工业大数据驱动智能制造
工业大数据在智能制造中的应用

⼯业⼤数据在智能制造中的应用目录1.前言 (3)2.工业大数据面临的挑战 (4)3.工业大数据的应用场景 (7)4.总结 (17)1.前言作为新一轮工业革命的重要内容,正在快速发展的工业大数据成为世界各国争相抢夺的制高点。
工业大数据就是把大数据在产品的研发设计、生产制造、经营管理、市场营销、售后服务等产业链的各个环节广泛应用。
通过对数据的处理分析,推进制造产业的网络化和智能化。
从"工业互联网"的概念来看,工业互联网是全球工业系统与高级计算、分析、感应技术以及互联网连接融合的结果。
它通过智能机器间的连接并最终将人机连接,结合软件和大数据分析,重构全球工业、激发生产力,让世界更美好、更快速、更安全、更清洁且更经济。
2.工业大数据面临的挑战第一是数据搜集,要对来自网络包括物联网和机构信息系统的数据附上时空标签,去伪存真,尽可能收集异源甚至是异构的数据,还可与历史数据对照,多角度检验数据的全面性和可信性。
第二是数据存储,要达到低成本、低能耗、高可靠性目标,要用到冗余配置,分布和云计算技术,存储时对数据进行分类,并加入便于检索的标签。
三是数据处理,利用上下文关联进行语义分析,现在关于上下文这种关联,也是一个国际上比较热门的一个领域。
第四是可视化呈现,目前计算机智能化有了很大的进步和发展,但是谈不到深层次数据挖掘,现有数据挖掘算法在行业中难以应用,就是我们谈到的智能之路进步很大,但还很遥远。
3.工业大数据的应用场景(1)设备远程故障诊断分析:大数据预测设备未来可能出现故障的时间,提供避免风险的解决方案,消除设备故障停机给客户带来的损失。
(2)工业产品开拓:整合行业大数据及市场指数分析、风险管理、电子化招标、供应链金融等增值服务,优化线上交易机制(订单、竞买、竞卖、招标、撮合、挂牌等),基于平台贸易数据整合,解决供需双方的信息对称和信用对称问题,为工业产品开拓等提供交易资金结算一体化服务。
工业大数据在智能制造中的应用

工业大数据在智能制造中的应用智能制造是指通过集成信息技术和智能化设备,实现生产过程的全面自动化、智能化和高效化。
而工业大数据作为智能制造的重要支撑,通过收集、存储、处理和分析大量的生产数据,为企业提供决策支持和优化生产过程。
一、工业大数据的定义和特点工业大数据是指在工业生产过程中产生的大量数据,包括生产设备的运行数据、产品质量数据、生产环境数据等。
与传统的数据相比,工业大数据具有以下特点:1.规模大:工业生产过程中产生的数据量庞大,涉及到多个环节和多个系统。
2.多样性:工业大数据涵盖了多种类型的数据,如结构化数据、半结构化数据和非结构化数据。
3.实时性:工业大数据需要实时采集和处理,以便及时发现问题并采取相应的措施。
4.价值密度高:工业大数据中蕴含着丰富的信息,通过挖掘和分析可以为企业提供有价值的洞察和决策支持。
二、1.生产过程优化:通过对工业大数据的分析,可以实时监测生产设备的运行状态,提前预警设备故障,并进行智能调度和优化,以提高生产效率和降低生产成本。
例如,在一家汽车制造企业中,通过对生产线上的工业大数据进行分析,发现某个设备存在异常,可能导致生产线停机。
及时采取措施修复设备,避免了停机损失,提高了生产效率。
2.质量控制:通过对工业大数据的分析,可以实时监测产品质量指标,发现质量问题,并进行追溯和分析,以找出问题根源并采取相应措施,保证产品质量。
例如,在一家电子产品制造企业中,通过对工业大数据的分析,发现某个生产批次的产品存在质量问题。
通过追溯工业大数据,发现问题出现在某个生产环节的设备上,及时修复设备并调整生产工艺,保证了产品质量。
3.供应链管理:通过对工业大数据的分析,可以实时监测供应链各个环节的数据,如物流数据、库存数据等,以实现供应链的智能化管理和优化。
例如,在一家制造企业中,通过对工业大数据的分析,发现某个供应商的物流配送速度较慢,导致库存积压。
通过与供应商沟通,并调整供应链计划,及时调整库存和物流,优化了供应链的效率。
工业大数据在智能制造中的应用

工业大数据在智能制造中的应用领先的制造企业已经认识到工业大数据在生产过程中的重要性。
随着物联网技术的进一步发展,越来越多的机器设备都能够通过传感器、控制器等参与到数据采集中,实现工业大数据的规整收集和处理。
对于企业而言,通过采用工业大数据分析技术,能够有效提升智能制造的效率和质量,从而在激烈的市场竞争中占得一席之地。
工业大数据在智能制造中的应用主要包括以下几个方面:一、制造过程中的数据收集和分析在生产过程中,设备传感器能够实时采集制造过程中的各种参数,例如温度、压力、速度、转速等,通过对这些数据进行收集和整合可以形成全面的产品质量数据。
通过大数据技术的分析和挖掘,能够给企业在制造过程中提供及时的预警和优化建议,有利于更好地控制生产过程,提高产品的制造质量和效率。
二、智能化生产过程的监控和分析很多企业实现了智能化生产过程的监控和控制,通过采用大数据技术,生产过程中的各种数据能够得到及时的监测和处理。
在生产实时数据的基础上,可以通过数据分析和挖掘技术进行产品预测和风险评估,通过提前预测生产障碍和提出相应的改进建议,实现预防性维护,避免机器故障引起的停机和生产缺陷,从而提高生产线的稳定性和产量。
三、基于大数据的管理及优化对于企业的工厂管理而言,在智能制造中引入工业大数据技术,不仅能够实现全面数据管理,更有利于实现工厂生产流程的优化。
通过对数据进行挖掘、分析和展示,企业可以清晰了解到工厂生产中的瓶颈、风险和机会。
同时通过对历史数据的分析比对,能够对生产线做出优化调整,提供更加精准的计划需求,实现生产线上的无缝一体化。
四、降低成本在智能化制造中,大数据技术的应用能够在降低企业的成本方面发挥非常积极的作用。
通过受托生产、成本分析等技术手段,企业能够利用数据预测来加快产品研发过程,同时实现运营收益的提高。
除此之外,通过数据分析技术、故障预警等方式,企业实现及时预警和主动预防,能够减少故障维修带来的损失,提高生产效率,减少赔偿费用。
工业大数据的应用与智能制造技术

工业大数据的应用与智能制造技术随着信息化和智能化的推进,工业大数据越来越成为智能制造的关键技术。
工业大数据指企业在生产和经营过程中通过各种信息系统获得的、包括生产数据、设备数据、供应链数据、市场和销售数据等在内的大量数据。
这些数据经过处理和建模,可以为企业提供实时的控制、运行和决策支持,从而提升生产效率和质量、降低成本、提高客户满意度和市场竞争力。
工业大数据的应用领域非常广泛,主要体现在以下几个方面:1. 生产调度优化。
通过精准地获取各生产环节的数据,如生产排程、物料配送、设备保养等,实现生产线的自动调度和优化,从而达到提高生产效率和减少生产成本的目的。
2. 设备状态监测和维护。
利用传感器、云计算和机器学习等技术,可以实现设备状态的实时监测、诊断和预测,提前发现和处理设备故障,从而保障设备的可靠性和稳定性。
3. 产品质量控制。
通过对生产过程中各关键参数、材料和过程参数进行实时监测和控制,实现产品质量的在线监测和控制,提高产品质量稳定性和一致性。
4. 供应链管理。
通过对供应链中各环节的数据进行收集和分析,优化物流、仓储和采购,实现供应链的智能化管理和控制,提升供应链的效率和反应速度。
5. 市场销售预测。
通过对市场、客户和销售数据进行分析和建模,可以预测市场销售趋势和客户需求,为企业提供决策支持和业务战略制定。
智能制造是工业大数据应用的重要实践领域。
工业大数据不仅可以优化传统制造流程,也可以推动智能制造的发展。
与传统制造方式相比,智能制造更加高效、灵活和定制化,能够更好地满足客户的个性化需求,增加多样性产品生产能力和市场竞争力。
智能制造的核心在于工业生产的数字化转型,并基于工业大数据的支撑来实现。
智能制造不再局限于简单的工业机器人和自动设备,而是涵盖了物联网、云计算、人工智能、机器学习、虚拟现实等多种新兴技术。
通过这些技术手段,企业可以更加敏捷地响应市场变化和客户需求,并实现生产过程的智能化、可视化和数字化全流程管理。
智能制造中的工业大数据分析处理

智能制造中的工业大数据分析处理智能制造是未来制造业的趋势,其核心就是工业大数据的收集、分析、处理和应用。
工业大数据包括机器设备的运行数据、生产过程的数据、供应链数据、客户反馈数据等,通过对这些数据的分析,制造企业可以优化生产流程、提高产品质量、降低成本、提升客户满意度。
本文将从工业大数据的来源、处理方式、分析方法等方面探讨智能制造中的工业大数据分析处理。
一、工业大数据的来源工业大数据的来源主要有以下几个方面:1. 机器设备运行数据:包括温度、压力、电流、振动等参数的监测数据。
2. 生产过程数据:包括生产计划、产量、时间、质量等数据。
3. 供应链数据:包括原材料采购、仓储、物流等方面的数据。
4. 客户反馈数据:包括售后服务、客户满意度、市场销售等数据。
通过对以上数据的收集和分析,制造企业可以全面了解生产过程、产品的质量、客户需求等信息,为生产流程的优化、产品的升级和市场营销提供有力的支持。
二、工业大数据的处理方式工业大数据的处理方式主要包括以下几个方面:1. 数据采集:通过各种传感器和监测设备进行数据采集。
2. 数据存储:将采集到的数据存入数据仓库或数据湖中。
3. 数据清洗:对采集到的数据进行清洗和预处理,去掉噪点和异常数据。
4. 数据建模:对清洗过的数据进行建模和分析,提取有用的信息和模式。
5. 数据可视化:将分析结果通过图表、报表等形式呈现出来,便于用户理解和使用。
三、工业大数据的分析方法工业大数据的分析方法主要包括以下几个方面:1. 描述性统计分析:对数据进行描述性分析,如均值、中位数、标准差等。
2. 关联性分析:通过分析数据之间的关系,发现特定规律和潜在因果关系。
3. 预测性分析:通过构建模型进行数据预测和趋势分析,为制定生产计划和销售策略提供支持。
4. 机器学习:通过机器学习算法实现数据的自动分类、聚类、识别等,提高数据的处理效率和分析精度。
5. 智能决策:基于工业大数据的分析结果,给出智能化的决策建议,提高生产效率、产品质量和客户满意度。
工业大数据分析与智能制造的结合实践

工业大数据分析与智能制造的结合实践随着信息技术的不断发展和工业制造技术的日新月异,工业大数据分析和智能制造正在成为工业界的热点话题。
工业大数据分析是指通过收集、分析和利用工业生产过程中产生的各类数据,以提升生产效率、优化生产流程并实现智能化的制造方式。
而智能制造则是通过人工智能技术和机器学习算法等手段,使工业制造过程具有自主感知、自主决策和自主优化的能力。
工业大数据分析与智能制造的结合,可以为企业带来许多益处。
首先,通过数据的搜集和分析,企业可以更好地了解生产过程中的各种参数和指标。
例如,企业可以通过分析设备传感器数据,了解设备使用寿命和维修需求,以及预测设备可能出现的故障,从而做出相应的调整和预防措施。
其次,通过智能化的决策和优化算法,企业可以实现生产过程的自动化控制和调节。
例如,企业可以利用智能算法对工艺参数进行实时优化,以提高产品质量和生产效率。
第三,工业大数据分析和智能制造的结合,还可以帮助企业进行全面的生产过程监测和分析。
通过对数据的实时监测和分析,企业可以及时发现潜在问题和瓶颈,从而采取相应的措施加以解决。
在实际应用中,工业大数据分析和智能制造已经取得了一些显著的成果。
以某汽车制造企业为例,通过对生产线上的各类数据进行分析,该企业成功地实现了生产过程的自动化监控和控制。
通过对设备数据的监测,该企业可以及时发现设备故障和瓶颈,并采取相应的维修和调整措施。
同时,该企业还结合智能制造技术,对生产线的工艺参数进行实时优化,以提高产品质量和生产效率。
通过这些措施的实施,该企业的生产效率和质量得到了显著的提升,并取得了较好的经济效益。
然而,工业大数据分析与智能制造的结合实践也面临一些挑战和问题。
首先,工业大数据分析需要大量的数据支撑。
而在实际生产中,由于传感器设备和数据采集系统的限制,生产过程中的数据并不总是能够完整、准确地收集和记录。
因此,企业需要在设备和数据采集系统的建设方面进行投资和改进,以确保数据的可靠性和完整性。
智能制造中的工业大数据技术的使用教程

智能制造中的工业大数据技术的使用教程智能制造是当前工业发展的重要趋势,以人工智能、物联网、云计算等技术为基础,通过数据的收集、分析和利用来提高生产效率、降低成本,并为企业提供更好的决策依据。
在智能制造中,工业大数据技术的使用至关重要。
本文将为您介绍智能制造中工业大数据技术的使用方法和注意事项。
一、工业大数据的收集在智能制造中,通过各种传感器、仪器设备和生产线上的数据采集系统,可以实时、准确地收集到大量的数据。
这些数据包括生产过程中的工艺参数、设备运行状态、产品质量信息等。
在收集数据时,需要注意以下几点:1. 数据收集范围:确定需要收集哪些数据以及收集的粒度,根据不同的生产环境和需求进行选择。
2. 数据收集周期:根据生产过程的特点和对数据的需求,确定数据收集的频率和时间点。
3. 数据质量控制:确保数据的准确性和完整性,例如监控传感器的运行状态,及时发现并修复故障。
二、工业大数据的存储与管理收集到的工业大数据需要进行存储和管理,以便后续分析和应用。
以下是一些存储和管理的方法和技术:1. 数据库:使用关系型数据库或非关系型数据库进行数据的存储和管理。
关系型数据库适用于结构化数据,非关系型数据库适用于半结构化和非结构化数据。
2. 数据仓库:将不同源头的数据集成到一个统一的数据仓库中,方便数据的查询和分析。
可以使用传统的数据仓库技术,例如ETL(抽取、转换、加载)和OLAP(联机分析处理)。
3. 分布式存储:使用分布式文件系统或对象存储系统来存储大规模的数据。
分布式存储提供高可靠性、可扩展性和灵活性,并可以支持并行计算。
三、工业大数据的分析与挖掘工业大数据的分析和挖掘是智能制造中的核心环节,通过对数据进行挖掘和分析,可以从中发现隐藏的规律和信息,为企业决策提供支持。
1. 数据预处理:对数据进行清洗、去噪、去重和转换等预处理工作,以提高数据的质量和可用性。
2. 数据挖掘算法:根据具体的问题和目标选择合适的数据挖掘算法,如关联规则挖掘、分类、聚类和异常检测等。
大数据处理技术在智能制造中的应用

大数据处理技术在智能制造中的应用智能制造是一种以计算机技术和智能化为基础,结合工业制造和交互式通信的高端制造方式。
随着物联网和人工智能等技术的快速发展,智能制造也变得更加全面,其生产效率和产品质量将进一步提高。
然而,大数据处理技术的普及与应用是智能制造的核心环节之一。
在本文中,我们将探讨大数据处理技术在智能制造中的应用,并同时探讨其在制造业中的重要性。
一、大数据在智能制造中的优势智能制造通常不仅涉及机器生产,还涉及了几乎所有与生产工艺以及产品相关的细节,从设计和生产到销售和客户服务。
这意味着,企业需要处理的数据量必然非常庞大。
大数据处理技术的流行和广泛应用为企业管理和决策提供了更多的数据资料。
智能数据分析可以根据历史数据预测未来趋势,并帮助企业加深对客户和市场的了解,以便在未来判断出现的问题以及如何解决它们。
这同时也可以减轻管理人员的工作负担,让他们更加专注于业务流程和战略指导。
此外,智能制造需要大小不一的数据。
大数据处理对于智能制造也可以指导企业更好地处理大量数据,但同时也要考虑到处理小数据的改进和调整。
一个好的大数据处理系统应该能够对各种大小不同的数据进行处理,以便通过数据挖掘和进一步分析来产生其预测和结果。
二、大数据处理技术的应用1. 生产过程效率的改进大数据可以改进工业生产过程的效率。
通过实时监测,企业可以实时了解生产线上的状况。
人工设备数据化是智能制造中的一种基础设施,可以为企业监测机器运行时间、维护计划和设备故障等合理的信息,进而减少停机时间、提高产量和提高产品质量。
2. 智能质量控制大数据可以提供一个强有力的质量控制措施,当发现无法预测的缺陷或制造工艺问题时,企业可以对数据进行跟踪和异常分析。
在智能制造环境中,这种数据实时监测的能力使生产和产品质量增加更佳和成功更可靠。
3. 优化供应链智能制造需要对整个生产流程进行全面且实时的检测,并要求企业管理者拥有更多明智的决策。
大数据可以为集成的供应链提供支持,从实时物流跟踪到客户需求预测,以实现更可靠的运输和零库存管理和提高客户满意度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工业大数据驱动智能制造
随着产业互联网和智能制造时代的到来,工业大数据技术将成为制造业转型升级的重要引擎,是驱动研发设计、生产过程、管理经营、服务运维智能化的关键要素
5月5日15时19分,一架在后机身涂有象征天空蓝色和大地绿色的大型客机,潇洒稳健地降落在第四跑道上。
这是一个历史性的时刻――它标志着中华民族百年的“大飞机梦”终于取得了历史性突破。
而C919的下线以及首飞,不仅仅是一个产品的成功研制,更是一种新模式新体系――智能制造的实践检验。
2015年5月,国务院印发《中国制造2025》规划,部署全面推进实施制造强国战略。
规划提出,以加快新一代信息技术与制造业深度融合为主线,以推进智能制造为主攻方向。
智能制造是一系列热点技术的总称,它是基于物联网、大数据、云计算等新一代信息技术,贯穿于研发、设计、生产、管理、服务等制造活动的各个环节,具有信息深度自感知、智慧优化自决策、精准控制自执行等功能的先进制造过程、系统与模式的总称。
智能制造具有以智能工�S为载体、以关键制造环节智
能化为核心、以端到端数据流为基础、以全面深度互联为支撑四大特征,其目标是缩短研发周期、降低运营成本、提高生产效率、提升产品质量、降低资源能耗。
C919大型客机成功首飞意味着中国实现了民机技术集群式突破,形成了我国大型客机发展的核心能力,其中就包括工业大数据技术。
中国商用飞机有限责任公司信息化中心主任王文捷介绍,大飞机一次飞行产生的数据量达到10个TB的量级,也就是说至少20台500G大硬盘的电脑才能装得下。
而中国商飞公司,不仅要成功研制自主知识产权大飞机,还要成功运营大飞机制造商,从适航试飞到供应链管理,分分秒秒、日新月异的大数据堪称天量。
专家表示,设计图纸将成为过去,飞机完全是在数字世界里设计的,3D几何数据模型以数字模型的形式呈现飞机。
数字化样机将含有制造所需的全部信息,不仅含有产品几何体,而且还含有制造产品所需的信息,比如材料、技术要求、包含的标准件、授权发布的文件等。
在装配阶段,数字化装配技术将实现飞机装配建模、装配序列建模、装配路径规划和装配过程分析。
为此,中国商飞已经新合并成立信息化与管理创新部,并专门下设数据处,用数据驱动创新。
如今,中国商飞建立起以零件号、版次、物料组等为基础的编码标准,给大大小
小每一种零件都配上“身份档案”和“电子履历”,引入11万种以上的物料主数据。
王文捷表示,即使在像马航MH370这样的事件中,任何零件都可追溯还原为一架完整的飞机,甚至倒查出某零件的前世今生。
目前,C919研制已形成全程管控中心,可实现三维可视化分析。
“对于民用飞机来说,不仅仅是实现技术上的成功,把飞机飞上天,还要让这架飞机在航线上取得商业成功。
中国商飞在飞机的研制过程中,伴随产品的演化衍生出各类试飞数据、试演数据、在航线运营过程中关于飞机监控的数据,所有的数据贯穿始终。
”王文捷说。
“我国智能制造未来发展潜力巨大,2020年我国智能制造产值有望超过3万亿元,年均复合增长率约20%。
”国家信息中心副主任马忠玉在大数据智能应用推动制造业变革与升级研讨会上强调,智能制造是中国制造业转型升级的战略支点。
随着产业互联网和智能制造时代的到来,工业大数据技术将成为制造业转型升级的重要引擎,是驱动研发设计智能化、生产过程智能化、管理经营智能化、市场营销智能化、服务运维智能化、新业态新模式智能化的关键要素。
工业大数据的演变
自工业从社会生产中独立成为一个门类以来,工业生产的数据采集、使用范围就逐步加大。
从泰勒拿着秒表计算工
人用铁锹送煤到锅炉的时间开始,是对制造管理数据的采集和使用;福特汽车的流水化生产,是对汽车生产过程的工业数据的采集和工厂内使用;丰田的精益生产模式,将数据的采集和使用扩大到工厂和上下游供应链;核电站发电过程中全程自动化将生产过程数据的自动化水平提高到更高程度。
任何数据的采集和使用都是有成本的,工业数据也不例外。
但随着信息技术的发展,一批智能化、高精度、长续航、高性价比、微型传感器面世,以物联网为代表的新一代网络技术在移动数据通信的支持下,能做到任何时间、任何地点采集、传送数据。
以云计算为代表的新型数据处理基础架构,大幅降低工业数据处理的技术门槛和成本支出。
以工业领域的SCADA系统为例,传统模式下每个电网、化工企业都需要建立一套SCADA系统,成本在千万以上,如果采用云架构模式,成本可以降低7成以上。
社会需求的演进是工业变革的重要动力。
当经济发展进入新常态,商品极大丰富甚至出现过剩,以个性化、多元化为代表的消费文化,使得工业企业的产出物,要最大限度匹配个性需求和多元需求。
以服装定制为例,通过制订一套数据采集手段,通过线上或线下采集用户身形数据,然后将数据传回总部,结合生产原材料数据,对需求和工艺进行分解,实现柔性生产,达到定制化要求的服装,而且效率和质量都可以得到保证。
随
着生产线的扩容线性提升和工艺的不断改进,定制化生产的成本将得以显著摊薄,可以满足大批量个性化定制的社会生产需求。
无论是德国工业 4.0,还是美国的工业互联网,其核心都离不开工业大数据。
德国“工业 4.0 ”战略的实施重点在于信息互联技术与传统工业制造结合,其中大数据分析作为关键技术将得到较大范围应用。
一是“智能工厂”,重点研究智能化生产系统及过程,以及网络化分布式生产设施的实现;二是“智能生产”,主要涉及整个企业的生产物流管理、人机互动以及3D 技术在工业生产过程中的应用等;三是“智能物流”,主要通过互联网、物联网、物流网,整合物流资源,充分发挥现有供应方的效率,需求方则能够快速获得服务匹配。
美国拥有强大的互联网、云计算及大数据处理能力,基于此,提出工业互联网战略,将单个设备、单条生产线、单个工厂的数据联网,通过大数据处理后,在诊断、预测、后服务等方面挖掘工业服务的价值。
2014 年,美国白宫总统行政办公室发布《2014 年全球大数据白皮书》,指出美国大型企业在投资数据科技方面存在以下几个关键驱动因素:分析运营和交易的能力;洞察客户线上消费的行为,以向市场提供新的高度复杂的产品;对组织中的机器和设备进行更加深入的感知。