)勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学.(4)勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式.3.1 勾股定理的历史世界上各个民族通过他们的实践都或多或少地知道勾股定理.而号称四大文明古国的中国、印度、埃及、巴比伦则更有丰富的数学文化,距今都有5000年的历史了.中国的《周髀算经》中明确地记载着“勾三,股四,弦五”,并且清楚地讨论了它们与直角三角形的关系.其后的著作中也有其他的勾股数.如《九章算术》中还有(5,12,13),(7,24,25),(8,15,17)等7组,《缉古算经》中有(287,984,102),是明显表出的最大一组勾股数.埃及是几何学的发源地,埃及的“拉绳者”就是测量员,他们利用有结的绳子进行测量,两结之间的距离都是一样的,比如说都是1米.他们可以利用一条12米的绳子拉出一个直角三角形来.这条绳子算上首尾的结共有13个结,这样,把第一个结同第13个结连在一起,用桩子固定下来,然后再把第4个结同第8个结也分别用桩子固定,同时绷紧绳子.这三个桩子构成边长分别为3米、4米、5米的三角形,而两短边形成直角(图3.1).根据现有的材料推测,埃及人可能只是考虑实用的目的,而对进一步研究数论不感兴趣.印度人也考虑过直角三角形,他们比埃及人进了一步,得出了满足a2+b2=c2的三整数组(a,b,c),在西方称为毕达哥拉斯三数组,我们不妨称之为勾股数组.印度人发现的新的勾股数组还有12,16,20; 15,20,25;5,12,13; 15,36,39;8,15,17; 12,35,37.不过,他们也没有进一步的结果.现有材料中最令人吃惊的是,公元前两千年左右的巴比伦的泥板文书上有着许多勾股数组(表3.1),其中有的数很大,表明他们也许已掌握了一般的规律.3.2 勾股定理的几何方面勾股定理包含几何与数论两个方面.首先是几何方面,一个直角三角形的斜边的平方等于另外两边的平方和.这里,边的平方的几何意义就是以该边为边的正方形的面积,实际上这时我们并不考虑边长是否为整数.只有毕达哥拉斯学派认为万物皆数,才把边长及面积都看成整数或分数,而最终导致矛盾.但是,勾股定理并没有必要考虑得如此深刻,我们只是考虑面积的相等就够了.第一个发表了的证明——欧几里得《几何原本》中的证明就是这样的.欧几里得的证明(参见图3.3)出现在第二篇命题47中,这个证明在所有证明中其实是比较复杂的.证明的要点如下:△ABD≌△FBC,矩形BDLI=2△ABD,正方形GFBA=2△FBC,因此矩形BDLI=正方形GFBA,同样可证矩形CILE=正方形ACKH,两式相加即得定理.第二篇命题48是勾股定理的逆定理:如果三角形一边上的正方形等于其他两边上的正方形之和,则其他两边的夹角是直角.欧几里得的证明是这样的(参见图3.4):作AD垂直于AC且等于AB.由题设AB2+AC2=BC2对直角三角形ACD有AD2+AC2=DC2∵ AB=AD,∴BC2=DC2从而BC=DC由于△ABC与△ADC三边对应相等,从而两三角形全等,所以∠CAB为直角.关于毕达哥拉斯定理已有几百个证明,在某本书中已收集了370多种不同的证明,这些证明中有的非常简单和直观,甚至从图上马上可以看出,下面仅举两例.如图3.5,把四个全等的直角三角形拼成一个大正方形,那么大正方形面积等于(a+b)2=a2+2ab+b2;另一方面,大正方形面积又等于因此 a2+b2=c2另一种拼法如图3.6所示.由图可见,边长为c的大正方形的面积为3.3 勾股定理的数论方面勾股定理的数论方面虽然可以包括在几何方面之内,但是比几何方面更为重要.这是由于它是第一个充分研究过的不定方程,并且得到了完整的解答,并且数论所代表的离散数学与几何所代表的连续数学之间的奇妙关系一直是数学发展的一条主线.毕达哥拉斯的公式x2+y2=z2 (3.1)并不是最简单的不定方程,然而却容易下手.你如果有兴趣,也可以尝试去求它的解.不过,现代人虽然有个人计算机的帮助,也不一定能得出巴比伦人的一些解来.不管怎么样,碰到一个不定方程,首先就要试一试求它的解,这显然是求解不定方程的初级阶段.近代数学给我们带来许多新东西,其中之一就是寻找求解的规律,而不是一味地盲目摸索.在考虑满足方程(3.1)的解之后,很容易发现,(3,4,5)是一组解,它们的倍数,比如(6,8,10),(9,12,15),(12,16,20)等等也都是解.这些解在巴比伦的泥板文书上也有,例如(45,60,75).这样我们便得到第一个规律:定理3.1如果(a,b,c)是方程x2+y2=z2的一组解,则(ka,kb,kc)也是一组解,其中k是任意整数.这个定理的证明并不难,只要代入验证一下就可以了.这样我们从初级阶段进入了代数阶段.我们只去求a,b,c互素(详见4.1.3节)的解,也就是它们的最大公因数(a,b,c)=1的解,这种解我们可以称为素勾股数组.显然(3,4,5)是一个素勾股数组,可是勾股方程的素勾股数组远不止这一个,例如(5,12,13),(7,24,25)等也都是素勾股数组.下一个问题就是这些素勾股数组能不能用一个简单公式来概括呢?从数学发展史来看,这是一个飞跃,它真正显示了代数的威力.毕达哥拉斯学派已经找到了这个公式,这就是当m为奇数时,它们就代表素勾股数组,如表3.2所示.表3.2要证它们并不难,只须做一个代数练习即可:但是要证它们互素,也许不太容易,不过由具体的数字可以发现,股与弦都相差1,这也不难证明(你不妨试试看),从这点出发不难推出它们互素.对于不定方程(3.1)来说,我们已走到了最后一步,那就是,找出所有可能的解,一个不剩.这一步十分困难,一般不是像上面那样进行代数验证就行了.为了解决这个问题,首先要问是否所有素勾股数组都可以表示为(3.2)的形式?答案是否定的,因为82+152=172,不过,它们可以纳入(2m,m2-1,m2+1) (3.3)的系列,其中m为偶数.显然,这里股与弦相差为2.这两组公式还不能完全表示所有素勾股数组.经过一千多年的努力,我们的确找到了表示勾股方程的所有解,也就是素勾股数组的明显表达式,即(m2-n2,2mn,m2+n2) (3.4)其中m,n互素,一奇一偶,m>n>0.不难验证,这组数满足勾股方程,现在需要证明,方程x2+y2=z2的每组满足(x,y)=1的解,均可表示为(3.4)的形式.因x,y互素,可证x,y一为奇数,一为偶数.设x为偶数,y为奇数,z也是奇数,因此都是整数,而且它们互素.因为即得 z=m2+n2, y=m2-n2, x=2mn最后还需要证明,m,n一奇一偶,这由z是奇数可以看出.而且可以证明,不同的m,n表示不同的解.由此勾股方程(3.1)的所有解,都可以通过一奇一偶的m,n如式(3.4)表示出来.当然它们还可以每一个乘以k,这样一来,我们对于勾股方程的数论研究就大功告成了.勾股定理是数学中第一个伟大的定理,它首先把分属几何和数论的问题联系在一起,它是第一个完全求解的不定方程,为以后的不定方程树立了典范,而更重要的是,把它的指数2换成n以后,得出了令数学家神往的费尔马大定理.在研究费尔马大定理之前,首先要对勾股定理的数论方面进行充分的讨论,看一看有什么经验能够吸取.虽然这两个定理的结果完全不一样:x2+y2=z2有无穷多组解,而x n+y n=z n (3.5)没有非平凡解(关于平凡解,下面就要讲到).但是,它们却有许多共同的东西,例如:(1)它们都是三个变元的齐次不定方程.(2)由于齐次性,如果(a,b,c)是一组解,那么(ma,mb,mc)也是一组解,这里m是任何一个整数(正数、负数或零).因此,求解时,我们感兴趣的是(a,b,c)=1的解,这样的解我们称为本原解.(3)无论是本原解还是非本原解,其中有一些是一眼就能看出但没有意思的解,这就是a,b,c中一个或三个是零的解,这样方程(3.5)就成为o n+y n=z nx n+o n=z n,或者 x n+y n=o n,这样满足y=z,x=z的任何整数都是原方程的解,对于n为偶数的情况,有(0,-a,a)及(a,0,-a),其中a为任何整数.这种有零的解,我们称之为平凡解,因此我们以后讨论解时,都是考虑非平凡解,即xyz≠0的解.为了确定起见,我们不妨只考虑x>0,y>0,z>0的本原解.(4)对于齐次方程,求整数解与求有理数解的方法并没有本质的不同.实际上,是任意整数但k≠0.因此若不定方程x n+y n=z n存在整数解,也就存在有理数解;反之,存在有理数解,也就存在整数解.实际上,所有齐次不定方程都有这种特性.而非齐次方程,求整数解与求有理数解的差别就非常大,一般需要分别加以处理.(5)为了使用几何方法,我们可以把三个变元的齐次方程变为两个变元的非齐次方程,这只要用方程(3.5)中的z n(假定z≠0)除方程的每一项即可:我们还可以用(x′)n+(y′)n=1 (3.6)表示,这个非齐次方程的有理数解正好对应原齐次方程的整数解,这样求解方程(3.5)的数论问题就可以变成方程(3.6)的几何问题.我们不妨把方程(3.6)仍写为x,y的方程x n+y n=1 (3.7)它代表一条平面代数曲线.这样,求不定方程(3.5)的整数解问题也就成为求这条曲线上的有理点问题,所谓有理点,就是x,y坐标均为有理数的点.现在,我们研究勾股方程的整数解的完全组,看看对费尔马大定理的证明有没有启发.首先,我们叙述一下勾股方程的基本定理:满足不定方程x2+y2=z2的本原整数解,都可以表示为x=a2-b2,y=2ab,z=a2+b2其中a,b是任意满足下述条件的整数.反之,满足上述条件的x,y,z都是勾股方程的一组本原解.由于我们感兴趣的是非平凡的本原解,不失一般性,可以证明其条件为a>b,(a,b)=1且a与b奇偶性不同,另外,x,y的位置可以互换,即x=2ab,y=a2-b2,z=a2+b2也是一组解.根据中学掌握的知识,我们在研究勾股方程的整数解的完全组时有四种方法:(1)初等方法,即初等的代数方法——因子分解以及初等数论的方法;(2)几何方法;(3)三角方法;(4)复数方法.现分别讲述如下.1.初等方法初等方法分为下面四步.第一步,奇偶性分析.如果(x,y,z)是一组本原解,那么它们的奇、偶性有三种可能:(1)x,y均为偶数.这时z也是偶数,因此,(x,y,z)不是本原解,它们可以化为更简单的情形.(2)x,y均为奇数.这种情况不可能出现,因为设x=2m+1,y=2n+1,则x2=4m2+4m+1,y2=4n2+4n+1x2+y2=4(m2+m+n2+n)+2,但无论是奇数平方还是偶数平方,均不能表示为4k+2的形式,因此x与y不能均为奇数.(3)x,y一个为奇数,一个为偶数.由于x,y的位置可以互换,我们不妨假定x 是奇数,y是偶数,这样z也是奇数.第二步,因子分解.由于x2+y2=z2那么,y2=z2-x2=(z+x)(z-x)由于z,x均为奇数,所以z+x和z-x均为偶数,因此都是正整数.整除z+x和z-x,也就可以整除z和x(读者想想为什么),而由式(3.8),p也可以整除y,第四步,利用因子唯一分解定理.由因子唯一分解定理(参见4.3节)可以得出:如果整数n2可以表示为两互素整数p,q的乘积,即n2=p·q则p,q也都是完全平方.这个结论极为重要,以后也要反复使用.现在z+x=2a2,z-x=2b2,这样,我们就证明了勾股方程的本原解均可表示为x=a2-b2,y=2ab,z=a2+b2而本原条件为a>b,(a,b)=1,a,b奇偶性不同.反过来,不难验证,由满足上述条件的a,b可得到勾股方程的一组本原解.这样勾股方程的求解问题就大功告成了.这个初等方法中,本原性是次要的,关键是因子唯一分解定理,费尔马大定理的成败就在于此.2.几何方法前面讲过,几何方法的关键是把勾股方程x2+y2=z2的整数解问题,变成平面代数曲线x2+y2=1上的有理点问题.这个曲线是一个单位圆,而每个有理点均可以表示为过点(1,0)的直线与单位圆的交点,而这条直线的方程可写为x+ty=1, (3.9)如果x,y均要求是有理数,显然t也是有理数.把直线方程代入单位圆方程,得(ty-1)2+y2=(1+t2)y2-2ty+1=1,(1+t2)y2-2ty=0.如y不等于0,则有它所对应的正是勾股方程的本原解x=a2-b2,y=2ab,z=a2+b2.3.三角方法现在我们的问题还是求单位圆x2+y2=1上的有理点问题.三角中第一个重要公式是cos2θ+sin2θ=1,因此,x,y可用三角函数cosθ,sinθ来表示.由cosθ及sinθ的倍角公式sin2θ=2sinθcosθ,cos2θ=cos2θ-sin2θ可得这同样可得x2+y2=1的有理解它对应勾股方程x2+y2=z2的原本解为x=a2-b2,y=2ab,z=a2+b2 4.复数方法论.它对费尔马大定理的突破也至关重要.这里我们只讨论最简单的复数──复整数,由于它是高斯引进的,故又称高斯整数,详细的证明请参看第8章.。
1000以内的勾股数

第31组: 24 32 40
第32组: 24 45 51
第33组: 24 70 74
第34组: 24 143 145
第35组: 25 60 65
第36组: 25 312 313
第37组: 26 168 170
第38组: 27 36 45
第75组: 40 399 401
第76组: 41 840 841
第77组: 42 56 70
第78组: 42 144 150
第79组: 42 440 442
第80组: 43 924 925
第81组: 44 117 125
第82组: 44 240 244
第83组: 44 483 485
第119组: 60 63 87
第120组: 60 80 100
第121组: 60 91 109
第122组: 60 144 156
第123组: 60 175 185
第124组: 60 221 229
第125组: 60 297 303
第126组: 60 448 452
第127组: 60 899 901
第84组: 45 60 75
第85组: 45 108 117
第86组: 45 200 205
第87组: 45 336 339
第88组: 46 528 530
第89组: 48 55 73
第90组: 48 64 80
第91组: 48 90 102
第92组: 48 140 148
第217组: 99 440 451
第218组: 99 540 549
常见的勾股数及公式

常见的勾股数及公式武安市黄冈实验学校翟升华搜集整理我们知道,如果∠C=90°,a 、b 、c 是直角三角形的三边,则由勾股定理,得a 2+b 2=c 2;反之,若三角形的三边a 、b 、c 满足a 2+b 2=c 2,则该三角形是直角三角形,c 为斜边.与此相类似,如果三个正整数a 、b 、c 满足a 2+b 2=c 2,则称a 、b 、c 为勾股数,记为(a ,b ,c ).勾股数有无数多组,下面向同学们介绍几种:一、三数为连续整数的勾股数(3,4,5)是我们所熟悉的一组三数为连续整数的勾股数,除此之外是否还有第二组或更多组呢? 设三数为连续整数的勾股数组为(x -1,x ,x +1),则由勾股数的定义,得(x+1)2+x 2=(x+1)2,解得x =4或x =0(舍去),故三数为连续整数的勾股数只有一组(3,4,5);类似有3n,4n,5n(n是正整数)都是勾股数。
二、后两数为连续整数的勾股数易知:(5,12,13),(9,40,41),(113,6338,6385),…,都是勾股数,如此许许多多的后两数为连续整数的勾股数,它的一般形式究竟是什么呢? a=2n+1,b=2n 2+2n,c=2n 2+2n+1(其特点是斜边与其中一股的差为1).分别取n =1,2,3,…就得勾股数组(3,4,5),(5,12,13),(7,24,25),…三、前两数为连续整数的勾股数你知道(20,21,29),(119,120,169),(4059,4060,5741)…,这些都是前两数为连续整数的勾股数组。
其公式为:(x ,x +1,1222++x x )(x 为正整数)。
设前两数为连续整数的勾股数组为(x ,x +1,y ),y=1222++x x 则()2221y x x =++(*)整理,得1222++x x =2y ,化为()121222-=-+y x ,即()y x 212++()y x 212-+=-1,又()()2121-+=-1,∴()1221++n ()1221+-n =-1(n∈N),故取()y x 212++=()1221++n ,()y x 212-+=()1221+-n ,解之,得x =41〔()1221++n +()1221+-n -2〕,y =42〔()1221++n -()1221+-n 〕,故前两数为连续整数的勾股数组是(41〔()1221++n +()1221+-n -2〕,41〔()1221++n +()1221+-n -2〕+1,42〔()1221++n -()1221+-n 〕).四、后两数为连续奇数的勾股数如(8,15,17),(12,35,37)…其公式为:4(n+1),4(n+1)2-1,4(n+1)2+1(n 是正整数). 五、其它的勾股数组公式:1.a=2m,b=m 2-1,c=m 2+1(m 大于1的整数).2.a=21(m 2-n 2),b=mn,c=21(m 2+n 2)(其中m>n 且是互质的奇数).3.a=2m,b=m 2-n 2,c=m 2+n 2(m>n,互质且一奇一偶的任意正整数).下面我们把100以内的勾股数组列出来,供同学们参考: 34 5;512 13;6810;72425;81517;9 1215;940 41;102426;116061;1216 20;12 35 37;13 84 85;14 48 50;15 20 25;15 36 39;15112 113;16 30 34;1663 6517144145;18 24 30;18 80 82;19 180 181;20 21 29;20 48 52;20 99 101;21 28 3521 72 75;21 220 221;22 120 122;23 264 265;24 32 40;24 45 51;24 70 74;24 143 14525 60 65;25 312 313;26 168 170;27 36 45;27120123;27 364 365;28 45 53;2896 100 28 195 197;29 420 421;30 40 50;30 72 78;30 224 226;31 480 481;32 60 68;32 126 130 32 255 257;33 44 55;33 56 65;33 180 183;33 544 545;34 288 290;35 84 91;35120 12535 612 613;36 48 60;36 77 85;36 105 111;36 160 164;36 323 325;37 684 685;38 360 36239 52 65;39 80 89;39 252 255;39 760 761;40 42 58;40 75 85;40 96 104;40 198 20240 399 401;41 840 841;42 56 70;42 144 150;42 440 442;43 924 925;44 117 125;44 240 24444 483 485;45 60 75;45 108 117;45 200 205;45 336 339;46 528 530;48 55 73;4864 8048 90 102;48 140 148;48 189 195;48 286 290;48 575 577;49 168 175;50 120 130;50 624 62651 68 85;51 140 149;51 432 435;52 165 173;52 336 340;52 675 677;54 72 90;54240 24654 728 730;55 132 143;55 300 305;56 90 106;56 105 119;56 192 200;56 390 394;56 783 785 57 76 95;57176 185;57 540 543;58 840 842;60 63 87;60 80 100;60 91 109;60 144 15660 175 185;60 221 229;60 297 303;60 448 452;60 899 901;62 960 962;63 84 105;63 216 22563 280 287;63 660 663;64 120 136;64 252 260;64 510 514;65 72 97;65 156 169;65 420 42566 88 110;66 112 130;66 360 366;68 285 293;68 576 580;69 92 115;69 260 269;69 792 79570 168 182;70 240 250;72 96 120;72 135 153;72 154 170;72 210 222;72 320 328;72 429 43572 646 650;75 100 125;75 180 195;75 308 317;75 560 565;75 936 939;76 357 365;76 720 72477 264 275;77 420 427;78 104 130;78 160 178;78 504 510;80 84 116;80 150 170;80 192 20880 315 325;80 396 404;80 798 802;81 108 135;81 360 369;84 112 140;84 135 159;84 187 20584 245 259;84 288 300;84 437 445;84 585 591;84 880 884;85 132 157;85 204 221;85 720 72587 116 145;87 416 425;88 105 137;88 165 187;88 234 250;88 480 488;88 966 970;90 120 15090 216 234;90 400 410;90 672 678;91 312 325;91 588 595;92 525 533;93 124 155;93 476 48595 168 193;95 228 247;95 900 905;96 110 146;96 128 160;96 180 204;96 247 265;96 280 29696 378 390;96 572 580;96 765 771;98 336 350;99 132 165;99 168 195;99 440 451;99 540 549100 105 145;100240260;100 495 505;100621629.以下是大于100的勾股数:第223组:102 136 170第224组:102 280 298第225组:102 864 870第226组:104 153 185第227组:104 195 221第228组:104 330 346第229组:104 672 680第230组:105 140 175第231组:105 208 233第232组:105 252 273第233组:105 360 375第234组:105 608 617第235组:105 784 791第236组:108 144 180第237组:108 231 255第238组:108 315 333第239组:108 480 492第240组:108 725 733第241组:108 969 975第242组:110 264 286第243组:110 600 610第244组:111 148 185第245组:111 680 689第246组:112 180 212第247组:112 210 238第248组:112 384 400第249组:112 441 455第250组:112 780 788第252组:114 352 370 第253组:115 252 277 第254组:115 276 299 第255组:116 837 845 第256组:117 156 195 第257组:117 240 267 第258组:117 520 533 第259组:117 756 765 第260组:119 120 169 第261组:119 408 425 第262组:120 126 174 第263组:120 160 200 第264组:120 182 218 第265组:120 209 241 第266组:120 225 255 第267组:120 288 312 第268组:120 350 370 第269组:120 391 409 第270组:120 442 458 第271组:120 594 606 第272组:120 715 725 第273组:120 896 904 第274组:121 660 671 第275组:123 164 205 第276组:123 836 845 第277组:124 957 965 第278组:125 300 325 第279组:126 168 210 第280组:126 432 450 第281组:126 560 574 第282组:128 240 272 第283组:128 504 520 第284组:129 172 215 第285组:129 920 929 第286组:130 144 194 第287组:130 312 338 第288组:130 840 850 第289组:132 176 220 第290组:132 224 260 第291组:132 351 375 第292组:132 385 407 第293组:132 475 493 第294组:132 720 732第296组:133 456 475 第297组:135 180 225 第298组:135 324 351 第299组:135 352 377 第300组:135 600 615 第301组:136 255 289 第302组:136 273 305 第303组:136 570 586 第304组:138 184 230 第305组:138 520 538 第306组:140 147 203 第307组:140 171 221 第308组:140 225 265 第309组:140 336 364 第310组:140 480 500 第311组:140 693 707 第312组:140 975 985 第313组:141 188 235 第314组:143 780 793 第315组:143 924 935 第316组:144 165 219 第317组:144 192 240 第318组:144 270 306 第319组:144 308 340 第320组:144 420 444 第321组:144 567 585 第322组:144 640 656 第323组:144 858 870 第324组:145 348 377 第325组:145 408 433 第326组:147 196 245 第327组:147 504 525 第328组:150 200 250 第329组:150 360 390 第330组:150 616 634 第331组:152 285 323 第332组:152 345 377 第333组:152 714 730 第334组:153 204 255 第335组:153 420 447 第336组:153 680 697 第337组:154 528 550 第338组:154 840 854第340组:155 468 493 第341组:156 208 260 第342组:156 320 356 第343组:156 455 481 第344组:156 495 519 第345组:156 667 685 第346组:159 212 265 第347组:160 168 232 第348组:160 231 281 第349组:160 300 340 第350组:160 384 416 第351组:160 630 650 第352组:160 792 808 第353组:161 240 289 第354组:161 552 575 第355组:162 216 270 第356组:162 720 738 第357组:165 220 275 第358组:165 280 325 第359组:165 396 429 第360组:165 532 557 第361组:165 900 915 第362组:168 224 280 第363组:168 270 318 第364组:168 315 357 第365组:168 374 410 第366组:168 425 457 第367组:168 490 518 第368组:168 576 600 第369组:168 775 793 第370组:168 874 890 第371组:170 264 314 第372组:170 408 442 第373组:171 228 285 第374组:171 528 555 第375组:171 760 779 第376组:174 232 290 第377组:174 832 850 第378组:175 288 337 第379组:175 420 455 第380组:175 600 625 第381组:176 210 274 第382组:176 330 374第384组:176 693 715 第385组:176 960 976 第386组:177 236 295 第387组:180 189 261 第388组:180 240 300 第389组:180 273 327 第390组:180 299 349 第391组:180 385 425 第392组:180 432 468 第393组:180 525 555 第394组:180 663 687 第395组:180 800 820 第396组:180 891 909 第397组:182 624 650 第398组:183 244 305 第399组:184 345 391 第400组:184 513 545 第401组:185 444 481 第402组:185 672 697 第403组:186 248 310 第404组:186 952 970 第405组:189 252 315 第406组:189 340 389 第407组:189 648 675 第408组:189 840 861 第409组:190 336 386 第410组:190 456 494 第411组:192 220 292 第412组:192 256 320 第413组:192 360 408 第414组:192 494 530 第415组:192 560 592 第416组:192 756 780 第417组:195 216 291 第418组:195 260 325 第419组:195 400 445 第420组:195 468 507 第421组:195 748 773 第422组:196 315 371 第423组:196 672 700 第424组:198 264 330 第425组:198 336 390 第426组:198 880 902第428组:200 375 425 第429组:200 480 520 第430组:200 609 641 第431组:201 268 335 第432组:203 396 445 第433组:203 696 725 第434组:204 253 325 第435组:204 272 340 第436组:204 560 596 第437组:204 595 629 第438组:204 855 879 第439组:205 492 533 第440组:205 828 853 第441组:207 224 305 第442组:207 276 345 第443组:207 780 807 第444组:207 920 943 第445组:208 306 370 第446组:208 390 442 第447组:208 660 692 第448组:208 819 845 第449组:210 280 350 第450组:210 416 466 第451组:210 504 546 第452组:210 720 750 第453组:213 284 355 第454组:215 516 559 第455组:215 912 937 第456组:216 288 360 第457组:216 405 459 第458组:216 462 510 第459组:216 630 666 第460组:216 713 745 第461组:216 960 984 第462组:217 456 505 第463组:217 744 775 第464组:219 292 365 第465组:220 231 319 第466组:220 459 509 第467组:220 528 572 第468组:220 585 625 第469组:222 296 370 第470组:224 360 424第472组:224 768 800 第473组:224 882 910 第474组:225 272 353 第475组:225 300 375 第476组:225 540 585 第477组:225 924 951 第478组:228 304 380 第479组:228 325 397 第480组:228 665 703 第481组:228 704 740 第482组:230 504 554 第483组:230 552 598 第484组:231 308 385 第485组:231 392 455 第486组:231 520 569 第487组:231 792 825 第488组:232 435 493 第489组:232 825 857 第490组:234 312 390 第491组:234 480 534 第492组:235 564 611 第493组:237 316 395 第494组:238 240 338 第495组:238 816 850 第496组:240 252 348 第497组:240 275 365 第498组:240 320 400 第499组:240 364 436 第500组:240 418 482 第501组:240 450 510 第502组:240 551 601 第503组:240 576 624 第504组:240 700 740 第505组:240 782 818 第506组:240 884 916 第507组:240 945 975 第508组:243 324 405 第509组:245 588 637 第510组:245 840 875 第511组:246 328 410 第512组:248 465 527 第513组:248 945 977 第514组:249 332 415第516组:252 275 373 第517组:252 336 420 第518组:252 405 477 第519组:252 539 595 第520组:252 561 615 第521组:252 735 777 第522组:252 864 900 第523组:255 340 425 第524组:255 396 471 第525组:255 612 663 第526组:255 700 745 第527组:256 480 544 第528组:258 344 430 第529组:259 660 709 第530组:259 888 925 第531组:260 273 377 第532组:260 288 388 第533组:260 624 676 第534组:260 651 701 第535组:260 825 865 第536组:261 348 435 第537组:261 380 461 第538组:264 315 411 第539组:264 352 440 第540组:264 448 520 第541组:264 495 561 第542组:264 702 750 第543组:264 770 814 第544组:264 950 986 第545组:265 636 689 第546组:266 312 410 第547组:266 912 950 第548组:267 356 445 第549组:270 360 450 第550组:270 648 702 第551组:270 704 754 第552组:272 510 578 第553组:272 546 610 第554组:273 364 455 第555组:273 560 623 第556组:273 736 785 第557组:273 936 975 第558组:275 660 715第559组:276 368 460 第560组:276 493 565 第561组:276 805 851 第562组:279 372 465 第563组:279 440 521 第564组:280 294 406 第565组:280 342 442 第566组:280 351 449 第567组:280 450 530 第568组:280 525 595 第569组:280 672 728 第570组:280 759 809 第571组:280 960 1000 第572组:282 376 470 第573组:285 380 475 第574组:285 504 579 第575组:285 684 741 第576组:285 880 925 第577组:287 816 865 第578组:288 330 438 第579组:288 384 480 第580组:288 540 612 第581组:288 616 680 第582组:288 741 795 第583组:288 840 888 第584组:290 696 754 第585组:290 816 866 第586组:291 388 485 第587组:294 392 490 第588组:295 708 767 第589组:296 555 629 第590组:297 304 425 第591组:297 396 495 第592组:297 504 585 第593组:300 315 435 第594组:300 400 500 第595组:300 455 545 第596组:300 589 661 第597组:300 720 780 第598组:300 875 925 第599组:301 900 949 第600组:303 404 505 第601组:304 570 646 第602组:304 690 754第604组:306 408 510 第605组:306 840 894 第606组:308 435 533 第607组:308 495 583 第608组:308 819 875 第609组:309 412 515 第610组:310 744 806 第611组:310 936 986 第612组:312 416 520 第613组:312 459 555 第614组:312 585 663 第615组:312 640 712 第616组:312 910 962 第617组:315 420 525 第618组:315 572 653 第619组:315 624 699 第620组:315 756 819 第621组:318 424 530 第622组:319 360 481 第623组:320 336 464 第624组:320 462 562 第625组:320 600 680 第626组:320 768 832 第627组:321 428 535 第628组:322 480 578 第629组:324 432 540 第630组:324 693 765 第631组:324 945 999 第632组:325 360 485 第633组:325 780 845 第634组:327 436 545 第635组:328 615 697 第636组:330 440 550 第637组:330 560 650 第638组:330 792 858 第639组:333 444 555 第640组:333 644 725 第641组:335 804 871 第642组:336 377 505 第643组:336 385 511 第644组:336 448 560 第645组:336 527 625 第646组:336 540 636第648组:336 748 820 第649组:336 850 914 第650组:339 452 565 第651组:340 357 493 第652组:340 528 628 第653组:340 816 884 第654组:341 420 541 第655组:342 456 570 第656组:344 645 731 第657组:345 460 575 第658组:345 756 831 第659组:345 828 897 第660组:348 464 580 第661组:348 805 877 第662组:350 576 674 第663组:350 840 910 第664组:351 468 585 第665组:351 720 801 第666组:352 420 548 第667组:352 660 748 第668组:352 936 1000 第669组:354 472 590 第670组:355 852 923 第671组:357 360 507 第672组:357 476 595 第673组:360 378 522 第674组:360 480 600 第675组:360 546 654 第676组:360 598 698 第677组:360 627 723 第678组:360 675 765 第679组:360 770 850 第680组:360 864 936 第681组:363 484 605 第682组:363 616 715 第683组:364 585 689 第684组:364 627 725 第685组:365 876 949 第686组:366 488 610 第687组:368 465 593 第688组:368 690 782 第689组:369 492 615 第690组:369 800 881第691组:370 888 962 第692组:372 496 620 第693组:372 925 997 第694组:375 500 625 第695组:375 900 975 第696组:376 705 799 第697组:378 504 630 第698组:378 680 778 第699组:380 399 551 第700组:380 672 772 第701组:380 912 988 第702组:381 508 635 第703组:384 440 584 第704组:384 512 640 第705组:384 720 816 第706组:385 552 673 第707组:387 516 645 第708组:387 884 965 第709组:390 432 582 第710组:390 520 650 第711组:390 800 890 第712组:392 630 742 第713组:392 735 833 第714组:393 524 655 第715组:396 403 565 第716组:396 528 660 第717组:396 672 780 第718组:396 847 935 第719组:399 468 615 第720组:399 532 665 第721组:400 420 580 第722组:400 561 689 第723组:400 750 850 第724组:402 536 670 第725组:405 540 675 第726组:406 792 890 第727组:407 624 745 第728组:408 506 650 第729组:408 544 680 第730组:408 765 867 第731组:408 819 915 第732组:411 548 685 第733组:414 448 610 第734组:414 552 690第736组:416 780 884 第737组:417 556 695 第738组:420 441 609 第739组:420 513 663 第740组:420 560 700 第741组:420 637 763 第742组:420 675 795 第743组:420 832 932 第744组:420 851 949 第745组:423 564 705 第746组:424 795 901 第747组:425 660 785 第748组:426 568 710 第749组:429 460 629 第750组:429 572 715 第751组:429 700 821 第752组:429 728 845 第753组:429 880 979 第754组:432 495 657 第755组:432 576 720 第756组:432 665 793 第757组:432 810 918 第758组:435 580 725 第759组:438 584 730 第760组:440 462 638 第761组:440 525 685 第762组:440 825 935 第763组:441 588 735 第764组:444 592 740 第765组:447 596 745 第766组:448 720 848 第767组:448 840 952 第768组:450 544 706 第769组:450 600 750 第770组:451 780 901 第771组:453 604 755 第772组:455 504 679 第773组:455 528 697 第774组:456 608 760 第775组:456 650 794 第776组:456 855 969 第777组:459 612 765 第778组:460 483 667第780组:462 784 910 第781组:464 777 905 第782组:464 870 986 第783组:465 620 775 第784组:468 595 757 第785组:468 624 780 第786组:471 628 785 第787组:473 864 985 第788组:474 632 790 第789组:475 840 965 第790组:476 480 676 第791组:476 765 901 第792组:477 636 795 第793组:480 504 696 第794组:480 550 730 第795组:480 640 800 第796组:480 693 843 第797组:480 728 872 第798组:480 836 964 第799组:481 600 769 第800组:483 644 805 第801组:483 720 867 第802组:486 648 810 第803组:489 652 815 第804组:492 656 820 第805组:495 660 825 第806组:495 840 975 第807组:498 664 830 第808组:500 525 725 第809组:501 668 835 第810组:504 550 746 第811组:504 672 840 第812组:504 703 865 第813组:504 810 954 第814组:507 676 845 第815组:510 680 850 第816组:510 792 942 第817组:513 684 855 第818组:516 688 860 第819组:519 692 865 第820组:520 546 754 第821组:520 576 776 第822组:520 765 925第824组:522 760 922 第825组:525 700 875 第826组:528 605 803 第827组:528 630 822 第828组:528 704 880 第829组:531 708 885 第830组:532 624 820 第831组:533 756 925 第832组:534 712 890 第833组:537 716 895 第834组:540 567 783 第835组:540 629 829 第836组:540 720 900 第837组:540 819 981 第838组:543 724 905 第839组:546 728 910 第840组:549 732 915 第841组:552 736 920 第842组:555 572 797 第843组:555 740 925 第844组:558 744 930 第845组:560 588 812 第846组:560 684 884 第847组:560 702 898 第848组:561 748 935 第849组:564 752 940 第850组:567 756 945 第851组:570 760 950 第852组:573 764 955 第853组:576 660 876 第854组:576 768 960 第855组:579 772 965 第856组:580 609 841 第857组:580 741 941 第858组:582 776 970 第859组:585 648 873 第860组:585 780 975 第861组:588 784 980 第862组:591 788 985 第863组:594 608 850 第864组:594 792 990 第865组:595 600 845 第866组:597 796 995第868组:600 800 1000 第869组:612 759 975 第870组:615 728 953 第871组:616 663 905 第872组:616 735 959 第873组:620 651 899 第874组:621 672 915 第875组:624 715 949 第876组:638 720 962 第877组:640 672 928 第878组:650 720 970 第879组:660 693 957 第880组:680 714 986 第881组:696 697 985。
勾股定理典型解题技巧及练习

专题复习一 勾股定理常见勾股数如下:3、常见平方数:121112=; 144122=; 169132=; 196142=; 225152=;256162= 289172=; 324182=; 361192=; 400202=;441212=; 484222= 529232=; 576242=; 625252=; 676262=;729272= 4、已知斜边和一条直角边求另一条直角边由a 2+b 2=c 2可得 a 2= c 2- b 2=(c+b) (c-b) (平方差公式) 例如,已知c=61, b=60, 则a 2= c 2-b 2= (61+60) (61-60) =121, 则 a=11已知c=41, b=40, 则a 2= c 2-b 2= (41+40) (41-40) =81, 则 a=9已知c=17, b=8, 则a 2= c 2-b 2= (17+8) (17-8) =25 x 9=52 x 32= (5 x 3)2 则 a = 5 x 3 =155、直角三角形斜边的中线等于斜边的一半。
如图,CD 为斜边AB 的中线,过D 作D E ⊥AC 于E,DF ⊥BC 于F 在RT ▲ADE 和RT ▲DBF 中,∠DAE=∠BDF , AD=DB ∠ADE=∠DBFRT ▲ADE ≌RT ▲DBF ∴ EA=FD, 有因CEDF 为矩形, ∴FD=CE=EA=1/2 CART ▲ADE ≌RT ▲CDE ∴ CD=AD=DB=1/2 AB6、直角三角形30°角的对边等于斜边的一半7、三角形内角平分线上的点到两边的距离相等8、任意三角形三个内角的角平分线相交于一点。
该点称三角形的内心(内切圆圆心)。
9、任意三角形三个边上的垂线(高)相交于一点。
该点称三角形的垂心 10、任意三角形三个边上的中线相交于一点。
该点称三角形的重心。
11、任意三角形三个边上的垂直平分线(中垂线)相交于一点。
100以内的勾股数

100以内的勾股数: i=3 j=4 k=5 i=5 j=12 k=13 i=6 j=8 k=10 i=7 j=24 k=25 i=8 j=15 k=17 i=9 j=12 k=15 i=9 j=40 k=41 i=10 j=24 k=26 i=11 j=60 k=61 i=12 j=16 k=20 i=12 j=35 k=37 i=13 j=84 k=85 i=14 j=48 k=50 i=15 j=20 k=25 i=15 j=36 k=39 i=16 j=30 k=34 i=16 j=63 k=65 i=18 j=24 k=30 i=18 j=80 k=82 i=20 j=21 k=29 i=20 j=48 k=52
i=48 j=55 k=73 i=48 j=64 k=80 i=51 j=68 k=85 i=54 j=72 k=90 i=57 j=76 k=95 i=60 j=63 k=87 i=65 j=72 k=97 勾股数的常用套路 所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数( a,b,c)。 即 a^2+b^2=c^2,a,b,c∈N2 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数 n 得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是 a,b ,c互质的勾股数组。 关于这样的数组,比较常用也比较实用的套路有 以下两种: 1、当 a 为大于 1 的奇数 2n+1时,b=2*n^2+2*n, c=2*n^2+2*n+1。 实际上就是把 a 的平方数拆成两个连续自然数,例 如: n=1时(a,b,c)=(3,4,5)
千古第一定理--勾股定理

千古第一定理——勾股定理在西方,毕达哥拉斯的名字可以说尽人皆知,这主要来自所谓毕达哥拉斯定理,即直角三角形的三条边长度为a、b、c,则a2+b2=c2反过来,如果三角形的三条边a,b,c满足a2+b2=c2则它是个直角三角形.实际上,早在毕达哥拉斯之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据,有案可查.相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的种种传说都是后人辗转传播的,可以说真伪难辨.这个现象的确不太公平,其所以这样,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,自然就落在毕达哥拉斯的头上.他常常被推崇为“数论的始祖”,而在他之前的泰勒斯被称为“几何的始祖”,西方的科学史一般就上溯到此为止了.至于希腊科学的起源只是近一二百年才有更深入的研究.因此,毕达哥拉斯定理这个名称一时半会儿改不了.不过,在中国,因为我们的老祖宗也研究过这个问题,因此称为商高定理,而更普遍地则称为勾股定理.不管怎么说,勾股定理是数学中头一个最伟大的定理,它的重要性怎么说也不为过:(1)勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理.(2)勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数”与有理数的差别,这就是所谓第一次数学危机.(3)勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学.(4)勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式.3.1 勾股定理的历史世界上各个民族通过他们的实践都或多或少地知道勾股定理.而号称四大文明古国的中国、印度、埃及、巴比伦则更有丰富的数学文化,距今都有5000年的历史了.中国的《周髀算经》中明确地记载着“勾三,股四,弦五”,并且清楚地讨论了它们与直角三角形的关系.其后的著作中也有其他的勾股数.如《九章算术》中还有(5,12,13),(7,24,25),(8,15,17)等7组,《缉古算经》中有(287,984,102),是明显表出的最大一组勾股数.埃及是几何学的发源地,埃及的“拉绳者”就是测量员,他们利用有结的绳子进行测量,两结之间的距离都是一样的,比如说都是1米.他们可以利用一条12米的绳子拉出一个直角三角形来.这条绳子算上首尾的结共有13个结,这样,把第一个结同第13个结连在一起,用桩子固定下来,然后再把第4个结同第8个结也分别用桩子固定,同时绷紧绳子.这三个桩子构成边长分别为3米、4米、5米的三角形,而两短边形成直角(图3.1).根据现有的材料推测,埃及人可能只是考虑实用的目的,而对进一步研究数论不感兴趣.印度人也考虑过直角三角形,他们比埃及人进了一步,得出了满足a2+b2=c2的三整数组(a,b,c),在西方称为毕达哥拉斯三数组,我们不妨称之为勾股数组.印度人发现的新的勾股数组还有12,16,20;15,20,25;5,12,13;15,36,39;8,15,17;12,35,37.不过,他们也没有进一步的结果.现有材料中最令人吃惊的是,公元前两千年左右的巴比伦的泥板文书上有着许多勾股数组(表3.1),其中有的数很大,表明他们也许已掌握了一般的规律.3.2 勾股定理的几何方面勾股定理包含几何与数论两个方面.首先是几何方面,一个直角三角形的斜边的平方等于另外两边的平方和.这里,边的平方的几何意义就是以该边为边的正方形的面积,实际上这时我们并不考虑边长是否为整数.只有毕达哥拉斯学派认为万物皆数,才把边长及面积都看成整数或分数,而最终导致矛盾.但是,勾股定理并没有必要考虑得如此深刻,我们只是考虑面积的相等就够了.第一个发表了的证明——欧几里得《几何原本》中的证明就是这样的.欧几里得的证明(参见图3.3)出现在第二篇命题47中,这个证明在所有证明中其实是比较复杂的.证明的要点如下:△ABD≌△FBC,矩形BDLI=2△ABD,正方形GFBA=2△FBC,因此矩形BDLI=正方形GFBA,同样可证矩形CILE=正方形ACKH,两式相加即得定理.第二篇命题48是勾股定理的逆定理:如果三角形一边上的正方形等于其他两边上的正方形之和,则其他两边的夹角是直角.欧几里得的证明是这样的(参见图3.4):作AD垂直于AC且等于AB.由题设AB2+AC2=BC2对直角三角形ACD有AD2+AC2=DC2∵AB=AD,∴BC2=DC2从而BC=DC由于△ABC与△ADC三边对应相等,从而两三角形全等,所以∠CAB 为直角.关于毕达哥拉斯定理已有几百个证明,在某本书中已收集了370多种不同的证明,这些证明中有的非常简单和直观,甚至从图上马上可以看出,下面仅举两例.如图3.5,把四个全等的直角三角形拼成一个大正方形,那么大正方形面积等于(a+b)2=a2+2ab+b2;另一方面,大正方形面积又等于因此a2+b2=c2另一种拼法如图3.6所示.由图可见,边长为c的大正方形的面积为3.3 勾股定理的数论方面勾股定理的数论方面虽然可以包括在几何方面之内,但是比几何方面更为重要.这是由于它是第一个充分研究过的不定方程,并且得到了完整的解答,并且数论所代表的离散数学与几何所代表的连续数学之间的奇妙关系一直是数学发展的一条主线.毕达哥拉斯的公式x2+y2=z2 (3.1)并不是最简单的不定方程,然而却容易下手.你如果有兴趣,也可以尝试去求它的解.不过,现代人虽然有个人计算机的帮助,也不一定能得出巴比伦人的一些解来.不管怎么样,碰到一个不定方程,首先就要试一试求它的解,这显然是求解不定方程的初级阶段.近代数学给我们带来许多新东西,其中之一就是寻找求解的规律,而不是一味地盲目摸索.在考虑满足方程(3.1)的解之后,很容易发现,(3,4,5)是一组解,它们的倍数,比如(6,8,10),(9,12,15),(12,16,20)等等也都是解.这些解在巴比伦的泥板文书上也有,例如(45,60,75).这样我们便得到第一个规律:定理3.1如果(a,b,c)是方程x2+y2=z2的一组解,则(ka,kb,kc)也是一组解,其中k是任意整数.这个定理的证明并不难,只要代入验证一下就可以了.这样我们从初级阶段进入了代数阶段.我们只去求a,b,c互素(详见4.1.3节)的解,也就是它们的最大公因数(a,b,c)=1的解,这种解我们可以称为素勾股数组.显然(3,4,5)是一个素勾股数组,可是勾股方程的素勾股数组远不止这一个,例如(5,12,13),(7,24,25)等也都是素勾股数组.下一个问题就是这些素勾股数组能不能用一个简单公式来概括呢?从数学发展史来看,这是一个飞跃,它真正显示了代数的威力.毕达哥拉斯学派已经找到了这个公式,这就是当m为奇数时,它们就代表素勾股数组,如表3.2所示.表3.2要证它们并不难,只须做一个代数练习即可:但是要证它们互素,也许不太容易,不过由具体的数字可以发现,股与弦都相差1,这也不难证明(你不妨试试看),从这点出发不难推出它们互素.对于不定方程(3.1)来说,我们已走到了最后一步,那就是,找出所有可能的解,一个不剩.这一步十分困难,一般不是像上面那样进行代数验证就行了.为了解决这个问题,首先要问是否所有素勾股数组都可以表示为(3.2)的形式?答案是否定的,因为82+152=172,不过,它们可以纳入(2m,m2-1,m2+1) (3.3)的系列,其中m为偶数.显然,这里股与弦相差为2.这两组公式还不能完全表示所有素勾股数组.经过一千多年的努力,我们的确找到了表示勾股方程的所有解,也就是素勾股数组的明显表达式,即(m2-n2,2mn,m2+n2) (3.4)其中m,n互素,一奇一偶,m>n>0.不难验证,这组数满足勾股方程,现在需要证明,方程x2+y2=z2的每组满足(x,y)=1的解,均可表示为(3.4)的形式.因x,y互素,可证x,y 一为奇数,一为偶数.设x为偶数,y为奇数,z也是奇数,因此都是整数,而且它们互素.因为即得z=m2+n2, y=m2-n2, x=2mn最后还需要证明,m,n一奇一偶,这由z是奇数可以看出.而且可以证明,不同的m,n表示不同的解.由此勾股方程(3.1)的所有解,都可以通过一奇一偶的m,n如式(3.4)表示出来.当然它们还可以每一个乘以k,这样一来,我们对于勾股方程的数论研究就大功告成了.勾股定理是数学中第一个伟大的定理,它首先把分属几何和数论的问题联系在一起,它是第一个完全求解的不定方程,为以后的不定方程树立了典范,而更重要的是,把它的指数2换成n以后,得出了令数学家神往的费尔马大定理.在研究费尔马大定理之前,首先要对勾股定理的数论方面进行充分的讨论,看一看有什么经验能够吸取.虽然这两个定理的结果完全不一样:x2+y2=z2有无穷多组解,而x n+y n=z n (3.5)没有非平凡解(关于平凡解,下面就要讲到).但是,它们却有许多共同的东西,例如:(1)它们都是三个变元的齐次不定方程.(2)由于齐次性,如果(a,b,c)是一组解,那么(ma,mb,mc)也是一组解,这里m是任何一个整数(正数、负数或零).因此,求解时,我们感兴趣的是(a,b,c)=1的解,这样的解我们称为本原解.(3)无论是本原解还是非本原解,其中有一些是一眼就能看出但没有意思的解,这就是a,b,c中一个或三个是零的解,这样方程(3.5)就成为o n+y n=z nx n+o n=z n,或者x n+y n=o n,这样满足y=z,x=z的任何整数都是原方程的解,对于n为偶数的情况,有(0,-a,a)及(a,0,-a),其中a为任何整数.这种有零的解,我们称之为平凡解,因此我们以后讨论解时,都是考虑非平凡解,即xyz≠0的解.为了确定起见,我们不妨只考虑x>0,y>0,z>0的本原解.(4)对于齐次方程,求整数解与求有理数解的方法并没有本质的不同.实际上,是任意整数但k≠0.因此若不定方程x n+y n=z n存在整数解,也就存在有理数解;反之,存在有理数解,也就存在整数解.实际上,所有齐次不定方程都有这种特性.而非齐次方程,求整数解与求有理数解的差别就非常大,一般需要分别加以处理.(5)为了使用几何方法,我们可以把三个变元的齐次方程变为两个变元的非齐次方程,这只要用方程(3.5)中的z n(假定z≠0)除方程的每一项即可:我们还可以用(x′)n+(y′)n=1 (3.6)表示,这个非齐次方程的有理数解正好对应原齐次方程的整数解,这样求解方程(3.5)的数论问题就可以变成方程(3.6)的几何问题.我们不妨把方程(3.6)仍写为x,y的方程x n+y n=1 (3.7)它代表一条平面代数曲线.这样,求不定方程(3.5)的整数解问题也就成为求这条曲线上的有理点问题,所谓有理点,就是x,y坐标均为有理数的点.现在,我们研究勾股方程的整数解的完全组,看看对费尔马大定理的证明有没有启发.首先,我们叙述一下勾股方程的基本定理:满足不定方程x2+y2=z2的本原整数解,都可以表示为x=a2-b2,y=2ab,z=a2+b2其中a,b是任意满足下述条件的整数.反之,满足上述条件的x,y,z都是勾股方程的一组本原解.由于我们感兴趣的是非平凡的本原解,不失一般性,可以证明其条件为a>b,(a,b)=1且a与b奇偶性不同,另外,x,y的位置可以互换,即x=2ab,y=a2-b2,z=a2+b2也是一组解.根据中学掌握的知识,我们在研究勾股方程的整数解的完全组时有四种方法:(1)初等方法,即初等的代数方法——因子分解以及初等数论的方法;(2)几何方法;(3)三角方法;(4)复数方法.现分别讲述如下.1.初等方法初等方法分为下面四步.第一步,奇偶性分析.如果(x,y,z)是一组本原解,那么它们的奇、偶性有三种可能:(1)x,y均为偶数.这时z也是偶数,因此,(x,y,z)不是本原解,它们可以化为更简单的情形.(2)x,y均为奇数.这种情况不可能出现,因为设x=2m+1,y=2n+1,则x2=4m2+4m+1,y2=4n2+4n+1x2+y2=4(m2+m+n2+n)+2,但无论是奇数平方还是偶数平方,均不能表示为4k+2的形式,因此x与y不能均为奇数.(3)x,y一个为奇数,一个为偶数.由于x,y的位置可以互换,我们不妨假定x是奇数,y是偶数,这样z也是奇数.第二步,因子分解.由于x2+y2=z2那么,y2=z2-x2=(z+x)(z-x)由于z,x均为奇数,所以z+x和z-x均为偶数,因此都是正整数.整除z+x和z-x,也就可以整除z和x(读者想想为什么),而由式(3.8),p也可以整除y,第四步,利用因子唯一分解定理.由因子唯一分解定理(参见4.3节)可以得出:如果整数n2可以表示为两互素整数p,q的乘积,即n2=p·q则p,q也都是完全平方.这个结论极为重要,以后也要反复使用.现在z+x=2a2,z-x=2b2,这样,我们就证明了勾股方程的本原解均可表示为x=a2-b2,y=2ab,z=a2+b2而本原条件为a>b,(a,b)=1,a,b奇偶性不同.反过来,不难验证,由满足上述条件的a,b可得到勾股方程的一组本原解.这样勾股方程的求解问题就大功告成了.这个初等方法中,本原性是次要的,关键是因子唯一分解定理,费尔马大定理的成败就在于此.2.几何方法前面讲过,几何方法的关键是把勾股方程x2+y2=z2的整数解问题,变成平面代数曲线x2+y2=1上的有理点问题.这个曲线是一个单位圆,而每个有理点均可以表示为过点(1,0)的直线与单位圆的交点,而这条直线的方程可写为x+ty=1,(3.9)如果x,y均要求是有理数,显然t也是有理数.把直线方程代入单位圆方程,得(ty-1)2+y2=(1+t2)y2-2ty+1=1,(1+t2)y2-2ty=0.如y不等于0,则有它所对应的正是勾股方程的本原解x=a2-b2,y=2ab,z=a2+b2.3.三角方法现在我们的问题还是求单位圆x2+y2=1上的有理点问题.三角中第一个重要公式是cos2θ+sin2θ=1,因此,x,y可用三角函数cosθ,sinθ来表示.由cosθ及sinθ的倍角公式sin2θ=2sinθcosθ,cos2θ=cos2θ-sin2θ可得这同样可得x2+y2=1的有理解它对应勾股方程x2+y2=z2的原本解为x=a2-b2,y=2ab,z=a2+b24.复数方法论.它对费尔马大定理的突破也至关重要.这里我们只讨论最简单的复数──复整数,由于它是高斯引进的,故又称高斯整数,详细的证明请参看第8章.。
勾股定理(汇总)

勾股定理一、勾股定理1、勾股定理【笔记】1、勾股定理:222+=a b c2、常用勾股数:直角边直角边斜边3 4 56 8 105 12 139 12 157 24 259 40 411 1 21 3 2【例1】△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______.【例2】在一个直角三角形中,两边长分别为3、4,求另一条边.【例3】一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为【过关检测】(☆)1、在直角三角形ABC中,∠C=90°,BC=12,AC=9,则AB=(☆)2、在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为1(☆)3、若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.(☆)4、如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于(☆)5、一直角三角形的一条直角边长是7cm , 另一条直角边与斜边长的和是49cm ,则斜边的长_________.(☆)6、在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.若:a b=3:4,c=75cm,求a、b.【补救练习】(☆)1、一直角三角形的一条直角边长是9cm , 另一条直角边与斜边长的和是81cm ,则斜边的长_________.(☆)2、若一个直角三角形的两边长分别为10和8,则此三角形的第三边长为______.(☆)3、若一个直角三角形的两边长分别为7和24,则此三角形的第三边长为_________.(☆)4、若一个直角三角形的两边长分别为15和20,则此三角形的第三边长为_________.(☆)5、一直角三角形的斜边长是26cm , 两条直角边和是34cm, 则直角边的长 .(☆☆)6、一直角三角形的一条直角边长是7cm , 另一条直角边和斜边长为两个连续的自然数, 则斜边的长 .2、求三角形的高【笔记】等积法【例1】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,已知BC=8,AC=6,则斜.边AB上的高是2的高、中线,AB=15,BC=14,CA=13,求(1)CD【例2】如图,AD、AE分别是ABC的长;(2)AD的长;(3)AE的长(精确到0.1).【例3】如图,在钝角△ABC中,BC=4,AC=10,AB=213,求BC边上的高为多少【过关检测】1、如图,已知在△ABC中,AD、AE分别是BC边上的高和中线,AB=9cm,AC=7cm,BC=8cm,求DE的长.2、已知△ABC中,AB=AC=10,BC=210,求:.(1)BC边上的高AE长;(2)AB边上的高CD长3、特殊直角三角形【笔记】特殊直角三角形中的勾股定理①等腰直角三角形34如图1所示,∠A=90°,AB=AC. AB:AC:BC=1:1:2 ②含30°角的直角三角形如图2所示,∠A=90°,∠B=30°::1:3:2AC AB BC =③等边三角形如图3,所示,AB=AC=BC,∠A=∠B=∠C=60° 作BC 边上的高AD,根据勾股定理,::1:3:2BD AD AB =【例1】如图所示,△ABC 中,∠B=45°,∠C=30°,AB=2,求AC 的长.【例2】已知:在Rt △ABC 中,∠C=90°,CD ⊥AB 于D ,∠A=60°,CD=3,线段AB 长为( ) A.2 B.3 C.4D.33【例3】 已知等边三角形△ABC 的边长为a ,求ABC S ∆= .(用含a 的式子表示)【过关检测】(☆)1、一个等腰直角三角形,它相同的两个直角边是0.5米,斜边为 米.BACD(☆)2、在△ABC中,∠C=30°,AC=4cm,AB=3cm,求BC的长.(☆☆)3、已知等边三角形的边长为2cm,则它的高为,面积为.【补救练习】(☆)1、如图所示,△ABC中,若∠A=75°,∠C=45°,AB=2,则AC的长等于( )A、22B、23C 、6 D、236(☆)2、在△ABC中,∠B=120°,BC=4cm,AB=6cm,求AC的长.(☆☆)3、已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
勾股定理-全章

第一章勾股定理勾股定理:直角三角形的两直角边的平方和等于斜边的平方。
说明:若直角三角形的两条直角边为a、b,斜边为c,则a²+b²=c²。
勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a²+b²=c²,那么这个三角形是直角三角形。
说明:根据勾股定理的逆定理,可以判定一个三角形是否是直角三角形:若已知三角形的三条边,只需验证最大边的平方是否等于另两边的平方和,若相等,则是直角三角形;若不等,则不是。
勾股数:满足a²+b²=c²的三个正整数,称为勾股数。
若a,b,c是一组勾股数,则ak,bk,ck(k为正整数),也必然是一组勾股数。
常用的几组勾股数有3,4,5;6,8,10;5,12,13;8,15,17等勾股定理的应用求两点之间的距离和线段的长度常构造直角三角形,利用勾股定理求解,求立体图形上两点之间的最短距离大致可分为:(1)圆柱形物体表面上的两点间的最短距离;(2)长方体或正方体表面上两点间的最短距离问题,直角三角形三边之间的关系不等量关系是:斜边的长大于每条直角边的长,其依据是“垂线段最短”;等量关系是:勾股定理,勾股定理是我们求直角三角形边长的依据,在直角三角形中,已知任意两边的长,可求第三边的长.直角三角形的判别直角三角形的判别有两种方法:(1)利用定义,判断一个三角形中有一个角是直角;(2)根据三角形一边的平方等于另外两边的平方和,来判定该三角形是直角三角形,勾股定理中的方程思想勾股定理三角形有一个直角的“形”的特征,转化为三边“数”的关系,因此它是数形结合的一个典范.对于一些几何问题,往往借助于勾股定理,利用代数方法来解决.把一条边的长设为未知数,根据勾股定理列出方程,解方程求出未知数的值,即使有时出现了二次方程,大多可通过抵消而去掉二次项.勾股定理中的转化思想在利用勾股定理计算时,常先利用转化的数学思想构造出直角三角形,比如立体图形上两点之间的最短距离的求解,解答时先把立体图形转化为平面图形,在平面图形中构造直角三角形求解,【例题1-勾股定理及其逆定理的基本用法】若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。