大学生数学建模竞赛论文模板(选用)
大学数学建模论文范文3000字(汇总5篇)

大学数学建模论文范文3000字第1篇一、小学数学建模_数学建模_已经越来越被广大教师所接受和采用,所谓的_数学建模_思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为_数学建模_,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。
叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。
二、小学数学建模的定位1.定位于儿童的生活经验儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。
_数学建模_要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。
同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的.挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。
2.定位于儿童的思维方式小学生的特点是年龄小,思维简单。
因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。
实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。
我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使_数量关系_与数学原型_一乘两除_结合起来,并且使学生利用抽象与类比的思维方法完成了_数量关系_的_意义建模_,从而创建了完善的认知体系。
全国大学生数学建模竞赛优秀论文

5.1 问题 1 的分析与求解 5.1.1 绝对瓦斯涌出量与相对瓦斯涌出量的计算公式
由问题的分析,鉴定矿井是属于“低瓦斯矿井”还是“高瓦斯矿井”,需算出该矿的绝对瓦斯量 与相对瓦斯涌出量值,与分类标准值进行鉴别。由绝对瓦斯涌出量与相对瓦斯涌出量的定义,结合 相关的符号约定,可知
风量为风速在 1 分钟传播的距离乘以相应巷道横断面面积,公式为:
得出最佳总通风量为1415.062m3 / min ,采煤工作面 的风量为 476.1359m3 / min ,采煤工作面
的风量为 548.5541m3 / min ,局部通风机的额定风量 331.8158m3 / min 。
同时,本文还作了误差分析,对模型进行了评价及推广,并在做出相应简化假设情况下,对模 型作了进一步的改进。
需根据《煤矿安全规程》第一百三十三条的分类标准,鉴别该矿是属于“低瓦斯矿井”还是“高 瓦斯矿井”。由分类标准可知,须考察出该矿的相对瓦斯涌出量和绝对瓦斯涌出量的值,与其分类标 准值进行鉴别。由附表 2 所给监测值,可根据绝对瓦斯涌出量与相对瓦斯涌出量的计算公式,算出 各监测点的绝对瓦斯涌出量与相对瓦斯涌出量。如果经考察出的监测点的相对瓦斯量有小于或等于
二、问题的分析
2.1 背景的分析 煤矿安全生产是目前社会重点关注的热点问题之一,尤其是在能源紧张,对煤碳的需求量不断
增加的情况下,煤矿的安全生产问题更是值得我们关注,这也是建设平安和谐社会的重要组成部分。 根据统计资料,可知大部分煤矿事故的罪魁祸首都是瓦斯或煤尘爆炸。因此,矿井下的瓦斯和煤尘 对煤矿的安全生产构成了重大威胁,做好井下瓦斯和煤尘的监测与控制是实现煤矿安全生产的关键 环节。 2.2 基本预备知识 2.2.1 《煤矿安全规程》第一百三十三条中,矿井瓦斯等级根据矿井相对瓦斯涌出量和矿井绝对瓦 斯涌出量划分为:
数学建模经典论文五篇

1、 血样的分组检验在一个很大的人群中通过血样检验普查某种疾病,假定血样为阳性的先验概率为p(通常p 很小).为减少检验次数,将人群分组,一组人的血样混合在一起化验.当某组的混合血样呈阴性时,即可不经检验就判定该组每个人的血样都为阴性;而当某组的混合血样呈阳性时,则可判定该组至少有一人血样为阳性,于是需要对这组的每个人再作检验.(1)、当p 固定时(如0.01%,…,0.1%,…,1%)如何分组,即多少人一组,可使平均总检验次数最少,与不分组的情况比较. (2)、当p 多大时不应分组检验.(3)、当p 固定时如何进行二次分组(即把混合血样呈阳性的组再分成小组检验,重复一次分组时的程序).模型假设与符号约定1 血样检查到为阳性的则患有某种疾病,血样呈阴性时的情况为正常2 血样检验时仅会出现阴性、阳性两种情况,除此之外无其它情况出现,检验血样的药剂灵敏度很高,不会因为血样组数的增大而受影响. 3 阳性血样与阳性血样混合也为阳性 4 阳性血样与阴性血样混合也为阳性 5 阴性血样与阴性血样混合为阴性 n 人群总数 p 先验概率血样阴性的概率q=1-p血样检验为阳性(患有某种疾病)的人数为:z=np 发生概率:x i P i ,,2,1, = 检查次数:x i R i ,,2,1, = 平均总检验次数:∑==xi i i R P N 1解1设分x 组,每组k 人(n 很大,x 能整除n,k=n/x ),混合血样检验x 次.阳性组的概率为k q p -=11,分组时是随机的,而且每个组的血样为阳性的机率是均等的,阳性组数的平均值为1xp ,这些组的成员需逐一检验,平均次数为1kxp ,所以平均检验次数1kxp x N +=,一个人的平均检验次数为N/n,记作:k k p kq k k E )1(1111)(--+=-+=(1) 问题是给定p 求k 使E(k)最小. p 很小时利用kp p k -≈-1)1(可得kp kk E +=1)( (2) 显然2/1-=p k 时E(k)最小.因为K 需为整数,所以应取][2/1-=p k 和1][2/1+=-p k ,2当E (k )>1时,不应分组,即:1)1(11>--+k p k,用数学软件求解得k k p /11-->检查k=2,3,可知当p>0.307不应分组.3将第1次检验的每个阳性组再分y 小组,每小组m 人(y 整除k,m=k/y ).因为第1次阳性组的平均值为1xp ,所以第2次需分小组平均检验1yxp 次,而阳性小组的概率为m q p -=12(为计算2p 简单起见,将第1次所有阳性组合在一起分小组),阳性小组总数的平均值为21yp xp ,这些小组需每人检验,平均检验次数为21yp mxp ,所以平均总检验次数211yp mxp yxp x N ++=,一个人的平均检验次数为N/n,记作(注意:n=kx=myx)p q q q mk p p m p k m k E m k -=-+-+=++=1),1()1(111),(211 (3) 问题是给定p 求k,m 使E (k,m )最小.P 很小时(3)式可简化为21),(kmp mkpk m k E ++≈ (4)对(4)分别对k,m 求导并令其等于零,得方程组:⎪⎪⎩⎪⎪⎨⎧=+-=++-0012222kp m kp mp mp k 舍去负数解可得:2/14/3,21--==p m p k (5)且要求k,m,k/m 均为整数.经在(5)的结果附近计算,比较E(k,m),得到k,m 的最与表1比较可知,二次分组的效果E(k,m)比一次分组的效果E(k)更好.2、铅球掷远问题铅球掷远比赛要求运动员在直径2.135m 的圆内将重7.257kg 的铅球投掷在 45的扇形区域内,建立模型讨论以下问题1.以出手速度、出手角度、出手高度 为参数,建立铅球掷远的数学模型;2.考虑运动员推铅球时用力展臂的动 作,改进以上模型.3.在此基础上,给定出手高度,对于 不同的出手速度,确定最佳出手角度 问题1模型的假设与符号约定1 忽略空气阻力对铅球运动的影响.2 出手速度与出手角度是相互独立的.3 不考虑铅球脱手前的整个阶段的运动状态. v 铅球的出手速度 θ 铅球的出手角度 h 铅球的出手高度 t 铅球的运动时间 L 铅球投掷的距离g 地球的重力加速度(2/8.9s m g=)铅球出手后,由于是在一个竖直平面上运动.我们,以铅球出手点的铅垂方向为y 轴,以y 轴与地面的交点到铅球落地点方向为x 轴构造平面直角坐标系.这样,铅球脱手后的运动路径可用平面直角坐标系表示,如图.因为,铅球出手后,只受重力作用(假设中忽略空气阻力的影响),所以,在x 轴上的加速度0=,在y 轴上的加速度g a y -=.如此,从解析几何角度上,以时间 t 为参数,易求得铅球的运动方程:⎪⎩⎪⎨⎧+-==h gt t v y t v x 221sin cos θθ 对方程组消去参数t ,得h x x v gy ++-=)(tan cos 2222θθ……………………………………………(1) 当铅球落地时,即是0=y ,代入方程(1)解出x 的值v ggh gh v g v x θθθθθ2222sin 22cos sin cos sin 2-++=对以上式子化简后得到铅球的掷远模型θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+=………………………………(2) 问题2我们观察以上两个阶段,铅球从A 点运动到B 点,其运动状态是匀加速直线运动的,加速距离是2L 段.且出手高度与手臂长及出手角度是有一定的联系,进而合理地细化各个因素对掷远成绩的约束,改进模型Ⅰ.在投掷角度为上进行受力分析,如图(3)由牛顿第二定 律可得,ma mg F =-θsin 再由上式可得,θsin g mFa -=………………………………………(3) 又,22022aL v v =-,即22022aL v v += (4)将(3)代入(4)可得,θsin 2222202g L m FL v v -⎪⎭⎫⎝⎛+= ………………………(5) (5)式进一步说明了,出手速度v 与出手角度θ有关,随着θ的增加而减小.模型Ⅰ假设出手速度与出手角度相互独立是不合理的. 又根据图(2),有θsin 1'L h h += (6)由模型Ⅰ,同理可以得到铅球脱手后运动的距离θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+= 将 (4)、(5)、(6)式代入上式整理,得到铅球运动的距离()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛++++-⎪⎭⎫ ⎝⎛+=θθθθθ22220'2220sin sin 22sin 2112sin 2sin 22g L m FL v h g g g L m FL v L 对上式进行化简:将m=7.257kg,2/8.9s m g = 代入上式,再令m h 60.1'= (我国铅球运动员的平均肩高),代入上式进一步化简得,()⎪⎪⎭⎫ ⎝⎛-++-++⨯θθθθθ2222232222sin sin 6.192756.06.19sin 6.19sin 2756.0sin 1L FL v L FL v ………………(7) 所以,运动员投掷的总成绩θcos 1L L S +=问题3给定出手高度,对于不同的出手速度,要确定最佳的出手角度.显然,是求极值的问题,根据微积分的知识,我们要先求出驻点,首先,模型一中L 对θ求导得,g hv g v g hv v g v d dL θθθθθθθθ22224242cos 82sin sin cos 42cos 2sin 2cos +-+=令0=θd dL,化简后为, 0sin cos 42cos 2sin cos 82sin 2cos 2422242=-++θθθθθθθhgv v hgv v v根据倍角与半角的三角关系,将以上方程转化成关于θ2cos 的方程,然后得,hv g g vgh gh222cos +=+=θ (3)()θθ2sin sin 6.192756.051.0222L FL v L -+=从(3)式可以看出,给定铅球的出手高度h ,出手速度v 变大,相应的最佳出手角度θ也随之变大.对(3)式进行分析,由于0,0>>θh ,所以02cos >θ,则40πθ≤<.所以,最佳出手角度为)arccos(212vgh gh +=θ θ是以π2为周期变化的,当且仅当N k k ∈⎪⎭⎫⎝⎛∈±,4,02ππθ时,πθk 2±为最佳出手角度.特别地,当h=0时(即出手点与落地点在同一高度),最佳出手角度︒=45α3、零件的参数设计粒子分离器某参数(记作y )由7个零件的参数(记作x x 12,,…x 7)决定,经验公式为:y x x x x x x x x x x x =⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪⨯--⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⎛⎝ ⎫⎭⎪-17442126210361532108542056324211667......y 的目标值(记作y 0)为1.50。
数学建模竞赛论文模板

地震预报方法的评价模型摘要内容:简要论述本文所要解决的问题及意义,解决问题的思路与方法、主要结果(数值结果或结论),建模的创新之处与特色等。
关键词:3-5个。
1、解决什么问题?有什么意义?(要简明)2、对每一问题,用什么方法?(要具体,并写出主要模型)3、得到什么结果?(要具体,列表)4、有什么特色与创新?(要简明)注1:全国竞赛组委会已加大对摘要在评奖中的比重。
注2:摘要通常不超过一页,且单独编页.注3:摘要要能吸引评委的眼球,能表达全文的概貌、要点、特色,要回答题目要求的全部问题。
关键词:3-5个一、问题重述问题重述部分是要保持全文的完整性,要求用自己的语言将赛题重述一遍,可以简单地有删有增地重述,注意:拟解决的问题不得省略.●甲组参赛队从A、B题中任选一题,乙组参赛队从C、D题中任选一题。
●论文(答卷)用白色A4纸,上下左右各留出2.5厘米的页边距。
●论文第一页为承诺书,具体内容和格式见本规范第二页。
●论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。
●论文题目和摘要写在论文第三页上,从第四页开始是论文正文。
●论文从第四页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
●论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。
●论文题目用3号黑体字、一级标题用4号黑体字,并居中。
论文中其他汉字一律采用小4号黑色宋体字,行距用单倍行距。
●提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。
全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。
●引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。
正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。
大学生数学建模论文(专业推荐范文10篇)

大学生数学建模是一项基础性得学科竞赛,可以交流更多得经验,学习更多得知识,所以大学生数学建模很受学者们得欢迎,本篇文章就向大家介绍一些大学生数学建模论文,供给大家作为一个参考。
大学生数学建模论文专业推荐范文10篇之第一篇:数学建模对大学生综合素质影响得调查研究---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。
---------------------------------------------------------------------------------------------------------------------摘要:文章通过问卷网以调查问卷得形式和线下访谈得方法 ,对笔者所在学校参加过数学建模竞赛得同学和未参加过数学建模竞赛得同学对数学建模对自身综合素质得影响进行了调查研究。
调查表明,大部分学生都能认识到数学建模学习和竞赛对其自身综合素质得提升是有帮助得,但是大多数学生对数学建模得意义认识还不到位。
文章对调查结果进行分析,结合笔者得切身体会对地方高校数学建模课程教学及学生参加竞赛提出某些建议。
关键词:数学建模; 大学生; 综合素质; 研究;一、前言随着社会得不断进步和发展,大学生想要在激烈得人才竞争中脱颖而出,就必须要不断提高自己得综合素质,而良好得综合素质不仅应具有坚实得理论基础,扎实得专业知识,还应该具有较强得创新能力、与他人合作得能力、较强得语言表达能力、以及稳定得心理状态。
许多科学家断言未来科学技术得竞争是数学技术得竞争,这无疑对数学能力提出了更高得要求,不可否认数学建模课程教学及建模竞赛是提升大学生数学能力得有效途径。
全国大学生数学建模竞赛论文范例

全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的研究,建立了相应的数学模型,并运用具体方法进行求解和分析。
通过对结果的讨论,得出了具有一定实际意义的结论和建议。
一、问题重述详细阐述所给定的问题,明确问题的背景、条件和要求。
二、问题分析(一)对问题的初步理解对问题进行初步的思考和分析,明确问题的关键所在和需要解决的核心问题。
(二)可能用到的方法和模型根据问题的特点,探讨可能适用的数学方法和模型,如线性规划、微分方程、概率统计等。
三、模型假设(一)假设的合理性说明所做假设的依据和合理性,确保假设不会对问题的解决产生过大的偏差。
(二)具体假设内容列举出主要的假设条件,如忽略某些次要因素、变量之间的关系等。
四、符号说明对文中使用的主要符号进行清晰的定义和说明,以便读者理解。
五、模型建立与求解(一)模型的建立详细阐述模型的构建过程,包括数学公式的推导和逻辑关系的建立。
(二)模型的求解运用适当的数学软件或方法对模型进行求解,给出求解的步骤和结果。
六、结果分析(一)结果的合理性对求解得到的结果进行合理性分析,判断其是否符合实际情况。
(二)结果的敏感性分析探讨模型中某些参数或条件的变化对结果的影响。
七、模型的评价与改进(一)模型的优点总结模型的优点,如准确性、简洁性、实用性等。
(二)模型的不足分析模型存在的不足之处,如局限性、假设的不合理性等。
(三)改进的方向针对模型的不足,提出可能的改进方向和方法。
八、结论与建议(一)结论总结问题的解决结果,明确回答问题的核心要点。
(二)建议根据结论,提出具有实际意义的建议和措施,为相关决策提供参考。
以下是一个具体的示例,假设我们要解决一个关于交通流量优化的问题。
问题重述在某城市的一个交通路口,每天早晚高峰时段都会出现严重的交通拥堵。
现需要建立数学模型,优化信号灯的设置时间,以提高交通流量,减少拥堵。
问题分析首先,我们需要收集该路口的交通流量数据,包括不同时间段各个方向的车辆数量。
大学生数学建模论文范文
大学生数学建模论文范文数学建模作为一种数学学习方式,是培养学生应用数学的意识,培养数学素养的一种形式。
下文是店铺为大家搜集整理的关于大学生数学建模论文范文的内容,欢迎大家阅读参考!大学生数学建模论文范文篇1浅谈高职数学建模实践摘要:本文简述了数学建模及其发展历史,探讨了高职数学建模活动设计和实施情况,并分三个方面进行了有效实践。
关键词:高职数学教学数学建模数学应用随着教育改革的深入进行和“数学应用意识”的加强,知识经济社会对高职数学提出了新的要求。
高职数学教学应以运用数学解决实际问题为目标,以数学建模作为改革的切入点,让学生在建模过程中学会用数学思维去认识和思考自己所生活的环境与社会[1],培养学生的创新思维能力和综合素质。
一、数学模型、数学建模和数学建模发展沿革[2]数学模型还没有统一准确的定义,一般来说,“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。
”具体来说,对于一个现实世界的一个特定对象,为了一个特定目的,根据其特有的内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。
涉及实际问题的数学模型,还具有抽象性、准确性、非预制性和演绎性等特性。
数学模型按模型的表现特性和所描述的不同的现象和过程,大致有四种:确定性数学模型、随机性数学模型、变突性数学模型和模糊性数学模型。
当然,由于现实世界关系的复杂性和多样性,有些数学模型也可能是兼有几类特性的混合型数学模型。
数学建模即为建立数学模型的过程。
建模即是对研究对象进行科学的分析、简化、抽象的过程。
运用数学建模解决实际问题的一般步骤是:模型准备—模型假设—模型构成—模型求解—模型分析—模型检验—模型应用。
早在上世纪70年代,国外不少发达国家的有识之士已经开始研究开展数学建模活动,各种建模案例相继出现。
大约在上世纪70年代末80年代初,英国著名的剑桥大学专门为研究生开设了数学建模,并创建了牛津大学与工业界研究合作的“OSGI”。
数学建模论文(精选4篇)
数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。
数学建模论文(7篇)
数学建模论文(7篇)在学习、工作中,大家总少不了接触论文吧,论文可以推广经验,交流认识。
如何写一篇有思想、有文采的论文呢?为了帮助大家更好的写作数学建模论文模板,山草香整理分享了7篇数学建模论文。
计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。
数学建模所解决的问题不止现实的,还包括对未来的一种预见。
数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。
数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。
1.数学建模对教学过程的作用1.1数学建模引进大学数学教学的必要。
教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。
以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。
因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。
1.2数学建模在大学数学教学中的运用。
大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。
再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。
不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。
2.数学建模对当代大学生的作用2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。
数学建模竞赛优秀大学生论文
数学建模竞赛优秀大学生论文随着科学技术的高速发展,数学的应用价值越来越得到众人的重视,因此数学建模也被逐渐的引起重视了。
下面是店铺为大家整理的数学建模优秀论文,供大家参考。
数学建模优秀论文篇一:《数学建模用于生物医学论文》1数学建模的过程1.1模型准备首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。
1.2模型假设在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。
1.3模型建立在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。
原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。
1.4模型求解建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。
1.5模型分析、检验、应用模型的结果应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。
把求得的数学结果返回到实际问题中去,检验其合理性。
如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。
总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。
2数学建模在生物医学中的应用2.1DNA序列分类模型DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。
因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。
DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。
聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。
在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(数学建模论文书写基本框架,仅供参考)题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下)(第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。
根据这些特点我们对问题1用。
的方法解决;对问题2用。
的方法解决;对问题3用。
的方法解决。
(第2段)对于问题1我们用。
数学中的。
首先建立了。
模型I。
在对。
模型改进的基础上建立了。
模型II。
对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为。
,然后借助于。
数学算法和。
软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3组数据(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。
(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格)(第3段)对于问题2我们用。
(第4段)对于问题3我们用。
如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软件、结果、亮点详细说明。
并且一定要在摘要对两个或两个以上模型进行比较,优势较大的放后面,这两个(模型)一定要有具体结果。
(第5段)如果在……条件下,模型可以进行适当修改,这种条件的改变可能来自你的一种猜想或建议。
要注意合理性。
此推广模型可以不深入研究,也可以没有具体结果。
关键词:本文使用到的模型名称、方法名称、特别是亮点一定要在关键字里出现,5~7个较合适。
注:字数700~1000之间;摘要中必须将具体方法、结果写出来;摘要写满几乎一页,不要超过一页。
摘要是重中之重,必须严格执行!。
页码:1(底居中)目录可选:目录(4号黑体)(以下小4号)第一部分问题重述…………………………………………………………() 第二部分问题分析…………………………………………………………() 第三部分模型的假设…………………………………………………………() 第四部分定义与符号说明…………………………………………………() 第五部分模型的建立与求解………………………………………………() 1.问题1的模型………………………………………………………………() 模型I(…(随机规划)模型)……………………………………………() 模型II(………(数学)的模型)………………………………………….() ………………………………………………………………………………….2.问题2的模型…………………………………………………………………() 模型I(………数学的模型)………………………………………………()模型II(………数学的模型)…………………………………………….() ……………………………………………………………………………….第六部分对模型的评价………………………………………………………() 第七部分参考文献……………………………………………………………() 第八部分附录…………………………………………………………………………()一、问题重述(第二页起黑四号)在保持原题主体思想不变下,可以自己组织词句对问题进行描述,主要数据可以直接复制,对所提出的问题部分基本原样复制。
篇幅建议不要超过一页。
大部分文字提炼自原题。
二、问题分析主要是表达对题目的理解,特别是对附件的数据进行必要分析、描述(一般都有数据附件),这是需要提到分析数据的方法、理由。
如果有多个小问题,可以对每个小问题进行分别分析。
(假设有3个问题)(一)问题1的分析对问题1研究的意义的分析。
问题1属于。
数学问题,对于解决此类问题一般数学方法的分析。
对附件中所给数据特点的分析。
对问题1所要求的结果进行分析。
由于以上原因,我们可以将首先建立一个。
的数学模型I,然后将建立一个。
的模型II,。
对结果分别进行预测,并将结果进行比较.(二)问题2的分析对问题2研究的意义的分析。
问题2属于。
数学问题,对于解决此类问题一般数学方法的分析。
对附件中所给数据特点的分析。
对问题2所要求的结果进行分析。
由于以上原因,我们可以将首先建立一个。
的数学模型I,然后将建立一个。
的模型II,。
对结果分别进行预测,并将结果进行比较.。
三、模型假设(4号黑体)(以下小4号)1.假设题目所给的数据真实可靠;2.3.4.5.6.。
注意:假设对整篇文章具有指导性,有时决定问题的难易。
一定要注意假设的某种角度上的合理性,不能乱编,完全偏离事实或与题目要求相抵触。
注意罗列要工整。
四、定义与符号说明(4号黑体)(对文章中所用到的主要数学符号进行解释小4号)。
尽可能借鉴参考书上通常采用的符号,不宜自己乱定义符号,对于改进的一些模型,符号可以适当自己修正(下标、上标、参数等可以变,主符号最好与经典模型符号靠近)。
对文章自己创新的名词需要特别解释。
其他符号要进行说明,注意罗列要工整。
如“x~第i种疗法的第j项指标值”等,注意格式统一,不ij要出现零乱或前后不一致现象,关键是容易看懂。
五、模型的建立与求解(4号黑体)第一部分:准备工作(4号宋体)(一)数据的处理1、。
数据全部缺失,不予考虑。
2、对数据测试的特点,如,周期等进行分析。
3、。
数据残缺,根据数据挖掘等理论根据。
变化趋势进行补充。
4、对数据特点(后面将会用到的特征)进行提取。
(二)聚类分析(进行采样)用。
软件聚类分析和各个不同问题的需要,采得。
组采样,每组5-8个采样值。
将采样所对应的特征值进行列表或图示。
(二)预测的准备工作根据数据特点,对总体和个体的特点进行比较,以表格或图示方式显示。
第二部分:问题1的。
模型(4号宋体)(一)模型I(。
的模型)1.该种模型的一般数学表达式,意义,和式中各种参数的意义。
注明参考文献。
2.。
模型I的建立和求解(1)说明问题1适用用此模型来解决,并将模型进行改进以适应问题1。
(2)借助准备工作中的采样,(用拟合等方法)确定出模型中的参数。
(3)给出问题1的数学模型I表达式和图形表示式。
(4)给出误差分析的理论估计。
3.模型I的数值模拟将模型I进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。
对误差进行数据分析。
(二)模型II(。
的模型)1.该种模型的一般数学表达式,意义,和式中各种参数的意义。
注明参考文献。
2.。
模型II的建立和求解(1)说明问题1适用用此模型来解决,并将模型进行改进以适应问题1。
(2)借助准备工作中的采样,通过确定出模型中的参数。
(3)给出问题1的数学模型I表达式和图形表示式。
(4)给出误差分析的理论估计。
3.模型II的数值模拟将模型II进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。
对误差进行数据分析(三)模型III(。
的模型)。
(四)问题1的三种数学模型的比较。
对三种模型的优点和缺点结合原始数据和模拟预测数据进行比较。
给出各自得优点和缺点。
第三部分:问题2的。
个模型(4号宋体)。
第四部分:问题3的。
个模型(4号宋体)。
建议添加:六、模型的科学性分析在本文中,我们的思路、方法及数学模型的合理性主要体现在以下几个方面:(1)假设的合理性结果假设(3)—(6)是合理的,(2)思维的合理性本文我们按先后及由浅入深的逻辑关系展开了对问题求解的思路,思路的流程图如图所示:(3)方法的科学性本文针对不同问题,使用了各种可靠的科学的建模方法,其间我们运用了。
方法和理论等。
问题3有。
,所以用。
模型来求解该问题也是合理的、科学的。
(4)求解方法的的可靠性在对模型进行求解时,我们运用了。
模型,并得到了一致的结果,说明我们求解模型的方法是可靠的,结果是可信的。
七、模型评价与推广对本文中的模型给出比较客观的评价,必须实事求是,有根据,以便评卷人参考。
推广和优化,需要挖空心思,想出合理的、甚至可以合理改变题目给出的条件的、不一定可行但是具有一定想象空间的准理想的方法、模型。
(大胆、合理、心细。
反复推敲,这段500字半页左右的文字,可能决定生死存亡。
)七、参考文献(4号黑体)(书写格式如下)[1] 作者名1,作者名2.文章名字.杂志名字,年,卷(期):起始页码-结束页码[2] 作者名1,作者名2.书名.出版地:出版社,年,起始页码-结束页码[3] 作者名1,作者名2.文章名字. 年,卷(期):起始页码-结束页码,网页地址。
[4] 李传鹏,什么是中国标准书号,/mypage/page2.asp?pgid=51440&pid=46275,2006-9-18。
[5] 徐玖平、胡知能、李军,运筹学(II类),北京:科学出版社,2004。
[6]Ishizuka Y, AiyoshiE. Double penalty method for bilevel optimization problems. Annals of Operations Research, 24: 73- 88,1992。
注意:5篇以上!八、附件(4号黑体)(正文中不许出现程序,如果要附程序只能以附件形式给出)数学建模评分参考标准:摘要(很重要) 5分数据筛选 35分数学模型 35分数据模拟 15分总体感觉 10分特别注意:1、问题的结果要让评卷人好找到;显要位置---独立成段2、摘要中要将方法、结果讲清楚;3、可以有目录也可以不要目录;4、建模的整个过程要清楚,自圆其说,有结果、有创新;5、采样要足够多,每组不少于7个;6、模型要与数据结合,用数据验证过;7、如果数学方法选错,肯定失败;8、规范、整洁;总页数在35~45之间(含程序与附录)为宜。
9、必须有数学模型,同一问题的不同模型要比较;10、数据必须有分析和筛选;11、模型不能太复杂,若用多项式回归分析,次数以3次为好。