§4.4各向同性弹性体

合集下载

材料力学 第四章 本构关系

材料力学 第四章 本构关系

W t
ijij
(9)
其中 ij 为应变张量对时间的变化率,称为应变率张量。
§4-1 热力学定律与应变能
令初始状态的应变能W=0,则
W Wdt d t
ij (t )
t0
ij (t0 ) ij ij
(10)
W
ij
ij
(11)
此式给出了弹性物质的应力-应变关系,称之为格林公式。
§4-2 各向异性材料的本构关系
y C12 x C22 y C23 z
具有这种应力-应变关系的 材料称为正交各向异性弹
z C13 x C23 y C33 z
性材料,这时独立的弹性 常数只有9个。
yz C44 yz zx C55 zx
xy C66 xy
(17)
§4-3 具有弹性对称面的弹性材料的本构关系
x ' y, y ' x, z ' z
由应力分量和应变分量之间的坐标变换得 'x y , 'y x, 'z z 'yz zx , 'zx yz , 'xy xy 'x y , 'y x, 'z z 'yz zx , 'zx yz , 'xy xy
§4-3 具有弹性对称面的弹性材料的本构关系
(四)完全弹性对称与各向同性材料
其中kk xx yy zz , 和 称为拉梅系数。
(20)称为各向同性线性弹性介质的广义胡克定律。 各向同性线性弹性材料只有2个独立的弹性常数; 伴随正应变只有正应力,同时伴随切应变也只有切 应力。 由(20)可得
第四章 本构关系
静力学问题和运动学问题是通过物体的材 料性质联系起来的。力学量(应力,应力 速率等)和运动学量(应变,应变速率等) 之间的关系式称之为本构关系或本构方程。 本章仅讨论不考虑热效应的线弹性本构关 系——广义胡克定律。

各向同性、各向异性

各向同性、各向异性

各向同性、各向异性理解1、orthotropic和anisotropic的区别isotropic各向同性orthotropic正交各向异性的anisotropic各向异性的uniaxial单轴的我只说一下orthotropic和anisotropic的区别:orthotropic主要是材料在不同垂直方向上有着不同的物理性质和参数,意思就是如果处在同一个角度的平面上,那么同平面的材料是具有着相同的物理性质的.anisotropic则是完全有方向角度决定的物理参数,只要方向有不同,物理性质则完全不同.2、各向同性和各向异性物理性质可以在不同的方向进行测量。

如果各个方向的测量结果是相同的,说明其物理性质与取向无关,就称为各向同性。

如果物理性质和取向密切相关,不同取向的测量结果迥异,就称为各向异性。

造成这种差别的内在因素是材料结构的对称性。

在气体、液体或非晶态固体中,原子排列是混乱的,因而就各个方向而言,统计结果是等同的,所以其物理性质必然是各向同性的。

而晶体中原子具有规则排列,结构上等同的方向只限于晶体对称性所决定的某些特定方向。

所以一般而言,物理性质是各向异性的。

例如,α-铁的磁化难易方向如图所示。

铁的弹性模量沿[111]最大(7700kgf/mm),沿[100]最小(6400kgf/mm)。

对称性较低的晶体(如水晶、方解石)沿空间不同方向有不同的折射率。

而非晶体(过冷液体),其折射率和弹性模量则是各向同性的。

晶体的对称性很高时,某些物理性质(例如电导率等)会转变成各向同性。

当物体是由许多位向紊乱无章的小单晶组成时,其表观物理性质是各向同性的。

一般合金的强度就利用了这一点。

倘若由于特殊加工使多晶体中的小单晶沿特定位向排列(例如金属的形变“织构”、定向生长的两相晶体混合物等),则虽然是多晶体其性能也会呈现各向异性。

硅钢片就是这种性质的具体应用。

介于液体和固体之间的液晶,有的虽然分子的位置是无序的,但分子取向却是有序的。

弹塑性力学第四章弹性本构关系资料

弹塑性力学第四章弹性本构关系资料
产生的x方向应变:
产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
eij
1 2G
sij
(4.40)
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个
因此应力偏张量形式的广义虎克定律,即
eij
1 2G
sij
em
1 3K
sm
(4.41)
用应变表示应力:
或: ✓ 各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
式(2)中的系数 有36个.
称为弹性常数,共
由均匀性假设,弹性体各点作用同样应力 时,必产生同样的应变,反之亦然.因此 为 常数,其数值由弹性体材料的性质而定.
式(2)推导过程未引用各向同性假设, 故可适用于极端各向异性体、正交各向异性体、 二维各向同性体以及各向同性体等.
式(2)可用矩阵表示
式(3)可用简写为 称为弹性矩阵.
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.

横观各向同性的半无限弹性体的若干问题

横观各向同性的半无限弹性体的若干问题

横观各向同性的半无限弹性体的若干问题
各向同性的半无限弹性体作为力学领域中不可置疑的重要结构,对于研究人员提出了许多挑战。

首先,从结构层面来说,将涉及半无限弹性体的非线性弹性方程转换成微分方程,然后采用有损和无损的办法成功地推导出其非线性形式,这是衡量半无限弹性体的基础的前提条件。

其次,从解的递推性质上来看,研究人员有责任追求对半无限弹性体形状和构造,尤其是其他条件保持不变的情况下建立解的递推性质。

此外,从计算角度来看,要求为半无限弹性体而开发的相关计算方法必须具有高效、精确、稳定的特性,以此保证半无限体的有效分析与应用。

最终,由于半无限弹性体的宽广领域,可见各向同性的半无限弹性体涉及的研究内容多样化。

在结构设计、控制策略、分析理论、计算方法、数值模拟等方面,积极搜索出更为高效、精确、安全的解决方案,以促进各向同性半无限弹性体向着解决工程实际应用的目标不断前进。

弹塑性力学——精选推荐

弹塑性力学——精选推荐

弹塑性⼒学应⼒应变关系应⼒应变都是物体受到外界载荷产⽣的响应。

物体由于受到外界载荷后,在物体内部各部分之间要产⽣互相之间的⼒的作⽤,由于受到⼒的作⽤就会产⽣相应的变形;或者由于变形引起相应的⼒的作⽤。

则⼀定材料的物体其产⽣的应⼒和应变也必然存在⼀定的关系。

在⼒学上由于平衡⽅程仅建⽴了⼒学参数(应⼒分量与外⼒分量)之间的关系,⽽⼏何⽅程也仅建⽴了运动学参数(位移分量与应变分量)之间的连系。

所以平衡⽅程与⼏何⽅程是两类完全相互独⽴的⽅程,它们之间还缺乏必要的联系,这种联系即应⼒和应变之间的关系。

有了可变形材料应⼒和应变之间关系和⼒学参数及运动学参数即可分析具体的⼒学问题。

由平衡⽅程和⼏何⽅程加上⼀组反映材料应⼒和应变之间关系的⽅程就可求解具体的⼒学问题。

这样的⼀组⽅程即所谓的本构⽅程。

讨论应⼒和应变之间的关系即可变为⼀定的材料建⽴合适的本构⽅程。

⼀.典型应⼒-应变关系图1-1 典型应⼒-应变曲线1)弹性阶段(OC段)该弹性阶段为初始弹性阶段OC(严格讲应该为CA’),包括:线性弹性分阶段OA段,⾮线性弹性阶段AB段和初始屈服阶段BC 段。

该阶段应⼒和应变满⾜线性关系,⽐例常数即弹性模量或杨⽒模量,记作:εσE =,即在应⼒-应变曲线的初始部分(⼩应变阶段),许多材料都服从全量型胡克定律。

2)塑性阶段(CDEF 段)CDE 段为强化阶段,在此阶段如图1中所⽰,应⼒超过屈服极限,应变超过⽐例极限后,要使应变再增加,所需的应⼒必须在超出⽐例极限后继续增加,这⼀现象称为应变硬化。

CDE 段的强化阶段在E 点达到应⼒的最⾼点,荷载达到最⼤值,相应的应⼒值称为材料的强度极限(ultimate strength ),并⽤σb 表⽰。

超过强度极限后应变变⼤应⼒却下降,直到最后试件断裂。

这⼀阶段试件截⾯积的减⼩不是在整个试件长度范围发⽣,⽽是试件的⼀个局部区域截⾯积急剧减⼩。

这⼀现象称为“颈缩”(necking )。

弹性力学第四章应力应变PPT

弹性力学第四章应力应变PPT
根据完全各向异性弹性体的本构方程,将上述关系式代入广义 胡克定律表达式(4-2)得
x C11x C12y C13z C14 yz C15xz C16xy y C21x C22y C23z C24 yz C25xz C26xy z C31x C32y C33z C34 yz C35xz C36xy yz C41x C42y C43z C44 yz C45xz C46xy xz C51x C52y C53z C54 yz C55xz C56xy xy C61x C62y C63z C64 yz C65xz C66xy
4
当变形较小时,可展开成泰勒级数, 并略去二阶以上的小量。
x (f1 ) 0 f x 1 0x f y 1 0y f z 1 0z f y 1 z 0y z f x 1 z 0x z f x 1 y 0xy y (f2 ) 0 fx 2 0x fy 2 0y fz 2 0z f y 2 z 0y z f x 2 z 0x z f x 2 y 0xy z (f3 ) 0 fx 3 0x fy 3 0y fz 3 0z f y 3 z 0y z f x 3 z 0x z f x 3 y 0xy
等温过程:利用热力学第二定律
x v F x , y v F y , z v F z , x y v x F ,y y z v F y,z x z v F xz
9
统一的形式:
x v x , y v y , z v z , x y v x ,y y z v y,z x z v x z
5
由没有初应力的基本假设,上式可表示为
x C 1x 1 C 1y 2 C 1z 3 C 1y 4 z C 1x 5 z C 1x 6 y y C 2x 1 C 2y 2 C 2z 3 C 2y 4 z C 2x 5 z C 2x 6 y z C 3x 1 C 3y 2 C 3z 3 C 3y 4 z C 3x 5 z C 3x 6 y

弹性力学基本方程和一般原理

弹性力学基本方程和一般原理
解的唯一性原理给“试凑解法”提供了理 论基础。
小结
➢ 一般说,位移场 ui 和 ui 之间还可能差一个刚体位移,
但是绝大多数弹性力学问题都给定足以限制刚体运动 的位移约束条件,因而位移场的解也是唯一的。
➢ 以上证明的前提是叠加原理、应变能正定性和应力张 量对称性。线弹性理论能自动满足这些条件,因为线 弹性问题的解是唯一的。
ji j Xi on S
不能消除刚体位移; 要满足整体平衡条件。
V
SSt
X3
X2 X1
SSuU Chapter 6.1
分量形式为:
x l yx m zx n X
xy
l
y
m
zy
n
Y
xz
l
yz
m
z
n
Z
◎ 当 X Y Z 0 时称为自由表面,是力边界的特殊情况。 ◎ 集中力可化为静力等效的在微小面积上的均布表面力。 ◎ 集中力矩化为静力等效的非均布(线性)表面力。
(3)在部分边界S 上给定外力,部分边界Su上给定 位移的混合边界S。这时要求
S Su S S Su
对于弹性动力学问题,还应给定 初始条件:初始位移和初始速度。
V
SSt
X3
X2 X1
SS uU
Chapter 6.1
2. 界面条件:
• 界面: 如果弹性体由两种以上材料组成,则不同材 料间的交界面称为界面。有时,物体虽由同样材料 的两部分组成,两者的连接面也称为界面。
如对集中力、集中力矩分别可以看作应力的合 力、合力矩处理。
利用圣维南原理可将位移边界转化为等效的力 边界,如图所示:
P l 位移边界
P M=Pl
w εz z ,

弹塑性力学第四章 弹性本构关系

弹塑性力学第四章 弹性本构关系
E K 3(1 2 )
(4.36) (4.37) (4.38)
K称为体积弹性模量,简称体积模量。
因此
q
sm
K
,em
sm
3K
1 3 1 1 ex e x e m ( sx sm) sm sx E E 3K 2G
1 ey e y e m sy 2G
1 eij sij 2G
(4.40)
1 eij sij 2G 1 em sm 3K
(4.41)
用应变表示应力:
或:
各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
• 材料的应力与应变关系需通过实验确定的。 • 本构方程实际是应力与应变关系实验结果的数学 描述。 • 由于实验的局限性,通常由简单载荷实验获得应 力与应变关系结果,建立描述相应的数学模型, 再将数学模型用于复杂载荷情况的分析。(用一 定实验验证结果)
• 例如:材料单轴拉伸应力-应变z e m sz 2G
1 1 1 1 yz s yz exy e xy xy sxy eyz e yz 2G 2G 2G 2G
1 1 exz e xz xz sxz 2G 2G
整理以上六个式子,得 整理以上六个式子,得
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个 因此应力偏张量形式的广义虎克定律,即
物理方程:
s ij 3 1 3 e ij s ij s m ij s m ij E E 2G E
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§4.4 各向同性弹性体
学习思路:
各向同性弹性体,就物理意义来讲,就是物体各个方向上的弹性性质完全相同,即物理性质的完全对称。

该物理意义在数学上的反映,就是应力和应变之间的关系在所有方位不同的坐标系中都一样。

对于各向同性材料,材料性质不仅与坐标轴的选取无关,而且与坐标轴的任意变换方位也无关。

根据这一原则,可以确定具有2个独立弹性常数的本构关系。

各向同性材料的本构关系可以通过拉梅(Lamé)弹性常数λ,μ 表示;也可以通过工程弹性常数E, n, G 表示。

各弹性常数可由实验的方法测定。

学习要点:
1. 各向同性弹性体;
2. 各向同性弹性体的应力和应变关系;
3. 应变表示的本构关系;
4. 弹性常数与应力表示的本构关系。

各向同性弹性体,就其物理意义来讲,就是物体各个方向上的弹性性质完全相同。

这一物理意义在数学上的反映,就是应力和应变之间的关系在所有方位不同的坐标系中都一样。

本节将从正交各向异性材料的应力应变公式出发,建立各向同性弹性体的应力和应变关系。

对于各向同性材料,显然其材料性质应与坐标轴的选取无关,任意一个平面都是弹性对称面。

因此
C11=C22=C33, C12=C23=C31,C44=C55=C66
于是其应力应变关系简化为
其独立的弹性常数仅为C11,C12和C44。

但是各向同性弹性体的弹性常数不但与坐标轴的选取无关,而且与坐标轴的任意变换方位也无关。

为了简化分析,将坐标系沿z 轴旋转任一角度ϕ。

新旧坐标系之间的关系如下所示:
x y z
x'l1=cosϕm1=sinϕn1=0
y' l2=-sinϕm2=cos ϕn2=0
z'l3=0m3=0n3=1
根据应力分量转轴公式,可得
根据应变分量转轴公式
将以上两式代入应力应变关系公式的第四式,则
因为,所以。

根据应力应变表达式,可得。

比较上述两个公式,可得,2C44 = C11-C12。

所以各向同性弹性体的弹性常数只有两个。

其应力和应变关系为
其中,。

为了使得各向同性材料的本构关系公式表达简洁,令
则同性材料的本构关系公式可以简化为
或写作张量表达式
上述公式即为各向同性弹性材料的广义胡克(Hooke)定理,λ,μ称为拉梅(Lamé)弹性常数。

如果将坐标轴选取的与弹性体内某点的应力主方向重合,则对应的切应力分量均应为零。

根据各向同性材料的本构关系的后三式可见,此时所有的切应变分量也为零。

根据上述分析,对于各向同性弹性体内的任一点,应力主方向和应变主方向是一致的。

因此这三个坐标轴,即应力主轴同时又是应变主轴方向,对于各向同性弹性体,应力主方向和应变主方向二者是重合的。

设体积应力为, 将拉梅公式的前三式相加,可得
上式称为体积应变的胡克定理。

如果各向同性材料的本构关系用应力表示,一般用工程弹性常数E,ν,G表示胡克定律,有
这里E为弹性模量,又称为杨氏模量;G为切变弹性模量;v为横向变形系数,简称泊松比。

工程弹性常数与拉梅弹性常数之间的关系为,
由于各向同性弹性体仅有两个独立的弹性常数,因此
各个弹性常数可由实验的方法测定,通常应用材料的单向拉伸实验可以测出弹性模量E,利用薄壁管的扭转实验可以测定剪切弹性模量G。

其余的弹性常数可以通过上述公式计算得到。

4.5 各向同性弹性体的应变能
学习思路:
本节介绍各向同性材料的应变能函数表达形式。

如果材料为各向同性材料,本构关系满足线性条件,则应变能函数可以通过应力分量或者应变分量表示。

将本构关系表达式代入应变能函数公式,则可以写出应变分量或者应力分量表达的应变能函数。

由于泊松比 恒小于1,所以应变能函数是恒大于零的。

这就是说,单位体积的应变能总是正的。

学习要点:
1. 各向同性弹性体应变能。

弹性体单位体积的应变能的表达式已经作过讨论。

如果材料为各向同性材料,本构关系满足线性条件,则应变能函数可以通过应力分量或者应变分量表示。

根据应变能函数表达式,
对于各向同性弹性体,可以使用应力分量或应变分量表达单位体积的应变能。

将本构关系表达式代入上式,则可以写作应变分量表达的应变能函数
或者利用本构方程,写作应力分量表达的应变能函数
由于 恒小于1,所以,根据应变能函数表达式可知U0恒大于零。

这就是说,单位体积的应变能总是正的。

相关文档
最新文档