流体静力学
第二章 流体静力学

第二章流体静力学作用在流体上的力有面积力与质量力。
静止流体中,面积力只有压应力——压强。
流体静力学主要研究流体在静止状态下的力学规律:它以压强为中心,主要阐述流体静压强的特性,静压强的分布规律,欧拉平衡微分方程,等压面概念,作用在平面上或曲面上静水总压力的计算方法,以及应用流体静力学原理来解决潜体与浮体的稳定性问题等。
第一节作用于流体上的力一、分类1.按物理性质的不同分类:重力、摩擦力、惯性力、弹性力、表面张力等。
2.按作用方式分:质量力和面积力。
二、质量力1.质量力(mass force):是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
对于均质流体(各点密度相同的流体),质量力与流体体积成正比,其质量力又称为体积力。
单位牛顿(N)。
2.单位质量力:单位质量流体所受到的质量力。
(2-1) 单位质量力的单位:m/s2,与加速度单位一致。
最常见的质量力有:重力、惯性力。
三、面积力1.面积力(surface force):又称表面力,是毗邻流体或其它物体作用在隔离体表面上的直接施加的接触力。
它的大小与作用面面积成正比。
表面力按作用方向可分为:压力:垂直于作用面。
切力:平行于作用面。
2.应力:单位面积上的表面力,单位:或图2-1压强(2-2)切应力 (2-3)1.静止的流体受到哪几种力的作用?重力与压应力,无法承受剪切力。
2.理想流体受到哪几种力的作用?重力与压应力,因为无粘性,故无剪切力。
第二节流体静压强特性一、静止流体中任一点应力的特性1.静止流体表面应力只能是压应力或压强(如图B 点),且静水压强方向与作用面的内法线方向重合。
图2-2流体不能承受拉力,且具有易流动性(如图A点,必须τ0=)。
2.作用于静止流体同一点压强的大小各向相等,与作用面的方位无关。
即有:(2-4)证明:从平衡状态下的流体中取一微元四面体OABC,如图2-3所示取坐标轴。
由于液体处于平衡状态,则有,即各向分力投影之和亦为零,则:图2-3x方向受力分析:表面力:n为斜面ABC的法线方向质量力:当四面体无限地趋于O点时,则d x趋于0,所以有:p x=p类似地有:p x=p y=p z=p而n是任意选取的,所以同一点静压强大小相等,与作用面的方位无关。
第二章 流体静力学

表面力具有传递性
3
工程流体力学
二、静压力的两个重要特性
• 流体静止时,τ=0;只能承受压应力,即 压强,其方向与作用面垂直,并指向流体 内部。
• 特性1(方向性):平衡流体中的应力 p⊥→受压面。
• 特性2(大小性):平衡流体内任一点的压 强p与作用方位无关,即 p =f(x,y,z)。
4
工程流体力学
工程流体力学
第二章 流体静力学
流体静力学是研究流体在静止状态下的 力学规律,包括压强的分布规律和固体壁面 所受到的液体总压力。
1
工程流体力学
第一节 流体静压力及其特性
一、流体静压力:
1、总压力P :静止流体与容器壁之间、内部相邻 两部分流体之间的作用力。单位“牛”
2、静压力:单位面积上的总压力。即压强。
26
工程流体力学
(1)、测压管
测压管是一种最简单的液柱式测压计。为了减少毛细 现象所造成的误差,采用一根内径为10mm左右的直玻璃 管。测量时,将测压管的下端与装有液体的容器连接,上 端开口与大气相通,如图所示。
测压管只适用于测量较小的压强, 一般不超过19.6MPa,相当于 2mH2O。如果被测压强较高,则 需加长测压管的长度,使用就很不 方便。此外,测压管中的工作介质 就是被测容器中的流体,所以测压 管只能用于测量液体的压强。
例2-6、油罐深度测定,如图所示。已知h1=60cm, △h1=25cm, △h2=30cm,油的相对密度d油=0.9。求h2。
解析:这是由三个以上的容器组成的连通器
1、找出共有等压面。n-n , m-m
2、以A点为计算起点,B点为计算终点,
计算路线如图箭头所示。
3、列连通器平衡方程
n
第二章流体静力学

dy → 0, p y = pS 当四面体向A点收缩时,
同理 px = pz = pS
§2.2静力学基本方程(Euler静平衡方程):
取一个矩形微元六面体,其六个面分别与 坐标轴平行,设微元中心处的压强为 p。 由于 这是个微小体积,因此认为六个面上的压强各 自均匀分布,常用面上中心来做代表。
而面上中心处的压强又可以围绕六面体 中心做Taylor展开。展开式忽略二阶以上 的高阶量,有
1 ⎞ ⎛ p A = p⎜ x + dx ⎟ 2 ⎠ ⎝
p A = p + 0.5(∂p ∂x )dx
p B = p − 0.5(∂p ∂x )dx
这样,垂直于x轴的两个面上的表面力分 别为
[ p + 0.5(∂p ∂x )dx ]dydz [ p − 0.5(∂p ∂x )dx ]dydz
§2.3重力作用下静止流体内部的压强分布 [均匀液体的压强分布] 根据Euler静平衡方程 可以得到:
p = p0 + γh
第一部分是自由面上的压强,第二部分称 为剩余压强。
p = p0 + γh = γ ( p0 γ + h )
这种做法,称为虚水面方法。
[连通器] ( 1 )同种液体,表面自由压强相等。则两液面 等高,任一等高度的面上均为等压面。 ( 2 )同种液体,但表面自由压强不等。则自由 压强大者,液面低。 (3)不同液体(不相混)。密度大者液面低。
F = ∫ ρf dV
V
2、表面力——一个流体体积的表面上,受 到其他部分的流体或与之相接的固体的 作用力。这种力,只是作用在体积的表 面上而没有作用到体积内部的流体质点 上。 通常可以把表面力分解为法向的和 切向的分量,分别称为法向力和切向力。 单位面积上则称为法向应力和切应力。
流体力学流体静力学

d、e两点,虽属同种、连续,但不静止,管中是流动 的液体,所以在同一水平面上的d、e两点压强也不相
等。
第2章 流体静力学
多种流体在同一容 器或连通管的条件下求 压强或者压强差时,必 须注意将两种液体的分 界面作为压强关系的联 a 系面。
p0
b
( a)
2.3 压强计示方式与度量单位
2.3.1 绝对压强和相对压强
相对静止的流体。
第2章 流体静力学
2.1.2 等压面
在静止流体当中,压强相等的各点所组成的面称 为等压面。
等压面的特性,作用于静止流体中任一点上的质 量力必定垂直于通过该点的等压面。
f
参阅图2.2,设A是一 个等压面,在质量力的的
dr
A(x,y,z)
A'(x+dx, y+dx,
z+dz) p=c
作用下,将流体质点 A(x, y, z)
2.1 流体静力学的基本方程
2.1.1 流体平衡微分方程式
参阅图2.1,设M(x,y,z)
A
p
为流体中的某一点,包围M
点取一平衡微分六面体。 y
C
BM
dz p'
D
dy
dx
o 图2.图1 2平.1衡平微衡分微六分面 六面体体
第2章 流体静力学
1.表面力
p' p(x dx, y, z) p(x, y, z) p dx x
或
p z
dxdydz
fz ydz
0
fx
p x
fy
p y
fz
p z
第2章 流体静力学
矢量式为
第二章 流体静力学

所以表面abcd的总压力为:( p
p dx )dxdy x 2
同理面aˊbˊcˊd ˊ的总压
p dx 力为: (p )dydz x 2
z
微团在X轴方向的表面
力和为:
(p p dx p dx )dydz ( p )dydz x 2 x 2
p
p dx x 2
位质量流体受到的质量力在水平面x轴和y轴的投影为零, 铅直方向z轴的投影为重力加速度g,根据
则有
dp g dz
dp ( f x dx f y dy f z dz)
积分得
p zc g
液体静止的基本方程
式中:g在本书中取值9.807m/s2;
z为测压处相对于边界条件(基准面)的高差。 c为常数,大小由边界条件确定。
若一个函数W(x,y,z)使质量力的投影等于这个函数的偏
导数,即
W fx x
fy
W y
fz
W z
则称函数W(x,y,z)为质量力势函数。 一个存在质量力势函数的力场,称为有势力场,相应的
质量力称为有势质量力,简称有势力。
等压面性质: • 等压面就是等势面; • 等压面与质量力垂直; •两种互不掺混液体的分界面也是等压面。
等压面:在静止流体内,由静压力相等的各点组成的面
自由面:静止液体和气体接触的面
水平面既是等压面也是自由面
液体静压强分布规律只适用静止、同种、连续液体
同一容器或同一连通器盛有多种不同密度的液体时,关键是找到等 压面
§2-4
液体的相对静止
辩证唯物主义:
①运动是普遍的、永恒的和无条件的,因而是绝
流体力学中的流体静力学

流体力学中的流体静力学流体静力学是流体力学的一个分支,研究静止流体的行为。
它涉及到压力、力的作用和流体的静压力等方面。
本文将介绍流体静力学的基本概念、原理和应用。
一、流体静力学概述流体静力学主要研究静止流体的性质,不考虑流体的运动。
在流体静力学中,我们关注的是流体的压力以及压力的传递和计算。
1.1 压力的定义压力是指单位面积上所受的力,可以用公式P=F/A来表示,其中P 为压力,F为作用力,A为受力面积。
通常情况下,压力是沿法线方向均匀分布的,即P=F/A。
1.2 流体静力学的基本原理根据帕斯卡定律,当外力作用于静止的不可压缩流体时,流体中各点的压强相等。
这意味着在静止流体中,压力在整个流体中传递是均匀且无损失的。
1.3 流体静压力流体静压力是指流体由于受到重力或外力的作用而在垂直平面上的压力。
在静止的流体中,静压力在不同的深度处有不同的大小,按照帕斯卡定律,静压力随深度的增加而增加。
二、流体静压力的计算在流体静力学中,计算流体静压力的方法是基于重力和液体的密度。
下面将介绍两个常见的计算流体静压力的公式。
2.1 绝对压力公式对于水平面上的静止液体,绝对压力公式可以通过公式P=ρgh计算,其中ρ为液体的密度,g为重力加速度,h为液体的高度。
2.2 相对压力公式相对压力是指相对于外部环境的压力变化。
对于不考虑大气压力的情况下,相对压力公式可以通过公式P=ρg(h2-h1)计算,其中h2和h1分别表示液体的两个高度。
三、流体静力学的应用流体静力学在实际工程和科学研究中有广泛的应用。
下面将介绍几个常见的应用场景。
3.1 液体压力传感器流体静压力的均匀性和无损失传递的特性使得它可以用于液体压力传感器的设计。
通过测量液体静压力,可以获得液体容器内液位的信息,进而对液体的流量和压力进行控制。
3.2 水坝工程在水坝工程中,流体静力学可以帮助我们计算水压对水坝的压力。
通过对水坝的结构进行理论分析,可以确保水坝在水压作用下的稳定性和安全性。
第二章 流体静力学
h
h
一、解析法
如图所示,静止液体中有一倾斜放置的平面MN,试求作用 在该平面上的总压力。
1)粗线MN代表其侧视图,正面投影为绕其对称轴转90 度 2)平面MN的延伸面与自由液面的交角为;
3)坐标系:ox轴为平面MN的延伸面与自由液面的交线;
二、欧拉平衡微分方程的全微分形式
p X
x ×dx
p Y
y
×dy
p Z
z
×dz
p dx p dy p dz ( Xdx Ydy Zdz)
x y z
p p(x, y, z) dp p dx p dy p dz x y z
通常作用在流体上的单位 质量力是已知的,利用上 式便可求得流体静压强的 分布规律。
yD
sin Iox
P
sin Iox hc A
sin Iox yc sin A
I ox yc A
引入平行移轴公式 Iox Ic Ayc2
yD
I ox yc A
Ic yc2 A yc A
yc
Ic yc A
由此可知,压力中心D必位于受压面形心c之下。
说明:
工程中常见的受压平面多具有轴对称性(对称轴与
当流体存在真空时,工程习惯上用真空度(负压)表示。
真空
pv pabs pa
道 路
三者关系
当p>pa 时,绝对压强=表压强+当地大气压 当p<pa 时,绝对压强=当地大气压-真空度
p 表压强
p>pa 真空度
当地大气压 pa
绝对压强
p<pa
绝对真空 p=0
流体静力学
a. 测压管:利用液柱高度表达压强的原理制成的简
单的测量装置。
pA hA
pAlsin
b. U型水银测压计
p 0 水 h m 银 水 h 1 h 2
pAp0水 h1
c. 组合水银测压计
p
h1 a
空 气
h2
a h3
b
p水银 gh3 水银 gh2
gh1
b
水银
d. U型管压差计
pBpA水银 h
方程: d p(X dYxd Z y)dz
令 dp=0 得
Xd Y xd Z yd 0 z
等压面性质:
(1)等压面就是等势面。 dpdU
(2)作用在静止流体中任一点的质量力必然垂直于 通过该点的等压面。
证明:沿等压面移动无穷小距离dL=idx+jdy+kdz, 则单位质量 力做的功应为Xdx+Ydy+Zdz,显然它等于零,所以,质量 力与等压面相垂直。
对于不可压缩流体,γ=const,积分(2)式得:
pzC
(3)
代入边界条件:z=0时,p=p0
则 C= p0
pp0 z
令 -z=h 则
pp0 h
(4) (5)
——静力学基本方程
适用条件:静止、不可压缩流体。
二、静力学基本方程式的意义 由(3)式: z p C (6)
1、几何意义
z 位置水头
p 压强水头 该点压强的液柱高度
Ah1h2Bh2h
e. 组合式U形管压差计
p 1 p 2H h g h 2 h 1
2、金属测压计 原理:弹性元件在压强作用下产生弹性变形。 分类:弹簧管式(a)、薄膜式(b)压力表。
3.电测式压力计
流体力学流体静力学
Fy
Fz
1 dxdydz Y 6
1 dxdydz Z 6
11
工程流体力学
第三章、流体静力学
3、导出关系式
• 因流体微团平衡,据平衡条件,其各方向作用力之和均为 零。则在x方向上,有: Px Pn cos(n, x) Fx 0 • 将上面各表面力、质量力表达式代入后得
二、流体静平衡微分方程的积分
1、利用Euler平衡微分方程式求解静止流体中静压 强的分布,可将Euler方程分别乘以dx,dy,dz, 然后相加,得:
p p p dx dy dz ( Xdx Ydy Zdz) x y z 因为 p=p(x,y,z),所以上式等号左边 为压强p的全微分dp,则上式可写为:
6
工程流体力学
第三章、流体静力学
由此特性可知,静止流体对固体壁 面的压强恒垂直指向壁面。
7
工程流体力学
第三章、流体静力学
2.静止流体中任意一点的各个方向的压力值都 相等。(大小性)
证明思路: 1、选取研究对象(微元体) 2、受力分析(质量力与表面力) 3、导出关系式 4、得出结论
8
px
工程流体力学
(2)质量力 微元体质量:M=ρdxdydz 设作用在单位质量流体的质量力在x方向上的分量为X。
则质量力在x方向的合力为:X· ρdxdydz
3、导出关系式:
则:
对微元体应用平衡条件 F 0
p X dxdydz dxdydz 0 x
19
工程流体力学
第三章、流体静力学
4、结论:
第三章、流体静力学
以x轴方向为例,如图所示: 1、取研究对象 微元体:无穷小平行六面体, dx、dy、dz → 0 微元体中心:A(x, y, z) 边界面中心点: A1, A2 A1点坐标: A1(x-dx/2,y,z) A2点坐标: A2(x+dx/2,y,z)
流体力学(流体静力学)
f (x)
f (x0 )
f (x0 )(!
)
(
x
x0
)
2
f
(n) (x0 n!
)
(x
x0
)n
按泰勒级数展开,把M、N点旳静压强写成
p 1
1 p
pM
p [(x dx) x] x 2
p 2
dx x
p 1
1 p
pN
p
[(x x
dx) x] 2
p
2
dx x
其中 p 为压力在x方向旳变化率。因为微元体旳面积取得足够小,
p1 p2
证明:从静止状态旳流体中引入直角坐标系中二维流体微元来
阐明。
设 y 方向宽度为1。ds 即表达任意方向微元表面。
分析 z 方向旳力平衡
表面力:
p1dscosθ=p1dx和p2dx两个力 二维流体微元旳体积:
z
dV 1 dxdz 2
质量力:
p1ds
ds dz x
θ dx
p3dz
y
Fz
1 2
dp =ρ1dU dp =ρ2dU 因为ρ1≠ρ2 且都不等于零,所以只有当dp和dU均为零时方程 式才干成立。所以其分界面必为等压面或等势面。
§2-4 流体静力学基本方程
重力作用下压力分布 相对平衡液体旳压力分布
§2—4 流体静力学基本方程
一、重力作用下压强分布
如图所示为一开口容器,其中盛有密度为ρ旳静止旳均匀液体 ,液体所受旳质量力只有重力,又ρ=常数,重度γ=ρg也为常数。 单位质量力在各坐标轴上旳分量为
(1)
Z 1 p 0
z
上式称为流体平衡微分方程式,它是 Euler在1755年首先提出 旳,故又称欧拉平衡方程式。它表达流体在质量力和表面力作用下 旳平衡条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 流体静力学
主讲:肖东
石油工程学院
05:01
§2.1 流体静压强及其特性
一、流体的静压强
流体处于绝对静止或相对静止时的压强
p = lim
∆A
∆P dP = ∆A dA
05:01
二、流体静压强的两个特性
1. 方向性
流体静压力的方向总是沿着作用面的内法线方向; 流体静压力的方向总是沿着作用面的内法线方向;
o y
αr
y x ω2y ω2r
⇓
zs =
ω 2r 2
2g
x
ω2x
05:01
二、等角速旋转容器中液体的相对平衡
2. 静压强分布规律
dp = ρ (ω 2 xdx + ω 2 ydy − gdz )
z ω
⇓ 积分
p = ρ(
ω 2x2
2
+
ω 2 y2
2
− gz ) + C
p = ρg (
ω 2r 2
05:01
4、相对压强、真空压强 相对压强、
05:01
(3)计量单位 (3)计量单位
以应力单位表示: 以应力单位表示:Pa(N/m2) 以大气压表示: 以大气压表示:atm , 1个标准大气压 个标准大气压atm(101.325kPa),工程上记 个标准大气压 ,工程上记at(98 kPa) 以液柱高度表示: 以液柱高度表示: h = P
05:01
五、测压计
1、液柱式测压计
1)测压管
测压管是一根直径均匀的玻璃管, 测压管是一根直径均匀的玻璃管,直接连在需要测量压强的 容器上,以流体静力学基本方程式为理论依据。 容器上,以流体静力学基本方程式为理论依据。 表压 真空 优点: 优点:结构简单
A
pe = ρgh
pv = ρgh
p0
pa
pv
物理意义: 物理意义:流体 静压强的增量决 定于质量力
dp =
∂p ∂p ∂p dx + dy + dz = ρ( Xdx +Ydy + Zdz) ∂x ∂y ∂z
等压面:流体中压强相等的各点组成的平面或曲面。 如水平面。
dp = ρ ( Xdx + Ydy + Zdz ) = 0
05:01
等压面的特性: 等压面的特性: 在平衡流体中,过任一点的等压面必与该点所受的质量力垂直。 1、在平衡流体中,过任一点的等压面必与该点所受的质量力垂直。 证明: 证明:
B
⇓
p1 = p2
A
h2
pA + ρg(h + h2 ) = pB + ρg(h + ∆z) + ρ2 gh2 pA − pB = ρg(∆z − h2 ) + ρ2 gh2 = ρg∆z + ρ2 g(h2 − h)
ρ
h
△z
ρ
1
2
ρ2
05:01
二、金属测压计
三、压力传感器 压电式压力传感器 压阻式压力传感器 应变式压力传感器
原理:对于不可压缩的静止流体, 等压面为平面 要求:容器连通、不可压缩、静止 流体、互不相混的同一种液体。
3)U形管差压计
测量同一容器两个不同位置的压差或不同容器的压强差。 测量同一容器两个不同位置的压差或不同容器的压强差。
p1 = pA + ρg(h + h2 ) p2 = pB + ρg(h + ∆z) + ρ2 gh2
h
h pa
缺点: 缺点:只能测量较小的压强
05:01
2)U形管测压计
pa
p1 = p + ρgh 1
p2 = pa + ρ2 gh2
h2
ρ
p
A
h1
1 ρ2
2
⇓
p1 = p2
p = pa + ρ2 gh2 − ρgh 1 pe = ρ2 gh2 − ρgh 1
优点: 优点:可以测量较大的压强
05:01
y p- ∂p/∂x•dx/2 dy b o
f,p,ρ
a dx y z c dz
p+ ∂p/∂x•dx/2
上式即为流体平衡微分方程(欧拉平衡微分方程) 上式即为流体平衡微分方程(欧拉平衡微分方程) 流体平衡微分方程 z
x
y
物理意义: 物理意义: 在静止流体中,单位质量流体上的质量力与静压强的合力相平衡。 在静止流体中,单位质量流体上的质量力与静压强的合力相平衡。 适用范围: 适用范围: 所有静止流体或相对静止的流体。 所有静止流体或相对静止的流体。
γ
(mH2O,mmHg) 1at为10 mH2O=735 mmHg 为 ,
05:01
4、静止液体的压强分布图
作用:形象直观地表示物体表面的静止液体的压强分布情况 方法:将表面压强用箭头表示,箭头与物体表面垂直,长度与压强大小 成比例,箭头的方向代表压强的作用方向,箭头落在物体表面,就构成 了压强分布图。 注意:由于物体的壁面两边都受到大气压力作用,相互 抵消,因此一般只需画出相对压强的分布。
f = f xi + f y j + f z k ds = dxi + dyj + dzk
f ⋅ ds = fxdx + f ydy + fzdz = 0
z
f
θ
s
x
得证。 得证。
f ⋅ ds = 0
y
2、互不相混的两种流体的分界面一定是等压面。 互不相混的两种流体的分界面一定是等压面。 3、质量力只有重力的静止流体的等压面必是水平面。 质量力只有重力的静止流体的等压面必是水平面。
05:01
§2.4 液体的相对平衡
一、等加速水平运动容器中液体的相对平衡
容器以等加速度a 容器以等加速度a向右作水平直线运动
05:01
§2.4 液体的相对平衡
一、等加速水平运动容器中液体的相对平衡
容器以等加速度a 容器以等加速度a向右作水平直线运动
z
h a m α f g
zs z
a o p α
0
∂p ρXdxdydz − dxdydz = 0 ∂x
1 ∂p X− =0 ρ ∂x
z
f,p,ρ
a dx y z c dz
p+ ∂p/∂x•dx/2
x
x
05:01
同理,考虑y 同理,考虑y,z方向,可得: 方向,可得:
X − Y − Z − ∂ p = 0 ρ ∂ x 1 ∂ p = 0 ρ ∂ y 1 ∂ p = 0 ρ ∂ z 1
y
f, p,ρ
dy o z x
a dz dx y z y
05:01
§2.2 流体平衡微分方程式
以x方向为例,列力平衡方程式 方向为例, 表面力: 表面力: 质量力: 质量力:
据∑ Fx = 0,
∂p pb dydz − pc dydz = − dxdydz ∂x
X ⋅ ρdxdydz
y p- ∂p/∂x•dx/2 dy b o
Y = ω 2 r sin α = ω 2 y Z = −g
z ω
1.等压面方程 1.等压面方程
dp = ω 2 xdx + ω 2 ydy − gdz = 0
⇓ 积分
ω 2 x2
2 +
p0
o
m
h z
zs y
ω 2 y2
2
− gz = C
ω 2r 2
2
− gz = C
等压面是一簇绕z轴的旋转抛物面。 等压面是一簇绕z轴的旋转抛物面。 自由液面: 自由液面: x=0 z=0 C=0
z
z=c
水平面
zs h a m α f g z
a o p0 α x
z=−
a x+c g
斜面
(2)压强分布
绝对静止: 绝对静止: 相对静止: 相对静止:
p = p0 + ρgh
p = p0 + ρg ( z s − z ) = p0 + ρgh
h-任一点距离自由液面的淹深 -
05:01
二、等角速旋转容器中液体的相对平衡
o
p p z1 + 1 = z2 + 2 ρg ρg
基准面
x
05:01
2.物理意义 2.物理意义
z+ p =C ρg
总 势 能
3.几何意义 3.几何意义
p z+ =C ρg
位 置 水 头 压 强 水 头 静 水 头
z
位 压 势 强 能 势 能
p0
h
hp p
a
在重力作用 下的连续均质不 可压所静止流体 中,各点的单位 重力流体的总势 能保持不变。 能保持不变。
流体静压力与作用面在空间的方位无关,仅是该点坐标的函数。 流体静压力与作用面在空间的方位无关,仅是该点坐标的函数。
1 1 p x ⋅ dydz − pn ⋅ dA cos(n, x) + X ⋅ ρ dxdydz = 0 2 6
1 p x − p n + X ⋅ ρ dx = 0 3
1 p x − p n + X ⋅ ρ dx = 0 3 1 p y − p n + Y ⋅ ρ dy = 0 3 1 p z − p n + Z ⋅ ρ dz = 0 3
略去无穷小项
⇓
y D
px
pz
pn
dz
B z
dy o dx
⇒
C x
py
p x = p y = p z = pn
⇓
p = p ( x, y , z )