三角形的高中线与角平分线练习(答案)

合集下载

初一数学三角形的高中线与角平分线试题

初一数学三角形的高中线与角平分线试题

初一数学三角形的高中线与角平分线试题1.如图所示,AD、AE分别是△ABC的角平分线和高,若∠B=50°,∠C=70°,求∠DAC的度数.【答案】10°【解析】本题主要考查了三角形的内角和定理和角平分线的性质.解:∵∠B=50°,∠C=70°,∴∠BAC=60°,又∵AD是△ABC的角平分线∴∠BAD=.又∵AE是△ABC的高∴∠BAE=180°-∠B-∠AEB=40°,∴∠DAC=∠BAE-∠BAD=10°2.如图,四边形ABCD中,AE平分∠BAD,DE平分∠ADC,且∠ABC=80º,∠BCD=70º,则∠AED= .【答案】75º【解析】本题考查的是角平分线的性质由∠ABC、∠BCD根据四边形的内角和即可求得∠BAD∠ADC的度数,再由AE平分∠BAD,DE平分∠ADC,即可求得∠BAE∠ADE的度数,最后根据三角形的内角和即可求得结果。

∠ABC=80º,∠BCD=70º,∠BAD∠ADC∠ABC∠BCD,AE平分∠BAD,DE平分∠ADC,∠BAE∠ADE,∠AED∠BAE∠ADE3.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形【答案】C【解析】本题考查的是三角形的高的概念作出一个直角三角形的高线进行判断,就可以得到.一个三角形的三条高的交点恰是三角形的一个顶点,这个三角形是直角三角形.故选C.4.如图,在∆ABC中,AM是中线,AD是角平分线,AH是高,则有下列结论:(1)BM== ;(2)∠CAD=∠=______________;(3)∠=∠=90°.【答案】(1)CM,BC;(2)∠BAD,∠BAC;(3)∠AHB,∠AHC【解析】本题考查的是三角形的角平分线、中线、高(1)根据三角形的中线的定义知:中线平分该中线所在的线段;(2)根据三角形角平分线的定义知:角平分线平分该角;(3)根据三角形的高的定义知,高与垂足所在的直线垂直.(1)∵AM是△ABC的中线,;(2)∵AD是△ABC的角平分线,∴∠CAD∠BAD∠BAC;(3)∵AH是△ABC的高,∴AH⊥BC,∴∠AHB=∠AHC=90°;故答案是:(1)CM,BC;(2)∠BAD,∠BAC;(3)∠AHB,∠AHC。

八年级上册11.1三角形的中线、高线、角平分线同步测试(人教版含答案解析)

八年级上册11.1三角形的中线、高线、角平分线同步测试(人教版含答案解析)

八年级上册11.1三角形的中线、高线、角平分线同步测试(人教版含答案解析)三角形的中线、高线、角平分线时间:60分钟总分: 100 题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)下列说法错误的是( )A. 三角形三条高交于三角形内一点B. 三角形三条中线交于三角形内一点 C. 三角形三条角平分线交于三角形内一点 D. 三角形的中线、角平分线、高都是线段下面四个图形中,线段BD是△ABC的高的是( ) A. B. C. D. 如图,在△ABC中,若AD⊥BC,点E是BC 边上一点,且不与点B、C、D重合,则AD是几个三角形的高线( ) A. 4个 B. 5个 C. 6个 D. 8个如图,AD⊥BE于D,以AD为高的三角形有( )个. A. 3 B. 4 C. 5 D. 6如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E.F为AB上一点,CF⊥AD于H,下面判断正确的有( ) ①AD是△ABE 的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高;④AH是△ACF的角平分线和高.A. 1个B. 2个C. 3个D. 4个如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在( )A. 三条边的垂直平分线的交点B. 三个角的角平分线的交点C. 三角形三条高的交点 D. 三角形三条中线的交点如图,AD是△ABC的中线,DE是△ADC的高线,AB=3,AC=5,DE=2,那么点D到AB的距离是( )A. 10/3B. 5/3C. 6/5D. 2 已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是( ) A. 2<x<5 B. 4<x<10 C.3<x<7 D. 无法确定如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=〖60〗^∘,∠C=〖80〗^∘,则∠EOD的度数为( )A. 〖20〗^∘B. 〖30〗^∘C. 〖10〗^∘D. 〖15〗^∘一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在( ) A.三角形内部 B. 三角形的一边上 C. 三角形外部 D. 三角形的某个顶点上二、填空题(本大题共10小题,共30.0分)如图,DB是△ABC的高,AE是角平分线,∠BAE=〖26〗^∘,则∠BFE=______.平行四边形ABCD中,∠ABC的角平分线BE将边AD分成长度为5cm和6cm的两部分,则平行四边形ABCD的周长为______cm.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=〖50〗^∘,则∠BOC= ______ .如图所示,D是BC的中点,E是AC的中点,若S_(△ADE)=1,则S_(△ABC)= ______ .如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=______cm.在画三角形的三条重要线段(角平分线、中线和高线)时,不一定画在三角形内部的是______ .如图,已知△ABC中,∠B=〖65〗^∘,∠C=〖45〗^∘,AD是∠ABC的高线,AE是∠BAC的平分线,则∠DAE= ______ .如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A_1,得∠A_1;∠A_1 BC与∠A_1 CD的平分线相交于点A_2,得∠A_2;…;∠A_2011 BC与∠A_2011 CD的平分线相交于点A_2012,得∠A_2012,则∠A_2012= ______ .如图,在△ABC中,AB=13,AC=10,AD为中线,则△ABD与△ACD的周长之差= ______ .如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点G,AD与BF相交于点H,∠BAC=〖50〗^∘,∠C=〖70〗^∘,则∠AHB= ______ .三、计算题(本大题共4小题,共24.0分)如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=〖40〗^∘,∠C=〖60〗^∘,求∠DAE的度数.如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,求BC的长.如图所示:△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=〖60〗^∘,∠C=〖70〗^∘,求∠CAD,∠BOA的度数是多少?如图△ABC中,∠A=〖20〗^∘,CD是∠BCA的平分线,△CDA中,DE 是CA边上的高,又有∠EDA=∠CDB,求∠B的大小.四、解答题(本大题共2小题,共16.0分)如图,在△ABC中,AE是中线,AD是角平分线,AF是高,则:(1)∵AE是△ABC的中线,∴BE= ______ =1/2 ______ ;(2)∵AD是△ABC的角平分线,∴∠BAD= ______ =1/2 ______ ;(3)∵AF是△ABC的高,∴∠AFB= ______ =〖90〗^∘;(4)∵AE是△ABC的中线,∴BE=CE,又∵S_(△ABE)=1/2 ______ ,S_(△AEC)=1/2 ______ ,∴S_(△ABE)=S_(△ACE)=1/2 ______ .已知,如图,AE是∠BAC的平分线,∠1=∠D.求证:∠1=∠2.答案和解析【答案】 1. A 2. A 3. C 4. D 5. B 6. A 7. A 8.A 9. A 10. A 11. 〖64〗^∘ 12. 32或34 13. 〖115〗^∘ 14. 4 15.10 16. 高线 17. 〖10〗^∘ 18. α/2^2012 19. 3 20. 〖120〗^∘ 21. 解:∵∠B=〖40〗^∘,∠C=〖60〗^∘,∴∠BAC=〖180〗^∘-∠B-∠C=〖80〗^∘,∵AE平分∠BAC,∴∠BAE=1/2∠BAC=〖40〗^∘,∴∠AEC=∠B+∠BAE=〖80〗^∘,∵AD⊥BC,∴∠ADE=〖90〗^∘,∴∠DAE=〖180〗^∘-∠ADE-∠AED=〖10〗^∘.答:∠DAE的度数是〖10〗^∘. 22. 解:延长AD到E使AD=DE,连接CE,在△ABD和△ECD中{■(AD=DE@∠ADB=∠EDC@BD=DC)┤,∴△ABD≌△ECD,∴AB=CE=5,AD=DE=6,AE=12,在△AEC中,AC=13,AE=12,CE=5,∴AC^2=AE^2+CE^2,∴∠E=〖90〗^∘,由勾股定理得:CD=√(DE^2+CE^2 )=√61,∴BC=2CD=2√61,答:BC的长是2√61. 23. 解:∵AD⊥BC,∴∠ADC=〖90〗^∘,∵∠C=〖70〗^∘,∴∠CAD=〖180〗^∘-〖90〗^∘-〖70〗^∘=〖20〗^∘;∵∠BAC=〖60〗^∘,∠C=〖70〗^∘,∴∠BAO=〖30〗^∘,∠ABC=〖50〗^∘,∵BF 是∠ABC的角平分线,∴∠ABO=〖25〗^∘,∴∠BOA=〖180〗^∘-∠BAO-∠ABO=〖180〗^∘-〖30〗^∘-〖25〗^∘=〖125〗^∘.故∠CAD,∠BOA的度数分别是〖20〗^∘,〖125〗^∘. 24. 解:∵DE是CA边上的高,∴∠DEA=∠DEC=〖90〗^∘,∵∠A=〖20〗^∘,∴∠EDA=〖90〗^∘-〖20〗^∘=〖70〗^∘,∵∠EDA=∠CDB,∴∠CDE=〖180〗^∘-〖70〗^∘×2=〖40〗^∘,在Rt△CDE中,∠DCE=〖90〗^∘-〖40〗^∘=〖50〗^∘,∵CD是∠BCA的平分线,∴∠BCA=2∠DCE=2×〖50〗^∘=〖100〗^∘,在△ABC中,∠B=〖180〗^∘-∠BCA-∠A=〖180〗^∘-〖100〗^∘-〖20〗^∘=〖60〗^∘.故答案为:〖60〗^∘. 25. CE;BC;∠CAD;∠BAC;∠AFC;S_(△ABC);S_(△ABC);S_(△ABC) 26. 证明:∵∠1=∠D,∴AE//DC(同位角相等,两直线平行),∴∠EAC=∠2(两直线平行,内错角相等),∵AE是∠BAC的平分线,∴∠1=∠EAC,∴∠1=∠2.【解析】 1. 【分析】本题考查了三角形的角平分线、中线、高线以及三角形的面积和外角性质,熟记概念与性质是解题的关键.根据三角形的高线、外角的性质、角平分线、中线的定义对各选项分析判断后利用排除法求解.【解答】解:A.三角形的三条高所在的直线交于一点,三条高不一定相交,故本选项说法不正确; B.三角形的三条中线交于三角形内一点,故本选项说法正确; C.三角形的三条角平分线交于一点,是三角形的内心,故本选项说法正确;D.三角形的中线,角平分线,高都是线段,因为它们都有两个端点,故本选项说法正确.故选A. 2. 解:线段BD是△ABC的高,则过点B作对边AC的垂线,则垂线段BD为△ABC的高.故选A.根据三角形高的定义进行判断.本题考查了三角形的角平分线、中线和高:三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点. 3. 解:∵在△ABC中,AD⊥BC,点E是BC边上一点,且不与点B、C、D重合,∴AD是△ABD,△ABE,△ABC,△ADE,△ADC,△AEC的高.故选C.根据三角形高的定义可知,三角形的高可以在三角形内部,可以是三角形的边,还可以在三角形外部,结合图形即可求解.本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.注意:锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点. 4. 解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.故选:D.由于AD⊥BC 于D,图中共有6个三角形,它们都有一边在直线CB上,由此即可确定以AD为高的三角形的个数.此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活. 5. 解:①根据三角形的角平分线的概念,知AG是△ABE的角平分线,故此说法错误;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法错误;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.故选B.根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键. 6. 解:猎狗到△ABC三个顶点的距离相等,则猎狗应蹲守在△ABC的三条(边垂直平分线)的交点.故选:A.用线段垂直平分线性质判断即可.此题考查了线段垂直平分线的性质,以及三角形的角平分线、中线和高,熟练掌握性质是解本题的关键. 7. 解:∵AC=5,DE=2,∴△ADC的面积为1/2×5×2=5,∵AD是△ABC的中线,∴△ABD的面积为5,∴点D到AB的距离是2×5÷3=10/3.故选A.根据三角形的面积得出△ADC的面积为5,再利用中线的性质得出△ABD的面积为5,进而解答即可.此题考查三角形的面积问题,关键是根据三角形的面积得出△ADC的面积为5. 8. 解:7-3<2x<7+3,即2<x<5.故选A.根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线. 9. 解:∵∠BAC=〖60〗^∘,∠C=〖80〗^∘,∴∠B=〖40〗^∘.又∵AD 是∠BAC的角平分线,∴∠BAD=1/2∠BAC=〖30〗^∘,∴∠ADE=〖70〗^∘,又∵OE⊥BC,∴∠EOD=〖20〗^∘.故选A.首先根据三角形的内角和定理求得∠B,再根据角平分线的定义求得∠BAD,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC,最后根据直角三角形的两个锐角互余即可求解.此类题要首先明确思路,考查了三角形的内角和定理及其推论、角平分线的定义. 10. 解:一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在三角形的内部.故选A.根据三角形的高的性质即可判断.本题考查了三角形的高线,锐角三角形的三高线交于三角形内部一点,直角三角形三高线的交点是直角三角形的直角顶点,钝角的三条高所在的直线一定交于一点,这交点一定在三角形的内部. 11. 【分析】本题主要考查了三角形内角和定理以及三角形的高以及角平分线的定义的运用,解决问题的关键是利用角平分线的定义和直角三角形的性质求解.由角平分线的定义可得,∠FAD=∠BAE=〖26〗^∘,而∠AFD 与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.【解答】解:∵AE是角平分线,∠BAE=〖26〗^∘,∴∠FAD=∠BAE=〖26〗^∘,∵DB是△ABC的高,∴∠AFD=〖90〗^∘-∠FAD=〖90〗^∘-〖26〗^∘=〖64〗^∘,∴∠BFE=∠AFD=〖64〗^∘.故答案为〖64〗^∘. 12. 解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,AD//BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE, (1)当AE=5时,AB=5,平行四边形ABCD的周长是2×(5+5+6)=32; (2)当AE=6时,AB=6,平行四边形ABCD的周长是2×(5+6+6)=34;故答案为:32或34.由平行四边形ABCD推出∠AEB=∠CBE,由已知得到∠ABE=∠CBE,推出AB=AE,分两种情况(1)当AE=5时,求出AB的长;(2)当AE=6时,求出AB的长,进一步求出平行四边形的周长.本题主要考查了平行四边形的性质,等腰三角形的判定,三角形的角平分线等知识点,解此题的关键是求出AE=AB.用的数学思想是分类讨论思想. 13. 解;∵∠A=〖50〗^∘,∴∠ABC+∠ACB=〖180〗^∘-〖50〗^∘=〖130〗^∘,∵∠B和∠C的平分线交于点O,∴∠OBC=1/2∠ABC,∠OCB=1/2∠ACB,∴∠OBC+∠OCB=1/2×(∠ABC+∠ACB)=1/2×〖130〗^∘=〖65〗^∘,∴∠BOC=〖180〗^∘-(∠OBC+∠OCB)=〖115〗^∘,故答案为:〖115〗^∘.求出∠ABC+∠ACB=〖130〗^∘,根据角平分线定义得出∠OBC=1/2∠ABC,∠OCB=1/2∠ACB,求出∠OBC+∠OCB=1/2×(∠ABC+∠ACB)=〖65〗^∘,根据三角形的内角和定理得出∠BOC=〖180〗^∘-(∠OBC+∠OCB),代入求出即可.本题考查了三角形的内角和定理和三角形的角平分线等知识点,关键是求出∠OBC+∠OCB的度数. 14. 解:∵D是BC的中点,E是AC的中点,∴△ADC的面积等于△ABC的面积的一半,△ADE的面积等于△ACD的面积的一半,∴△ADE的面积等于△ABC的面积的四分之一,又∵S_(△ADE)=1,∴S_(△ABC)=4.故答案为:4.先根据D是BC的中点,E是AC的中点,得出△ADE的面积等于△ABC的面积的四分之一,再根据S_(△ADE)=1,得到S_(△ABC)=4.本题主要考查了三角形的面积,解决问题的关键是掌握三角形的中线将三角形分成面积相等的两部分. 15. 解:∵AE是△ABC的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC-AB=2cm,即AC-8=2cm,∴AC=10cm,故答案为:10;依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB的周长多2cm,即可得到AC的长.本题考查了三角形的角平分线、中线和高,求出两个三角形的周长的差等于两边的差是解题的关键. 16. 解:三角形的角平分线和中线都在三角形内部,而锐角三角形的三条高在三角形内部,直角三角形有两条高与直角边重合,另一条高在三角形内部,钝角三角形有两条高在三角形外部,一条高在三角形内部.故答案为:高线.根据三角形的角平分线、中线和高的定义求解.考查了三角形的角平分线、中线和高:三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点. 17. 解:在△ABC中,∵∠BAC=〖180〗^∘-∠B-∠C=〖70〗^∘,∵AE是∠BAC的平分线,∴∠BAE=∠CAE=〖35〗^∘.又∵AD是BC边上的高,∴∠ADB=〖90〗^∘,∵在△ABD中∠BAD=〖90〗^∘-∠B=〖25〗^∘,∴∠DAE=∠BAE-∠BAD=〖10〗^∘.由三角形的内角和定理,可求∠BAC=〖70〗^∘,又由AE是∠BAC的平分线,可求∠BAE=〖35〗^∘,再由AD是BC边上的高,可知∠ADB=〖90〗^∘,可求∠BAD=〖25〗^∘,所以∠DAE=∠BAE-∠BAD=〖10〗^∘.本题考查三角形的内角和定理及角平分线的性质,高线的性质,熟知三角形的内角和定理是解答此题的关键. 18. 解:∵∠ABC与∠ACD的平分线交于点A_1,∴∠A_1 BC=1/2∠ABC,∠A_1 CD=1/2∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A_1+∠A_1 BC=∠A_1 CD,∴∠A_1+∠A_1 BC=∠A_1+1/2∠ABC=1/2(∠A+∠ABC),整理得,∠A_1=1/2∠A=α/2,同理可得,∠A_2=1/2∠A_1=1/2×α/2=α/2^2 ,…,∠A_2012=α/2^2012 .故答案为:α/2^2012 .根据角平分线的定义可得∠A_1 BC=1/2∠ABC,∠A_1 CD=1/2∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠ABC=∠ACD,∠A_1+∠A_1 BC=∠A_1 CD,然后整理即可得到∠A_1与∠A的关系,同理得到∠A_2与∠A_1的关系并依次找出变化规律,从而得解.本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,求出后一个角是前一个角的一半是解题的关键. 19. 解:∵AD是△ABC中BC边上的中线,∴BD=DC=1/2 BC,∴△ABD与△ACD的周长之差 =(AB+BD+AD)-(AC+DC+AD) =AB-AC =13-10=3.则△ABD与△ACD的周长之差=3.故答案为3.根据三角形的周长的计算方法得到△ABD的周长和△ADC的周长的差就是AB与AC的差.本题考查三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线,同时考查了三角形周长的计算方法. 20. 解:∵在△ABC中,∠BAC=〖50〗^∘,∠C=〖70〗^∘,∴∠ABC=〖60〗^∘,∵在△AB C中,AD是高,AE,BF是角平线,∴∠EAD=〖90〗^∘-(〖25〗^∘+〖60〗^∘)=5^∘,∴∠AGH=〖25〗^∘+〖30〗^∘=〖55〗^∘,∴∠AHB=〖180〗^∘-〖55〗^∘-5^∘=〖120〗^∘.故答案为:〖120〗^∘.根据三角形的内角和得出∠ABC=〖60〗^∘,再利用角平分线的定义和高的定义解答即可.此题考查三角形的内角和问题,关键是根据三角形的内角和得出∠ABC=〖60〗^∘. 21. 根据三角形的内角和定理求出∠BAC的度数,根据角平分线的定义求出∠BAE的度数,根据三角形的外角性质得到∠AEC的度数,再根据三角形的内角和定理即可求出答案.本题主要考查了三角形的内角和定理,三角形的外角性质,三角形的角平分线,垂直的定义等知识点,能熟练地运用这些性质进行计算是解此题的关键. 22. 延长AD到E 使AD=DE,连接CE,证△ABD≌△ECD,求出AE和CE的长,根据勾股定理的逆定理求出∠E=〖90〗^∘,根据勾股定理求出CD即可.本题综合考查了勾股定理、勾股定理的逆定理、全等三角形的性质和判定、三角形的中线等知识点的应用,关键是正确地作辅助线,把已知条件转化成一个直角三角形,题型较好. 23. 因为AD是高,所以∠ADC=〖90〗^∘,又因为∠C=〖70〗^∘,所以∠CAD度数可求;因为∠BAC=〖60〗^∘,∠C=〖70〗^∘,所以∠BAO=〖30〗^∘,∠ABC=〖50〗^∘,BF是∠ABC的角平分线,则∠ABO=〖25〗^∘,故∠BOA的度数可求.本题考查了三角形内角和定理、角平分线定义.关键是利用角平分线的性质解出∠ABO、∠BAO,再运用三角形内角和定理求出∠AOB. 24. 根据直角三角形两锐角互余求出∠EDA的度数,再根据平角的定义求出∠CDE的度数,再次利用直角三角形两锐角互余求出∠DCE的度数,从而得到∠BCA的度数,最后利用三角形内角和等于〖180〗^∘计算即可.本题考查了三角形的角平分线的定义,三角形的高以及三角形的内角和定理,稍微复杂,但仔细分析图形也不难解决. 25. 解:(1)根据AE是△ABC的中线,可得BE=CE=1/2 BC; (2)根据AD是△ABC 的角平分线,可得∠BAD=∠CAD=1/2∠BAC; (3)根据AF是△ABC的高,可得∠AFB=∠AFC=〖90〗^∘; (4)根据AE是△ABC的中线,可得BE=CE,所以S_(△ABE)=1/2 S_(△ABC),S_(△AEC)=1/2 S_(△ABC),即S_(△ABE)=S_(△ACE)=1/2 S_(△ABC).故答案为:(1)CE,BC;(2)∠CAD,∠BAC;(3)∠AFC;(4)S_(△ABC),S_(△ABC),S_(△ABC). (1)三角形一边的中点与此边所对顶点的连线叫做三角形的中线; (2)三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线; (3)从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高; (4)三角形的中线将三角形分成面积相等的两部分.本题主要考查了三角形的中线、高线以及角平分线的概念的运用,解题时注意:三角形有三条中线,有三条高线,有三条角平分线,它们都是线段,三角形的中线将三角形分成面积相等的两部分. 26. 由∠1=∠D,根据同位角相等,两直线平行可证AE//DC,根据两直线平行,内错角相等可证∠EAC=∠2,再根据角平分线的性质即可求解.本题考查了平行线的判定与性质和三角形的角平分线的性质,有一定的综合性,但难度不大.。

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线复习试题(含答案) (27)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线复习试题(含答案) (27)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案)一、单选题1.到三角形三边距离相等的点是三角形( )的交点.A.两个内角平分线B.三边垂直平分线C.三条高线D.三条中线【答案】A【解析】分析:到三角形三条边距离相等的点是三角形的内心.详解:到三角形三条边距离相等的点是三角形的内心,即三个内角平分线的交点.故选A.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.2.如图,AE⊥BC于E,BF⊥AC于F,CD⊥AB于D,⊥ABC中AC边上的高是线段()A.BF B.CD C.AE D.AF【答案】A【解析】【分析】根据高的定义判断即可,从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线.【详解】三角形底边AC上的高,为对角点B到边AC的垂线段.∵BF⊥AC于F,∴BF是边AC上的高.故选A.【点睛】本题考查了三角形高线的识别,熟练掌握高的定义是解答本题的关键.3.在△ABC中,AD、CE分别是△ABC的高,且AD=2,CE=4,则AB:BC=()A.3:4 B.4:3 C.1:2 D.2:1【答案】C【解析】分析:由已知条件可得:S△ABC=12AB·CE=12BC·AD,再代入AD=2,CE=4即可求得AB:BC的值.详解:∵在△ABC 中,AD 、CE 分别是△ABC 的边BC 和AB 上的高,△S △ABC =12AB ·CE=12BC ·AD △AD=2,CE=4,△2AB=BC ,△AB :BC=1:2.故选C.点睛:“由AD 、CE 分别是△ABC 的边BC 和AB 上的高,得到S △ABC =12AB ·CE=12BC ·AD ”是解答本题的关键. 4.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点, 且△ABC 的面积为4cm 2,则△BEF 的面积等于( )A .2cm 2B .1cm 2C .0.5 cm 2D .0.25 cm 2【答案】B【解析】【分析】 依据三角形的面积公式及点D 、E 、F 分别为边BC ,AD ,CE 的中点,推出14BEF ABC S S ∆=从而求得△BEF 的面积. 【详解】解:∵点D 、E 、F 分别为边BC ,AD ,CE 的中点,1111,,,2222ABD ABC BDE ABD CDE ADC BEF BEC S S S S S S S S ∆∆∆∆∆∆∆∆∴====14BEF ABC S S ∆∆∴= ∵△ABC 的面积是4,∴S △BEF =1.故选:B【点睛】本题主要考查了与三角形的中线有关的三角形面积问题,关键是根据三角形的面积公式S= 12×底×高,得出等底同高的两个三角形的面积相等. 5.下面四个图形中,线段AD 是△ABC 的高的是( )A .B .C .D .【答案】D【解析】【分析】根据三角形高的定义:从顶点向对边作垂线,垂线段就是对应边上的高可判断.【详解】A.线段AD 与BC 不垂直,所以不是△ABC 的高;B.线段AD 与BC 不垂直,所以不是△ABC 的高;C.线段AD 与BC 不垂直,所以不是△ABC 的高;D.线段AD 与BC 垂直,所以是△ABC 的高.故选D.【点睛】本题考核知识点:三角形的高. 解题关键点:要理解三角形的高的定义以及条件:从顶点向对边作垂线,垂线段就是对应边上的高.6.如图,ABC 的面积为1.分别倍长(延长一倍)AB ,BC ,CA 得到111A B C .再分别倍长A 1B 1,B 1C 1,C 1A 1得到222A B C .…… 按此规律,倍长2018次后得到的201820182018A B C 的面积为( )A .20176B .20186C .20187D .20188【答案】C【解析】 分析:根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A 1B 1C 1的面积是△ABC 的面积的7倍,依此类推写出即可.详解:连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,S △A 1B 1C 1=7S △ABC ,同理S △A 2B 2C 2=7S △A 1B 1C 1=72S △ABC ,依此类推,S △AnBnCn =7n S △ABC .∵△ABC 的面积为1,∴S △AnBnCn =7n ,△S △A 2018B 2018C 2018=72018.故选C .点睛:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.7.下列图形中具有稳定性的是( )A .平行四边形B .等腰三角形C .长方形D .梯形【答案】B【解析】三角形具有稳定性,四边形具有不稳定性,符合题意的只有选项B ,故选B.8.如图所示,1ABC S ∆=,若BDE DEC ACE S S S ∆∆∆==,则ADE S ∆=( )A .15B .16C .17D .18【答案】B【解析】 ∵S △BDE =S △DEC ,∴BD=DC ,∴S △ABD =12S △ABC =12, ∵S △ABC =1,S △BDE =S △DEC =S △ACE ,∴S △BDE =S △DEC =S △ACE =13,∴S△ADE=S△ABD-S△BDE=12-13=16,故选B.9.三角形三条高的交点一定在()A.三角形的内部B.三角形的外部C.三角形的内部或外部D.三角形的内部、外部或顶点【答案】D【解析】分析:根据三角形的高线的定义分情况讨论高线的交点,即可得解.详解:锐角三角形,三角形三条高的交点在三角形内部,直角三角形,三角形三条高的交点在三角形直角顶点,钝角三角形,三角形三条高的交点在三角形外部,故选D.点睛:本题考查了三角形的高线,熟记三种三角形的高线的交点的位置是解题的关键.10.如图,AD是△ABC的中线,DE是△ADC的高线,AB=3,AC=5,DE=2,点D到AB的距离是()A.2 B.53C.65D.103【答案】D【解析】分析:作DF△AB于点F,先由AD是△ABC的中线可得S△ABD=S△ACD,然后根据面积法即可求出DF的长,详解:作DF△AB于点F,△AD是△ABC的中线,△S△ABD=S△ACD,△1122AB DF AC DE⋅=⋅,△3DF=5×2,△DF=10 3 .故选D.作点睛:本题考查了三角形中线的性质和面积法求线段的长,由中线的性质得出S△ABD=S△ACD是解答本题的关键.。

三角形中线高角平分线的30题(有答案)ok

三角形中线高角平分线的30题(有答案)ok

题(有答案)三角形高中线角平分线专项练习30题(有答案)1.如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F.(1)试说明∠BCD=∠ECD;(2)请找出图中所有与∠B相等的角(直接写出结果).2.如图,AD为△ABC的中线,BE为三角形ABD中线,中线,的度数;(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;边上的高;(2)在△BED中作BD边上的高;边的距离为多少?(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?3.在△ABC中,AD是BC边上的中线,若△ABD和△ADC的周长之差为4(AB>AC),AB与AC的和为14,的长.求AB和AC的长.4.如图△ABC中,∠A=20°,CD是∠BCA的平分线,△CDA中,DE是CA边上的高,又有∠EDA=∠CDB,求的大小.∠B的大小.5.△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.的大小.(1)∠B=30°,∠C=70°,求∠EAD的大小.(2)若∠B<∠C,则2∠EAD与∠C﹣∠B是否相等?若相等,请说明理由.是否相等?若相等,请说明理由.6.在△ABC中,AD是高,AE是角平分线,∠B=20°,∠C=60°,求∠CAD和∠DAE的度数.的度数.7.在△ABC中.中.(如图)(1)若∠A=60°,AB、AC边上的高CE、BD交于点O.求∠BOC的度数.(如图)(2)若∠A为钝角,AB、AC边上的高CE、BD所在直线交于点O,画出图形,并用量角器量一量∠BAC+∠BOC= _________°,再用你已学过的数学知识加以说明.,再用你已学过的数学知识加以说明.(3)由(1)(2)可以得到,无论∠A为锐角还是钝角,总有∠BAC+∠BOC=_________°.8.在△ABC中,已知∠ABC=60°,∠ACB=50°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点.的交点.的度数.求∠ABE、∠ACF和∠BHC的度数.9.如图,△ACB中,∠ACB=90°,∠1=∠B.的高;(1)试说明CD是△ABC的高;(2)如果AC=8,BC=6,AB=10,求CD的长.的长.10.如图,已知△ABC的高AD,角平分线AE,∠B=26°,∠ACD=56°,求∠AED的度数.的度数.11.如图,△ABC中,∠ABC=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分线.的平分线.(1)求∠DAE的度数;的度数;是哪几个三角形的高.(2)指出AD是哪几个三角形的高.12.如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,的度数.求∠ABE、∠ACF和∠BHC的度数.13.如图,在△ABC中,∠B=60°,∠C=20°,AD为△ABC的高,AE为角平分线为角平分线的度数;(1)求∠EAD的度数;的关系并说明理由.(2)寻找∠DAE与∠B、∠C的关系并说明理由.14.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.的度数.15.如图,AD是△ABC的BC边上的高,AE是∠BAC的角平分线,的角平分线,的度数.(1)若∠B=47°,∠C=73°,求∠DAE的度数.的代数式表示)(2)若∠B=α°,∠C=β°(α<β),求∠DAE的度数(用含α、β的代数式表示)16.如图,在△ABC中,AD是角平分线,∠B=60°,∠C=45°,求∠ADB和∠ADC的度数.的度数.17.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.18.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?确吗?为什么?19.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.长.20.我们知道,任何一个三角形的三条内角平分线相交于一点,如图,若△ABC 的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E.)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)(1)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)之间有何数量关系,请写出来,并说明其中的道理.(2)从上表中你发现了∠BIC与∠BDI之间有何数量关系,请写出来,并说明其中的道理.40°60°90°120°∠BAC的度数的度数∠BIC的度数∠BDI的度数21.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA 的度数.的度数.22.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,填空:是高,填空:(1)BE=_________=_________(2)∠BAD=__________________(3)∠AFB=_________=90°(4)S△ABC=_________S△ABE.23.如图,BM是△ABC的中线,AB=5cm,BC=3cm,那么△ABM与△BCM的周长是差是多少?的周长是差是多少?24.在△ABC中,AB=AC,AD是中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.的长.25.如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?的边长的差吗?26.如图,在△ABC中,AC=AB,AD是BC边上的中线,则AD⊥BC,请说明理由.,请说明理由.27.如图,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.的角平分线,对吗?说明理由.28.如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,的长.求AC的长.29.如图所示,AD是△ABC的中线,AE是△ACD的中线,已知DE=2cm,求BD,BE,BC的长.的长.30.如图所示,AD是△ABC的中线,AB=6cm,AC=5cm,求△ABD和△ADC的周长的差.的周长的差.参考答案:1.(1)∵∠B=70°,CD ⊥AB 于D , ∴∠BCD=90°﹣70°=20°,在△ABC 中,∵∠A=30°,∠B=70°, ∴∠ACB=180°﹣30°﹣70°=80°, ∵CE 平分∠ACB , ∴∠BCE=∠ACB=40°,∴∠ECD=∠BCE ﹣∠BCD=40°﹣20°=20°, ∴∠BCD=∠ECD ;(2)∵CD ⊥AB 于D ,DF ⊥CE 于F , ∴∠CED=90°﹣∠ECD=90°﹣20°=70°, ∠CDF=90°﹣∠ECD=90°﹣20°=70°,所以,与∠B 相等的角有:∠CED 和∠CDF . 2.(1)∵∠BED 是△ABE 的一个外角,的一个外角, ∴∠BED=∠ABE+∠BAD=15°+35°=50°.(2)如图所示,EF 即是△BED 中BD 边上的高.边上的高. (3)∵AD 为△ABC 的中线,BE 为三角形ABD 中线, ∴S △BED =S △ABC =×60=15; ∵BD=5,∴EF=2S △BED ÷BD=2×15÷5=6, 即点E 到BC 边的距离为6.3.∵AD 是BC 边上的中线,边上的中线, ∴BD=CD ,∴△ABD 的周长﹣△ADC 的周长=(AB+AD+BD )﹣(AC+AD+CD )=AB ﹣AC=4,(2分)分) 即AB ﹣AC=4①, 又AB+AC=14②, ①+②得.2AB=18, 解得AB=9,②﹣①得,2AC=10, 解得AC=5,∴AB 和AC 的长分别为:AB=9,AC=5. 4.∵DE 是CA 边上的高,边上的高, ∴∠DEA=∠DEC=90°, ∵∠A=20°,∴∠EDA=90°﹣20°=70°, ∵∠EDA=∠CDB ,∴∠CDE=180°﹣70°×2=40°,在Rt △CDE 中,∠DCE=90°﹣40°=50°, ∵CD 是∠BCA 的平分线,的平分线,∴∠BCA=2∠DCE=2×50°=100°,在△ABC 中,∠B=180°﹣∠BCA ﹣∠A=180°﹣100°﹣20°=60°.故答案为:60 5.(1)∵∠B=30°,∠C=70° ∴∠BAC=180°﹣∠B ﹣∠C=80° ∵AE 是角平分线,是角平分线, ∴∠EAC=∠BAC=40°∵AD 是高,∠C=70° ∴∠DAC=90°﹣∠C=20°∴∠EAD=∠EAC ﹣∠DAC=40°﹣20°=20°;(2)由(1)知,∠EAD=∠EAC ﹣∠DAC=∠BAC ﹣(90°﹣∠C )①把∠BAC=180°﹣∠B ﹣∠C 代入①,整理得,整理得 ∠EAD=∠C ﹣∠B ,∴2∠EAD=∠C ﹣∠B .6.∵AD 是高,∠C=60°,∴∠CAD=90°﹣∠C=90°﹣60°=30°; ∵∠B=20°,∠C=60°,∴∠BAC=180°﹣∠B ﹣∠C=180°﹣20°﹣60°=100°, ∵AE 是角平分线,是角平分线, ∴∠CAE=∠BAC=×100°=50°,∴∠DAE=∠CAE ﹣∠CAD=50°﹣30°=20°. 7.(1)∵BD 、CE 分别是边AC ,AB 上的高,上的高, ∴∠ADB=∠BEC=90°, 又∵∠BAC=60°,∴∠ABD=180°﹣∠ADB ﹣∠A=180°﹣90°﹣60°=30°, ∴∠BOC=∠EBD+∠BEO=90°+30°=120°; (2)如图所示:)如图所示:∠BAC+∠BOC=180°;理由如下:∵BD 、CE 分别是边AC ,AB 上的高,上的高, ∴∠ADB=∠BEC=90°,∵∠ABD=180°﹣∠ADB ﹣∠BAD=180°﹣90°﹣∠BAD=90°﹣∠BAD ,∠O=180°﹣∠BEO ﹣∠DBA=90°﹣∠DBA=90°﹣(90°﹣∠BAD )=∠BAD , ∵∠BAC=180°﹣∠DAB , ∴∠BAC=180°﹣∠O , ∴∠BAC+∠O=180°; (3)由(1)(2)可得∠BAC+∠BOC=180°.8.∵BE是AC上的高,上的高,∴∠AEB=90°,∵∠ABC=60°,∠ACB=50°,∴∠A=180°﹣60°﹣50°=70°,∴∠ABE=180°﹣90°﹣70°=20°,∵CF是AB上的高,上的高,∴∠AFC=90°,∴∠ACF=180°﹣90°﹣70°=20°,∵∠ABE=20°,∴∠EBC=∠ABC﹣∠ABE=60°﹣20°=40°,∵∠ACF=20°,∠ACB=50°,∴∠BCH=30°,∴∠BHC=180°﹣40°﹣30°=110°.9.(1)∵∠1+∠BCD=90°,∠1=∠B ∴∠B+∠BCD=90°∴△BDC是直角三角形,即CD⊥AB,∴CD是△ABC的高;的高;(2)∵∠ACB=∠CDB=90°∴S△ABC=AC •BC=AB•CD,∵AC=8,BC=6,AB=10,∴CD===10.∵∠B=26°,∠ACD=56°∴∠BAC=30°∵AE平分∠BAC ∴∠BAE=15°∴∠AED=∠B+∠BAE=41°11.(1)∵AD⊥BC于D,∴∠ADB=∠ADC=90°,∵∠ABC=40°,∠C=60°,∴∠BAD=50°,∠CAD=30°,∴∠BAC=50°+30°=80°,∵AE是∠BAC的平分线,的平分线,∴∠BAE=40°,∴∠DAE=50°﹣40°=10°.(2)AD是△ABE、△ABD、△ABC、△AED、△AEC、△ADC的高.的高.12.∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.13.(1)∵在△ABC中,∠BAC=180°﹣∠C﹣∠B=180°﹣20°﹣60°=100°,又∵AE为角平分线,为角平分线,∴∠EAB=∠BAC=50°,在直角△ABD中,∠BAD=90°﹣∠B=90°﹣60°=30°,∴∠EAD=∠EAB﹣∠BAD=50°﹣30°=20°;(2)根据(1)可以得到:∠EAB=∠BAC=(180°﹣∠B﹣∠C)∠BAD=90°﹣∠B,则∠EAD=∠EAB﹣∠BAD=(180°﹣∠B﹣∠C)﹣(90°﹣∠B )=(∠B﹣∠C).14.∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°15.(1)∵∠B=47°,∠C=73°,∴∠BAC=180°﹣47°﹣73°=60°,∵AD是△ABC的BC边上的高,边上的高,∴∠BAD=90°﹣47°=43°,∵AE是∠BAC的角平分线,的角平分线,∴∠BAE=∠BAC=30°,∴∠DAE=∠BAD﹣∠BAE=43°﹣30°=13°;(2))∵∠B=α°,∠C=β°,∴∠BAC=180°﹣α°﹣β°,∵AD是△ABC的BC边上的高,边上的高,∴∠BAD=90°﹣α°,∵AE是∠BAC的角平分线,的角平分线,∴∠BAE=∠BAC=(180°﹣α°﹣β°),∴∠DAE=∠BAD﹣∠BAE=90°﹣α°﹣(180°﹣α°﹣β°),=90°﹣α°﹣90°+α°+β°,=(β﹣α)°16.∵∠B=60°,∠C=45°,∴∠BAC=180°﹣60°﹣45°=75°,∵AD为∠BAC的角平分线,的角平分线,∴∠BAD=∠CAD=∠BAC=37.5°,在△ABD 中,∠ADB=180°﹣∠BAD ﹣∠B=82.5°, 则∠ADC=180°﹣∠ADB=97.5°. 17.∵∠ACB=90°, ∴∠1+∠3=90°, ∵CD ⊥AB , ∴∠2+∠4=90°,又∵BE 平分∠ABC , ∴∠1=∠2, ∴∠3=∠4, ∵∠4=∠5, ∴∠3=∠5,即∠CFE=∠CEF.18.(1)在△ABC 中,∠BAC=180°﹣∠B ﹣∠C=180°﹣50°﹣80°=50°; ∵AD 是角平分线,是角平分线, ∴∠DAC=∠BAC=25°;在△ADC 中,∠ADC=180°﹣∠C ﹣∠DAC=75°; 在△ADE 中,∠DAE=180°﹣∠ADC ﹣AED=15°. (2)∠DAE=180°﹣∠ADC ﹣AED=180°﹣∠ADC ﹣90°=90°﹣∠ADC=90°﹣(180°﹣∠C ﹣∠DAC )=90°﹣(180°﹣∠C ﹣∠BAC )=90°﹣[180°﹣∠C ﹣(180°﹣∠B ﹣∠C )]=(∠C ﹣∠B ). (3)(2)中的结论仍正确.)中的结论仍正确.∠A ʹDE=∠B+∠BAD=∠B+∠BAC=∠B+(180°﹣∠B ﹣∠C )=90°+∠B ﹣∠C ;在△DA ʹE 中,∠DA ʹE=180°﹣∠A ʹED ﹣∠A ʹDE=180°﹣90°﹣(90°+∠B ﹣∠C )=(∠C ﹣∠B ). 19.∵AB=6cm ,AD=5cm ,△ABD 周长为15cm , ∴BD=15﹣6﹣5=4cm , ∵AD 是BC 边上的中线,边上的中线, ∴BC=8cm ,∵△ABC 的周长为21cm , ∴AC=21﹣6﹣8=7cm . 故AC 长为7cm . 20.(1)填写表格如下:)填写表格如下:∠BAC 的度数40° 60° 90°120° ∠BIC 的度数的度数 110°120°135°150°∠BDI 的度数110° 120° 135°(2)∠BIC=∠BDI ,理由如下:,理由如下:∵△ABC 的三条内角平分线相交于点I , ∴∠BIC=180°﹣(∠IBC+∠ICB ) =180°﹣(∠ABC+∠ACB ) =180°﹣(180°﹣∠BAC ) =90+∠BAC ; ∵AI 平分∠BAC , ∴∠DAI=∠DAE . ∵DE ⊥AI 于I , ∴∠AID=90°.∴∠BDI=∠AID+∠DAI=90°+∠BAC . ∴∠BIC=∠BDI .21.∵∠A=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°, 又∵AD 是高,是高, ∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°, ∵AE 、BF 是角平分线,是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°, ∴∠DAE=∠DAC ﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°, ∴∠DAC=30°,∠BOA=120°. 故∠DAE=5°,∠BOA=120°. 22.(1)∵AE 是中线,是中线, ∴BE=CE=BC , (2)∵AD 是角平分线,是角平分线, ∴∠BAD=∠CAD=∠BAC , (3)∵AF 是高,是高,∴∠AFB=∠AFC=90°,(4)S △ABC =,S △ABE =,∵BC=2BE,∴S△ABC=2S△ABE,故答案为CE,BC,∠CAD,∠BAC,∠AFC,2 23.∵BM是△ABC的中线,的中线,∴MA=MC,∴C△ABM﹣C△BCM=AB+BM+MA﹣BC﹣CM﹣BM =AB﹣BC=5﹣3=2cm.答:△ABM与△BCM的周长是差是2cm.24.方法1:由题意知:AB+AC+BC=34,AB+AD+BD=30,∵AB=AC,BD=BC,∴②×2得:2AB+2AD+BC=60③,③﹣①得:2AD=26,∴AD=13cm.方法2:∵AB=AC,D是中点,且AB+AC+BC=34,∴BD=BC,AB=(AB+AC),∴AB+BD=(AB+AC)+BC=(AB+AC+BC)=17cm (周长的一半).∵AB+BD+AD=30cm,AD=30﹣17=13cm.25.能..能.由题意知:△ABD的周长=AB+BD+AD,△ACD的周长=AC+CD+AD,又因为AD是BC边上的中线,边上的中线,所以BD=CD.∵△ABD的周长比△ACD的周长小5,∴AC+CD+AD﹣(AB+BD+AD)=AC﹣AB=5.即AC与AB的边长的差为5 26.∵AD是BC边上的中线,∴BD=DC,∵AC=AB,AD=AD,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,∴AD⊥BC.27.错误..错误.因为AD虽然是线段,但不符合三角形角平分线定义,这里射线AD是∠BAC的平分线.的平分线.28.∵AD是BC边上的中线,边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长﹣△ABD的周长=5cm.∴AC﹣AB=5cm.又∵AB+AC=11cm,∴AC=8cm.即AC的长度是8cm.29.∵AD是△ABC的中线,AE是△ACD的中线,的中线, ∴BD=CD=2DE=4cm,∴BE=BD+DE=6cm,∴BC=2BD=8cm.30.∵AD是△ABC中BC边上的中线,边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差=(AB+BC+AD)﹣(AC+BC+AD)=AB﹣AC=1.。

三角形的高中线与角平分线练习题

三角形的高中线与角平分线练习题

4321EDCBA1CDBA三角形的高、中线与角平分线11 如图,已知△ABC 中,AQ=PQ 、PR=PS 、PR ⊥AB 于R ,PS ⊥AC 于S ,有以下三个结论:①AS=AR ;②QP ∥AR ; ③△BRP ≌△CSP ,其中( ).(A)全部正确 (B)仅①正确 (C)仅①、②正确 (D)仅①、③正确 2、 如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是( )A. ∠3=∠4B.∠B=∠DCEC.∠1=∠2.D.∠D+∠DAB=180° 3.如图,ΔACB 中,∠ACB=900,∠1=∠B.(1)试说明 CD 是ΔABC 的高;(2)如果AC=8,BC=6,AB=10,求CD 的长。

4如图,直线DE 交△ABC 的边AB 、AC 于D 、E , 交BC 延长线于F ,若∠B =67°,∠ACB =74°, ∠AED =48°,求∠BDF 的度数5、如图:∠1=∠2=∠3,完成说理过程并注明理由: 因为 ∠1=∠2所以 ____∥____ ( ) 因为 ∠1=∠3所以 ____∥____ ( )6.以下列各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,5cm B .5cm ,6cm ,10cm C .1cm ,1cm ,3cm D .3cm ,4cm ,9cm7.等腰三角形的一边长等于4,一边长等于9,则它的周长是( ) A .17 B .22 C .17或22 D .138.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形9.已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105°D.30°或75°10.一个多边形的角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.811.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定12.三角形的三边长分别为5,1+2x,8,则x的取值围是________.13.如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.初一三角形的高、中线与角平分线21 如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)∠5的度数是多少?(3)求四边形ABCD各角的度数.2.△ABC中,∠A=50°,∠B=60°,则∠A+∠C=________.3 .已知三角形的三个角的度数之比为1:2:3,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定4.△ABC中,∠A=∠B+∠C,则∠A=______度.5.如图∠1+∠2+∠3+∠4=______度.6.如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,•∠C=45°,求∠DAE与∠AEC的度数.7.以下说法错误的是()6题A.三角形的三条高一定在三角形部交于一点B.三角形的三条中线一定在三角形部交于一点C.三角形的三条角平分线一定在三角形部交于一点D.三角形的三条高可能相交于外部一点8.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,•那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.如图,BD=1BC,则BC边上的中线为______,△ABD的面积=_____的面积.2(9)10.如图,△ABC中,高CD、BE、AF相交于点O,则△BOC•的三条高分别为线段________.(10)初一三角形的高、中线与角平分线31.下列图形中具有稳定性的是()A.梯形B.菱形C.三角形D.正方形2.如图3,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,求△ABD•与△ACD的周长之差.3.如图,∠BAD=∠CAD,AD⊥BC,垂足为点D,且BD=CD.•可知哪些线段是哪个三角形的角平分线、中线或高?4.如图5,在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分为15和6两部分,求该等腰三角形的腰长及底边长.5.有一块三角形优良品种试验基地,如图所示,•由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).6.如图,在△ABC中,D、E分别是BC、AD的中点,S△ABC=4cm2,求S△ABE.7.如图,在锐角△ABC中,CD、BE分别是AB、AC上的高,•且CD、BE交于一点P,若∠A=50°,则∠BPC的度数是()8如图7-1-2-9,AD是△ABC的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△DEF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.初一三角形的高、中线与角平分线41.若三角形的外角中有一个是锐角,则这个三角形是________三角形.2.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”).3.如图1,x=______.(1) (2) (3) 4.如图2,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是_________.5.如图3,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,求∠AEB的度数.7.如图所示,在△ABC中,AB=AC,AD=AE,∠BAD=60°,则∠EDC=______.8.一个零件的形状如图7-2-2-6所示,按规定∠A应等于90°,∠B、∠D应分别是30°和20°,叔叔量得∠BCD=142°,就断定这个零件不合格,你能说出道理吗?9.(1)如图(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(2)如图(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.11.如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF•的平分线,试探索∠D与∠A之间的数量关系.12 如图,BD为△ABC的角平分线,CD为△ABC的外角∠ACE的平分线,它们相交于点D,试探索∠BDC与∠A之间的数量关系.7.3 多边形及其角和基础过关作业1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80°B.90°C.170°D.20°2.一个多边形的角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.63.角和等于外角和2倍的多边形是()A.五边形B.六边形C.七边形D.八边形4.六边形的角和等于_______度.5.正十边形的每一个角的度数等于______,每一个外角的度数等于_______.6.如图,你能数出多少个不同的四边形?7.四边形的四个角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?8.求下列图形中x的值:综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF平分∠ADC.BE与DF有怎样的位置关系?为什么?10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,)已知一个多边形的角和为540°,则这个多边形为()A.三角形B.四边形C.五边形D.六边形(2)(2005年,)五边形的角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )A.1个B.2个C.3个D.4个培优作业14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的角和增加多少度?若将n边形的边数增加1倍,则它的角和增加多少度?数学世界攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.4.7205.144°;36°点拨:正十边形每一个角的度数为:(102)18010-⨯︒=144°,每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的角和为360°,如果四个角都是锐角或都是钝角,•则角和小于360°或大于360°,与四边形的角和为360°矛盾.•所以四个角不可以都是锐角或都是钝角.若四个角都是直角,则四个角的和等于360°,与角和定理相符,所以四个角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.∴∠ABC+∠ADC=360°-180°=180°.∵∠ABE=12∠ABC,∠ADF=12∠ADC,∴∠ABE+∠ADF=12(∠ABC+∠ADC)=12×180°=90°.又∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).10.解:12n (n-3)=12×10×(10-3)=12×10×7=35(场).答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数.11.解:(5-2)×180°÷360°×12=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的角和.12.(1)C 点拨:设这个多边形的边数为n ,依题意,得(n-2)×180°=540°,解得n=5,故选C .(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;……n 边形有(3)2n n -条对角线. (2)当n 边形的边数增加1时,对角线增加(n-1)条.点拨:从n 边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n 个顶点共可引n (n-3)条,但这些对角线每一条都重复了一次,故n 边形的对角线条数为(3)2n n -. 15.180°,n ·180°.数学世界答案:是最短的路程.可用纸板做一个模型,沿AB 剪开便可看出结论.。

七年级7.1.2 三角形的高、中线与角平分线(专题课时练含答案)-

七年级7.1.2 三角形的高、中线与角平分线(专题课时练含答案)-

7.1.2 三角形的高、中线与角平分线◆知能点分类训练知能点1 三角形的高、中线与角平分线1.下列说法正确的是().A.直角三角形只有一条高B.如果一个三角形有两条高与这个三角形的两边重合,•那么这个三角形是直角三角形 C.三角形的三条高,可能都在三角形内部,也可能都在三角形外部D.三角形三条高中,在三角形外部的最多只有1条2.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是().A.锐角三角形 B.钝角三角形 C.直角三角形 D.等边三角形3.如图所示,画△ABC的一边上的高,下列画法正确的是().4.三角形的角平分线是().A.直线 B.射线 C.线段 D.以上都不对5.如图所示,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S1表示△ACM的面积,则S1与S2的大小关系是().A.S1>S2B.S1<S2C.S1=S2D.以上三种情况都可能6.下列说法:①三角形的角平分线、中线、高线都是线段;•②直角三角形只有一条高线;③三角形的中线可能在三角形的外部;④三角形的高线都在三角形的内部,并且相交于一点,其中说法正确的有().A.1个 B.2个 C.3个 D.4个7.如图所示,已知△ABC:(1)过A画出中线AD;(2)画出角平分线CE;(3)作AC边上的高.知能点2 三角形的稳定性8.下列四个图形中,具有不稳定性的图形是().9.照相机的支架是三条腿,这是利用了三角形的_________.•现实生活中还有利用三角形的这个特性的例子吗?如果知道,请写出来:________.10.如图所示,建筑工人在安装门窗时,先要把木头门窗固定好,这样搬运和安装起来才不会变形,请你设计一种方法固定木头门窗,这样做依据的数学道理是什么?◆规律方法应用11.如图所示,在△ABC中,AD⊥BC,BE⊥AC,BC=12,AC=8,AD=6,求BE的长.12.在△ABC中,AB=AC,AC边上的中线BD把三角形的周长分为12cm和15cm两部分,求三角形各边的长.◆开放探索创新13.将一个三角形的三边中点顺次连结可得到一个新的三角形,通常称为“中点三角形”,如图①所示,△DEF是△ABC的中点三角形.(1)画出图中另外两个三角形的中点三角形.(2)用量角器和刻度尺量△DEF和△ABC的三个内角和三条边,看看你有什么发现?并通过三个图的重复度量实验,验证你的发现.(3)你知道S△ABC和S△EDF的关系吗?怎样得出来的?(4)根据(2)中的结论,解答下列问题,如图所示,CD是△ABC的中线,DE是△ACD的中线,EF为△ADE的中线,若△AEF的面积为1cm2,求△ABC的面积.①②③④答案:1.B 2.C 3.C 4.C5.C (点拨:等底等高)6.A 7.略 8.D9.稳定性三条腿的凳子等10.可在门(窗)角上钉一根木条,或用木杆顶在门(窗)角上,•这样做根据的数学道理是三角形的稳定性.11.解:∵S△ABC =12BC·AD=12AC·BE,∴BC·AD=AC·BE,∴BE=1268BC ADAC⨯==9.12.解:设AB=x(cm),则AD=DC=12x(cm).(1)若AB+AD=12,即x+12x=12.所以x=8.即AB=AC=8cm,则DC=4cm,故BC=15-4=11cm,此时AB+AC>BC,所以三边长分别为8cm,8cm,11cm.(2)若AB+AD=15,即x+12x=15,所以x=10,则DC=5cm,故BC=12-5=7cm,显然此时三角形存在,所以三边长分别为10cm,10cm,7cm.综上所述,此三角形的三边长分别为:8cm,8cm,11cm或10cm,10cm,7cm.13.(1)略(2)角度相同,中点三角形各边是原三角形各边长度的一半.(3)经度量知中点三角形与原三角形相比,底和高的长度分别是原三角形的底与高的12,所以面积是原三角形面积的14.(4)△ABC面积为8cm2,解略.。

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (23)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (23)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案)如图,AE是△ABC的角平分线,AD是△AEC的角平分线,若∠BAC=80°,则∠EAD=()A.30°B.45°C.20°D.60°【答案】C【解析】【分析】根据角平分线的性质即可求解.【详解】∵∵BAC=80°,AE是∵ABC的角平分线,∵∵EAC=12∵BAC=40°,∵AD是∵AEC的角平分线,∵∵EAD=12∵EAC=20°.故选:C.【点睛】考查了三角形的角平分线.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.22.点P是△ABC内一点,且P到△ABC的三边距离相等,则P是△ABC 哪三条线的交点()A.边的垂直平分线B.角平分线C.高线D.中位线【答案】B【解析】【分析】根据到角的两边的距离相等的点在角的平分线上解答.【详解】∵P到△ABC的三边距离相等,∴点P在△ABC的三条角平分线上,∴P是△ABC三条角平分线的交点,故选:B.【点睛】本题考查的是角平分线的性质,掌握到角的两边的距离相等的点在角的平分线上是解题的关键.23.如图,在直角三角形ABC中,点B沿CB所在直线远离C点移动,下列说法错误的是( )A.三角形面积随之增大B.∠CAB的度数随之增大C.BC边上的高随之增大D.边AB的长度随之增大【答案】C【解析】【分析】根据三角形的面积公式、角和线段大小的比较以及三角形高的定义进行解答即可.【详解】解:A、在直角三角形ABC中,S△ABC=1BC•AC,点B沿CB所在直线远2离C点移动时BC增大,则该三角形的面积越大.故A正确;B、如图,随着点B的移动,∠CAB的度数随之增大.故B正确;C、BC边上的高是AC,线段AC的长度是不变的.故C错误.D、如图,随着点B的移动,边AB的长度随之增大.故D正确;故选:C.【点睛】本题考查了三角形的面积,角和线段大小的比较以及三角形高的定义,解题时要注意“数形结合”数学思想的应用.24.如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则下列结论正确的有( )①∠DFE=∠AEF;②∠EMF=90°;③EG∥FM;④∠AEF=∠EG C.A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据角平分线的定义,平行线的性质和判定解答即可.【详解】∵AB∥CD,∴∠DFE=∠AEF(两直线平行,内错角相等),①正确;∵AB∥CD, ∴∠MFE+∠MEF=180°,∵FM平分∠EFD,EM平分∠BEF,∴∠MFE=12∠DFE,∠MEF =12∠BEF,∴∠EMF=∠MFE+∠MEF = 12∠DFE+12∠BEF=90°, ②正确;∵AB∥CD, ∴∠AEF=∠DFE, ∵EG平分∠AEF,∴∠AEG=∠GEF=12∠AEF,∵FM平分∠DFE,∴∠EFM=∠MFD=12∠DFE,∴∠GEF=∠EFM, ∴EG∥FM,③正确;∵∠AEF=∠DFE≠∠EGC,④错误,正确的有3个,故选C.【点睛】考查了角平分线的定义,平行线的性质和判定定理,掌握平行线的性质和判定是解题的关键.25.如图所示,△ABC中AC边上的高线是()A.线段DA B.线段BA C.线段BD D.线段BC【答案】C【解析】【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.【详解】由图可知,ABC中AC边上的高线是BD.故选:C.【点睛】掌握垂线的定义是解题的关键.26.对于任意三角形的高,下列说法不正确的是()A.直角三角形只有一条高B.锐角三角形有三条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部【答案】A【解析】【分析】根据三角形的高的性质即可解题.【详解】解:直角三角形有三条高,两条直角边上的高与直角边重合,∴A 项错误,故选A.【点睛】本题考查了三角形的高,属于简单题,熟悉三角形的高的作法是解题关键.27.数学课上,同学们在练习本上画钝角三角形ABC 的高BE 时,有一部分学生画出下列四种图形,其中错误的个数为( )A .1个B .2个C .3个D .4个【答案】C【解析】 第一个是对的,后面三个是错误的.选C.28.,该三角形的重心到斜边的距离为( )A .3B .3C .23D .13【答案】D【解析】【分析】作等腰直角三角形底边上的高并根据勾股定理求解,再根据三角形重心三等分中线的性质即可求出.【详解】如图,根据三线合一的性质,底边上的中线sin45°=1,∵三角形的重心到三角形顶点的距离等于中点距离的2倍,∴重心到AB的距离=1×13=13.故选D.【点睛】此题考查等腰直角三角形,三角形的重心,解题关键在于画出图形29.下列说法正确的是( )A.三角形的三条高至少有一条在三角形内B.直角三角形只有一条高C.三角形的角平分线其实就是角的平分线D.三角形的角平分线、中线、高都在三角形的内部【答案】A【解析】【分析】根据三角形的中线,角平分线和高线的定义以及在三角形的位置对各选项分析判断后利用排除法求解.【详解】A、三角形的三条高至少有一条在三角形内,正确;B、直角三角形只有三条高,而题目中是只有一条高,错误;C、三角形的角平分线是线段,而角的平分线是射线,错误;D、锐角三角形的角平分线、中线、高都在三角形的内部,但钝角三角形的高有的在外部,错误;故选A.【点睛】本题考查了三角形的角平分线、中线、高线,是基础题,熟记概念以及在三角形中的位置是解题的关键.30.如图,O为直线AB上一点,∠DOC为直角,OE平分∠AOC,OG 平分∠BOC,OF平分∠BOD,下列结论:①∠AOE与∠BOG互余②∠EOF 与∠GOF互补③∠DOE与∠DOG互补④∠AOC﹣∠BOD=90°,其中正确的有()个.A.4 B.3 C.2 D.1【答案】B【解析】【分析】根据余角和补角的定义以及角平分线的定义计算出各选项的结果判断即可.【详解】解:①∵∠AOC+∠BOC=180°,OE平分∠AOC,OG平分∠BOC,∴∠AOE=12∠AOC,∠GOB=12∠BOC,∴∠AOE+∠BOG=12(∠AOC+∠BOC)=90°,∴∠AOE与∠BOG互余,故正确;②∵∠DOC=90°,OG平分∠BOC,OF平分∠BOD,∴∠BOG+∠BOF=12∠BOC+12∠BOD=12∠COD=45°,∴∠EOF+∠GOF=∠EOG+∠GOF+∠GOF=90°+45°+45°=180°,∴∠EOF与∠GOF互补,故正确;③∵∠DOE+∠DOG=∠EOF+∠DOF+∠FOG+∠DOF,∵∠EOF+∠GOF=180°,∴∠DOE+∠DOG=180°+2∠DOF,∴∠DOE与∠DOG不互补,故错误;④∵∠AOC+∠BOC=180°,∠BOC=90°﹣∠BOD,∴∠AOC﹣∠BOD=90°,故正确,故选:B.【点睛】本题考查余角和补角的定义及性质,角平分线定义,角的和差计算,准确识图是解题的关键.。

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (30)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (30)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案)如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC.(1)若∠DBC=30°,求∠A的度数;(2)若点F在线段AE上,且7∠DBC-2∠ABF=180°,请问图中是否存在与∠DFB相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.【答案】(1)∠A=60°;(2)存在,∠DFB=∠DBF.【解析】【分析】(1)根据角平分线的定义得到∠EBC=2∠DBC=60°,∠ABC=2∠EBC=120°,根据平行线的性质得到∠A+∠ABC=180°,于是得到结论;(2)设∠DBC=x°,则∠ABC=2∠ABE=(4x)°,根据已知条件得到∠ABF=(72x-90)°,求得∠DBF=(90-12x)°,根据平行线的性质得到∠DFB+∠CBF=180°,于是得到∠DFB=(90-12x)°,即可得到结论.【详解】解:(1)∵BD平分∠EBC,∠DBC=30°,∴∠EBC=2∠DBC=60°.∵BE平分∠ABC,∴∠ABC =2∠EBC =120°.∵AD ∥BC ,∴∠A +∠ABC =180°,∴∠A =60°.(2)存在∠DFB =∠DBF.理由如下:设∠DBC =x °,则∠ABC =2∠ABE =(4x)°.∵7∠DBC -2∠ABF =180°,∴(7x)°-2∠ABF =180°,∴∠ABF =(72x-90)°, ∴∠CBF =∠ABC -∠ABF =(12x+90)°, ∠DBF =∠ABC -∠ABF -∠DBC =(90-12x )°. ∵AD ∥BC ,∴∠DFB +∠CBF =180°,∴∠DFB =(90-12x )°, ∴∠DFB =∠DBF.【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补.92.已知,如图1,OB 、OC 分别为定角(大小不会发生改变)∠AOD 内部的两条动射线,∠AOC 与∠BOD 互补,∠AOB +∠COD =50°(1)求∠AOD 的度数;(2)如图2,射线OM、ON分别为∠AOB、∠COD的平分线,当∠COB 绕着点O旋转时,下列结论:①∠AON的度数不变;②∠MON的度数不变.其中只有一个是正确的,请你做出正确的选择并求值.(3)如图3,OE、OF是∠AOD外部的两条射线,且∠EOB=∠COF=110°,OP平分∠EOD,OQ平分∠AOF,当∠BOC绕着点O旋转时,∠POQ 的大小是否会发生变化?,若不变,求出其度数;若变化,说明理由.【答案】(1)∠AOD=115°;(2)②正确,∠MON的度数为90°不变;理由见解析;(3)∠POQ的大小不变为135°.【解析】【分析】(1)根据角的定义可知∠AOC+∠BOD=180°,与∠AOB+∠COD=50°,结合可得∠BOC的度数,即可求出∠AOD的度数;(2)根据角平分线的定义得出∠MON=∠CON+∠BOM+∠BOC=25°+65°=90°;(3)先求得∠DOE+∠AOF的值,再根据角平分线的定义得出∠POD+∠AOQ,再加上∠AOD即可得∠POQ的值.【详解】解:(1)∵∠AOC与∠BOD互补,∴∠AOB+∠COD+2∠BOC=180°,∵∠AOB+∠COD=50°,∴∠BOC=65°,∴∠AOD=∠BOC+∠AOB+∠COD=115°;(2)②正确,∠MON的度数为90°不变;理由如下:∵OM、ON分别为∠AOB、∠COD的平分线,∴∠CON+∠BOM=12(∠AOB+∠COD)=12×50°=25°,∴∠MON=∠CON+∠BOM+∠BOC=25°+65°=90°,故②正确,∠MON的度数为90°不变;(3)∠POQ的大小不变为135°,∵∠EOB=∠COF=110°,∠BOC=65°,∴∠COE=∠BOF=110°﹣65°=45°,∴∠COE+∠BOF=∠COD+∠DOE+∠AOB+∠AOF=90°,∵∠AOB+∠COD=50°,∴∠DOE+∠AOF=40°,∵OP平分∠EOD,OQ平分∠AOF,∴∠DOP+∠AOQ=12(∠DOE+∠AOF)=20°,∴∠POQ=∠DOP+∠AOQ+∠AOD=20°+115°=135°,故∠POQ的大小不变为135°.故答案为:(1)∠AOD=115°;(2)②正确,∠MON的度数为90°不变;理由见解析;(3)∠POQ的大小不变为135°.【点睛】本题考查角的有关计算以及角平分线的定义,熟练掌握角平分线的定义是解题的关键.93.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图1,若∠COF=34°,则∠BOE=______;(2)如图1,若∠BOE=80°,则∠COF=______;(3)若∠COF=m°,则∠BOE=______度;∠BOE与∠COF的数量关系为______.(4)当∠COE绕点O逆时针旋转到如图2的位置时,(3)中∠BOE与∠COF 的数量关系是否仍然成立?请说明理由.【答案】(1)68°(2) 40°(3)2m∠BOE=2∠COF;(4)成立,理由见解析.【解析】【分析】(1)根据互余得到∠EOF=90°-34°,再由OF平分∠AOE,得到∠AOE=2∠EOF,然后根据邻补角的定义即可得到∠BOE;(2)设∠COF=n°,根据互余得到∠EOF=90°-n°,再由OF平分∠AOE,得到∠AOE=2∠EOF=180°-2n°,然后根据邻补角的定义得到∠BOE=180°-(180°-2n°)=2n°=80°,于是得到结论;(3)当∠COF=m°,根据互余得到∠EOF=90°-m°,再由OF平分∠AOE,得到∠AOE=2∠EOF=180°-2m°,然后根据邻补角的定义得到∠BOE=180°-(180°-2m°)=2m°,所以有∠BOE=2∠COF;(4)同(3),可得到∠BOE=2∠COF.【详解】解:(1)∵∠COE是直角,∠COF=34°,∴∠EOF=90°-34°=56°,∵OF平分∠AOE.∴∠AOE=2∠EOF=112°,∴∠BOE=180°-112°=68°;(2)设∠COF=n°,∴∠EOF=90°-n°,∴∠AOE=2∠EOF=180°-2n°,∴∠BOE=180°-(180°-2n°)=2n°=80°,∴∠COF=40°;(3)当∠COF=m°,∴∠EOF=90°-m°,∴∠AOE=2∠EOF=180°-2m°,∴∠BOE=180°-(180°-2m°)=2m°,∴∠BOE=2∠COF;(4)∠BOE与∠COF的数量关系仍然成立.理由如下:设∠COF=n°,∵∠COE是直角,∴∠EOF=90°-n°,又∵OF平分∠AOE.∴∠AOE=2∠EOF=180°-2n°,∴∠BOE=180°-(180°-2n°)=2n°,即∠BOE=2∠COF.【点睛】本题考查了角的计算,角平分线的定义以及互余互补.解题的关键是注意找出所求角与已知角之间的关系.94.在△ABC中,AB﹦9,BC﹦2,并且AC为奇数,那么△ABC的周长为多少?【答案】20【解析】【分析】根据三角形三边关系,找到AC的取值范围,由AC为奇数求出AC长度,即可求出三角形周长.【详解】解:∵AB﹣BC<AC<AB﹢BC,(三角形三边关系)∵9﹣2<AC<9﹢2,即7<AC<11又A C为奇数,∵A C﹦9∵∵ABC的周长﹦9+9+2﹦20【点睛】本题考查了三角形的三边关系,三角形的周长,属于简单题,熟悉三边关系是解题关键.95.如图,直线AB、CD相交于点O,OE平分∠BOD(1)若∠AOC=60°,求∠BOE的度数;(2)若OF平分∠AOD,试说明OE⊥OF.【答案】(1)∠BOE=30°;(2)见解析.【解析】【分析】(1)由对顶角的性质可得∠BOD的度数,利用角平分线的性质即可得出∠BOE的度数;(2)由角平分线的性质可得∠DOF=12∠AOD,∠DOE=12∠BOD,利用平角的定义可求出∠EOF的度数,根据垂直的定义即可得答案.【详解】(1)∵直线AB、CD相交于点O,∴∠BOD=∠AOC=60°,又∵OE平分∠BOD,∴∠BOE=12∠BOD=30°;(2)∵OF平分∠AOD,∴∠DOF=12∠AOD,又∵OE平分∠BOD,∴∠DOE=12∠BOD,∴∠EOF=∠DOF+∠DOE=12(∠AOD+∠BOD)=12×180°=90°.∴OE⊥OF.【点睛】此题主要考查了垂直定义以及对顶角和角平分线的性质,熟练掌握角平分线的性质是解题关键.96.如图,P是等腰三角形ABC底边BC上的任一点,PE⊥AB 于E,PF⊥AC于F,BH是等腰三角形AC边上的高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.1.2 三角形的高、中线与角平分线
7.1.3 三角形的稳定性
基础过关作业
1.以下说法错误的是()
A.三角形的三条高一定在三角形内部交于一点
B.三角形的三条中线一定在三角形内部交于一点
C.三角形的三条角平分线一定在三角形内部交于一点
D.三角形的三条高可能相交于外部一点
2.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,•那么这个三角形是()
A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定
3.如图1,BD=1
2
BC,则BC边上的中线为______,△ABD的面积=_____的面积.
(1) (2) (3)
4.如图2,△ABC中,高CD、BE、AF相交于点O,则△BOC•的三条高分别为线段________.5.下列图形中具有稳定性的是()
A.梯形 B.菱形 C.三角形 D.正方形
6.如图3,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,求△ABD•与△ACD的周长之差.
7.如图,∠BAD=∠CAD,AD⊥BC,垂足为点D,且BD=CD.•可知哪些线段是哪个三角形的角平分线、中线或高?
综合创新作业
8.(综合题)如图5,在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分为15和6两部分,求该等腰三角形的腰长及底边长.
9.有一块三角形优良品种试验基地,如图所示,•由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).
10.(创新题)如图,在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,求S △ABE .
11.(2004年,陕西)如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 上的高,•且CD 、BE 交于一点P ,若∠A=50°,则∠BPC 的度数是( )
A .150°
B .130°
C .120°
D .100°
培优作业
12.(探究题)(1)如图7-1-2-9,AD 是△ABC 的角平分线,
DE ∥AB ,DF ∥AC ,EF 交AD 于点O .请问:DO 是△DEF 的角平分线吗?如果是,请给予证明;如果不是,请说明理由.
(2)若将结论与AD 是△ABC 的角平分线、DE ∥AB 、DF ∥AC 中的任一条件交换,•所得命题正确吗?
13.(开放题)要使四边形木架(用4根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?n 边形木架呢?
14.(趣味题)《三国演义》中有关木牛流马的叙述:
“孔明即手书一纸,付众观看,众将环绕而视.造木牛之法云:‘方腹曲头,一脚四足;头入领中,舌着于腹.载多而行少,独行者数十里,群行者二十里.曲者为牛头,双者为牛脚,横者为牛领,转者为牛足,覆者为牛背,方者为牛腹,垂者为牛舌,曲者为牛肋,刻者为牛齿,立者为牛角,细者为牛鞅,摄者为牛轴.牛仰双辕,人行六尺,牛行四步.’每牛载十人所食一月之粮,人不大劳,牛不饮食.”
你知道木牛流马中运用了什么数学知识吗?
数学世界
探险家的“难极”
有一个探险家,挖空心思想出一个“难极”来.
什么是探险家的“难极”呢?
一般情况下,如果从某地出发,先往北走100公里,再往东走100公里,然后往南走100公里,这时,终止地总要在出发地正东100公里处.
而若从某地出发,先往北走100公里,再往东走100公里,然后往南走100•公里,能正好回到原来的出发地.这个出发地被探险家称其为“难极”.
你知道探险家的“难极”在哪里吗?
答案:
1.A 点拨:锐角三角形的三条高在三角形内部交于一点,•直角三角形的三条高交于直角顶点,钝角三角形的三条高在三角形外部交于一点. 2.B 3.AD ;△ACD 4.BD ,CE ,OF 5.C 6.解:∵AD 为△ABC 的中线, ∴BD=CD ,
∴△ABD 与△ACD 的周长之差为:
(AB+BD+AD )-(AC+CD+AD )=AB-AC=5-3=2(cm ).
7.解:∵∠BAD=∠CAD ,∴AD 是△ABC 的角平分线,DE 是△BEC 的角平分线. ∵AD ⊥BC ,垂足为点D ,∴AD 是△ABC 的高,DE 是△BEC 的高. ∵BD=CD ,∴AD 是△ABC 的中线,DE 是△BEC 的中线. 点拨:本题是考查三角形的角平分线、中线和高的概念. 8.解:设AB=AC=2x ,则AD=CD=x . (1)AB+AD=15,BC+CD=6时, 有2x+x=15,解得x=5. ∴2x=10,BC=6-5=1.
(2)当BC+CD=15,AB+AD=6时, 有2x+x=6,解得x=2. ∴2x=4,BC=15-2=13.
∵4+4>13,∴此时构不成三角形.
∴这个等腰三角形的腰长及底边长分别为10,1.
点拨:要注意检验结果是否满足三角形三边关系定理.
9.解:方案1:如答图1,在BC 上取D 、E 、F ,使BD=ED=EF=FC ,连接AE 、ED 、•AF .
(1) (2) (3)
方案2:如答图2,分别取AB 、BC 、CA 的中点D 、E 、F ,连接DE 、EF 、DF . 方案3:如答图3,分别取BC 的中点D ,CD 的中点E ,AB 的中点F ,连接AD 、AE 、DF .同学们,你还有别的方法吗?试试看. 点拨:三角形面积计算公式为
1
2
×底×高,因此解题的关键是找出底、高分别相等的四个三角形.
10.解:∵AD 是△ABC 的边BC 上的中线,
∴S△ABD=1
2
S△ABC=
1
2
×4=2(cm2).
∵BE是△ABD的边AD上的中线,
∴S△ABE=1
2
S△ABD=
1
2
×2=1(cm2).
点拨:三角形的任一中线将三角形分为面积相等的两个小三角形.
11.B 点拨:∵CD、BE分别是AB、AC边上的高,
∴∠AEB=∠CDB=90°,
∵∠A=•50°,∴∠ABE=40°,
∴∠BPD=180°-∠CDB-∠ABE=180°-90°-40°=50°,•
∴∠BPC=180°-∠BPD=180°-50°=130°.
12.解:(1)DO是△DEF的角平分线.
证明:∵AD是△ABC的角平分线,
∴∠EAD=∠FAD.
∵DE∥AB,DF∥AC,
∴∠EDA=∠FAD,∠FDA=∠EAD(两直线平行,内错角相等).
∴∠EDA=∠FDA.
∴DO是△DEF的角平分线.
(2)所得命题正确.
13.解:要使四边形木架不变形,至少要再钉上1根木条.
要使五边形木架不变形,至少要再钉上2根木条.
要使六边形木架不变形,至少要再钉上3根木条.
要使n边形木架不变形,至少要再钉上(n-3)根木条.
14.答:用手抬按木牛的双辕或木马的头部,木牛流马会稳稳地向前迈进.用手操作的时候,人和木牛流马总是呈三角形.
这符合三角形稳定性原理,•这也是木牛流马“上山下岭,各尽其便”的原因.数学世界答案:探险家的“难极”就是南极点.。

相关文档
最新文档