三角形的高中线与角平分线练习题综述

合集下载

专题13.2三角形的高、中线与角平分线【十大题型】-2024-2025学年八年级数[含答案]

专题13.2三角形的高、中线与角平分线【十大题型】-2024-2025学年八年级数[含答案]

试卷第 4 页,共 15 页
OB ,5 表示线段 OE ,从 O 点出发,按 1753 运动可得到正方形 OAHG .从 O 点出发,按
1112445668 运动的轨迹形成的图形面积为

【变式 3-3】(23-24 八年级下·河南郑州·期末)
12.如图, 4 ´ 4 方格纸中小正方形的边长为 1,A,B 两点在格点上,请在图中格点上找到
【深入思考】有了这样思考问题的经历,于是小孙同学对探究四边形 ABCD 内作一条直线将
它分成面积相等的两部分给出一种思路:如图 3,小孙同学的辅助线:①连接对角线 AC ,
②作 DE ∥ AC 交 BC 的延长线于 E ;③取 BE 的中点 M ,则直线 AM 为所求直线.小孙同
学还尝试从理论上给予说明,请你帮助将说理过程补充完整:
试卷第 8 页,共 15 页
AE 的长.
【变式 5-3】(23-24 八年级上·河北廊坊·阶段练习)
20.在 V ABC 中, D 是 BC 的中点, AB = 12 , AC = 8 .用剪刀从点 D 入手进行裁剪,若沿
;若点 E 在 AB 上,沿 DE 剪开得到两部分周长
DA 剪成两个三角形,它们周长的差为
8
【题型 7 与角平分线有关的角度计算】
【题型 8 应用等面积法求线段长】
【题型 9 探究三角形的边、角、线】
【题型 10 三角形的稳定性】
9
10
12
13
知识点:三角形的高、中线与角平分线
(1)从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.
(2)三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点
S△ DEF =

三角形中线高角平分线的30题(有答案)ok

三角形中线高角平分线的30题(有答案)ok

题(有答案)三角形高中线角平分线专项练习30题(有答案)1.如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F.(1)试说明∠BCD=∠ECD;(2)请找出图中所有与∠B相等的角(直接写出结果).2.如图,AD为△ABC的中线,BE为三角形ABD中线,中线,的度数;(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;边上的高;(2)在△BED中作BD边上的高;边的距离为多少?(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?3.在△ABC中,AD是BC边上的中线,若△ABD和△ADC的周长之差为4(AB>AC),AB与AC的和为14,的长.求AB和AC的长.4.如图△ABC中,∠A=20°,CD是∠BCA的平分线,△CDA中,DE是CA边上的高,又有∠EDA=∠CDB,求的大小.∠B的大小.5.△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.的大小.(1)∠B=30°,∠C=70°,求∠EAD的大小.(2)若∠B<∠C,则2∠EAD与∠C﹣∠B是否相等?若相等,请说明理由.是否相等?若相等,请说明理由.6.在△ABC中,AD是高,AE是角平分线,∠B=20°,∠C=60°,求∠CAD和∠DAE的度数.的度数.7.在△ABC中.中.(如图)(1)若∠A=60°,AB、AC边上的高CE、BD交于点O.求∠BOC的度数.(如图)(2)若∠A为钝角,AB、AC边上的高CE、BD所在直线交于点O,画出图形,并用量角器量一量∠BAC+∠BOC= _________°,再用你已学过的数学知识加以说明.,再用你已学过的数学知识加以说明.(3)由(1)(2)可以得到,无论∠A为锐角还是钝角,总有∠BAC+∠BOC=_________°.8.在△ABC中,已知∠ABC=60°,∠ACB=50°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点.的交点.的度数.求∠ABE、∠ACF和∠BHC的度数.9.如图,△ACB中,∠ACB=90°,∠1=∠B.的高;(1)试说明CD是△ABC的高;(2)如果AC=8,BC=6,AB=10,求CD的长.的长.10.如图,已知△ABC的高AD,角平分线AE,∠B=26°,∠ACD=56°,求∠AED的度数.的度数.11.如图,△ABC中,∠ABC=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分线.的平分线.(1)求∠DAE的度数;的度数;是哪几个三角形的高.(2)指出AD是哪几个三角形的高.12.如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,的度数.求∠ABE、∠ACF和∠BHC的度数.13.如图,在△ABC中,∠B=60°,∠C=20°,AD为△ABC的高,AE为角平分线为角平分线的度数;(1)求∠EAD的度数;的关系并说明理由.(2)寻找∠DAE与∠B、∠C的关系并说明理由.14.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.的度数.15.如图,AD是△ABC的BC边上的高,AE是∠BAC的角平分线,的角平分线,的度数.(1)若∠B=47°,∠C=73°,求∠DAE的度数.的代数式表示)(2)若∠B=α°,∠C=β°(α<β),求∠DAE的度数(用含α、β的代数式表示)16.如图,在△ABC中,AD是角平分线,∠B=60°,∠C=45°,求∠ADB和∠ADC的度数.的度数.17.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.18.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?确吗?为什么?19.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.长.20.我们知道,任何一个三角形的三条内角平分线相交于一点,如图,若△ABC 的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E.)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)(1)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)之间有何数量关系,请写出来,并说明其中的道理.(2)从上表中你发现了∠BIC与∠BDI之间有何数量关系,请写出来,并说明其中的道理.40°60°90°120°∠BAC的度数的度数∠BIC的度数∠BDI的度数21.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA 的度数.的度数.22.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,填空:是高,填空:(1)BE=_________=_________(2)∠BAD=__________________(3)∠AFB=_________=90°(4)S△ABC=_________S△ABE.23.如图,BM是△ABC的中线,AB=5cm,BC=3cm,那么△ABM与△BCM的周长是差是多少?的周长是差是多少?24.在△ABC中,AB=AC,AD是中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.的长.25.如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?的边长的差吗?26.如图,在△ABC中,AC=AB,AD是BC边上的中线,则AD⊥BC,请说明理由.,请说明理由.27.如图,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.的角平分线,对吗?说明理由.28.如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,的长.求AC的长.29.如图所示,AD是△ABC的中线,AE是△ACD的中线,已知DE=2cm,求BD,BE,BC的长.的长.30.如图所示,AD是△ABC的中线,AB=6cm,AC=5cm,求△ABD和△ADC的周长的差.的周长的差.参考答案:1.(1)∵∠B=70°,CD ⊥AB 于D , ∴∠BCD=90°﹣70°=20°,在△ABC 中,∵∠A=30°,∠B=70°, ∴∠ACB=180°﹣30°﹣70°=80°, ∵CE 平分∠ACB , ∴∠BCE=∠ACB=40°,∴∠ECD=∠BCE ﹣∠BCD=40°﹣20°=20°, ∴∠BCD=∠ECD ;(2)∵CD ⊥AB 于D ,DF ⊥CE 于F , ∴∠CED=90°﹣∠ECD=90°﹣20°=70°, ∠CDF=90°﹣∠ECD=90°﹣20°=70°,所以,与∠B 相等的角有:∠CED 和∠CDF . 2.(1)∵∠BED 是△ABE 的一个外角,的一个外角, ∴∠BED=∠ABE+∠BAD=15°+35°=50°.(2)如图所示,EF 即是△BED 中BD 边上的高.边上的高. (3)∵AD 为△ABC 的中线,BE 为三角形ABD 中线, ∴S △BED =S △ABC =×60=15; ∵BD=5,∴EF=2S △BED ÷BD=2×15÷5=6, 即点E 到BC 边的距离为6.3.∵AD 是BC 边上的中线,边上的中线, ∴BD=CD ,∴△ABD 的周长﹣△ADC 的周长=(AB+AD+BD )﹣(AC+AD+CD )=AB ﹣AC=4,(2分)分) 即AB ﹣AC=4①, 又AB+AC=14②, ①+②得.2AB=18, 解得AB=9,②﹣①得,2AC=10, 解得AC=5,∴AB 和AC 的长分别为:AB=9,AC=5. 4.∵DE 是CA 边上的高,边上的高, ∴∠DEA=∠DEC=90°, ∵∠A=20°,∴∠EDA=90°﹣20°=70°, ∵∠EDA=∠CDB ,∴∠CDE=180°﹣70°×2=40°,在Rt △CDE 中,∠DCE=90°﹣40°=50°, ∵CD 是∠BCA 的平分线,的平分线,∴∠BCA=2∠DCE=2×50°=100°,在△ABC 中,∠B=180°﹣∠BCA ﹣∠A=180°﹣100°﹣20°=60°.故答案为:60 5.(1)∵∠B=30°,∠C=70° ∴∠BAC=180°﹣∠B ﹣∠C=80° ∵AE 是角平分线,是角平分线, ∴∠EAC=∠BAC=40°∵AD 是高,∠C=70° ∴∠DAC=90°﹣∠C=20°∴∠EAD=∠EAC ﹣∠DAC=40°﹣20°=20°;(2)由(1)知,∠EAD=∠EAC ﹣∠DAC=∠BAC ﹣(90°﹣∠C )①把∠BAC=180°﹣∠B ﹣∠C 代入①,整理得,整理得 ∠EAD=∠C ﹣∠B ,∴2∠EAD=∠C ﹣∠B .6.∵AD 是高,∠C=60°,∴∠CAD=90°﹣∠C=90°﹣60°=30°; ∵∠B=20°,∠C=60°,∴∠BAC=180°﹣∠B ﹣∠C=180°﹣20°﹣60°=100°, ∵AE 是角平分线,是角平分线, ∴∠CAE=∠BAC=×100°=50°,∴∠DAE=∠CAE ﹣∠CAD=50°﹣30°=20°. 7.(1)∵BD 、CE 分别是边AC ,AB 上的高,上的高, ∴∠ADB=∠BEC=90°, 又∵∠BAC=60°,∴∠ABD=180°﹣∠ADB ﹣∠A=180°﹣90°﹣60°=30°, ∴∠BOC=∠EBD+∠BEO=90°+30°=120°; (2)如图所示:)如图所示:∠BAC+∠BOC=180°;理由如下:∵BD 、CE 分别是边AC ,AB 上的高,上的高, ∴∠ADB=∠BEC=90°,∵∠ABD=180°﹣∠ADB ﹣∠BAD=180°﹣90°﹣∠BAD=90°﹣∠BAD ,∠O=180°﹣∠BEO ﹣∠DBA=90°﹣∠DBA=90°﹣(90°﹣∠BAD )=∠BAD , ∵∠BAC=180°﹣∠DAB , ∴∠BAC=180°﹣∠O , ∴∠BAC+∠O=180°; (3)由(1)(2)可得∠BAC+∠BOC=180°.8.∵BE是AC上的高,上的高,∴∠AEB=90°,∵∠ABC=60°,∠ACB=50°,∴∠A=180°﹣60°﹣50°=70°,∴∠ABE=180°﹣90°﹣70°=20°,∵CF是AB上的高,上的高,∴∠AFC=90°,∴∠ACF=180°﹣90°﹣70°=20°,∵∠ABE=20°,∴∠EBC=∠ABC﹣∠ABE=60°﹣20°=40°,∵∠ACF=20°,∠ACB=50°,∴∠BCH=30°,∴∠BHC=180°﹣40°﹣30°=110°.9.(1)∵∠1+∠BCD=90°,∠1=∠B ∴∠B+∠BCD=90°∴△BDC是直角三角形,即CD⊥AB,∴CD是△ABC的高;的高;(2)∵∠ACB=∠CDB=90°∴S△ABC=AC •BC=AB•CD,∵AC=8,BC=6,AB=10,∴CD===10.∵∠B=26°,∠ACD=56°∴∠BAC=30°∵AE平分∠BAC ∴∠BAE=15°∴∠AED=∠B+∠BAE=41°11.(1)∵AD⊥BC于D,∴∠ADB=∠ADC=90°,∵∠ABC=40°,∠C=60°,∴∠BAD=50°,∠CAD=30°,∴∠BAC=50°+30°=80°,∵AE是∠BAC的平分线,的平分线,∴∠BAE=40°,∴∠DAE=50°﹣40°=10°.(2)AD是△ABE、△ABD、△ABC、△AED、△AEC、△ADC的高.的高.12.∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.13.(1)∵在△ABC中,∠BAC=180°﹣∠C﹣∠B=180°﹣20°﹣60°=100°,又∵AE为角平分线,为角平分线,∴∠EAB=∠BAC=50°,在直角△ABD中,∠BAD=90°﹣∠B=90°﹣60°=30°,∴∠EAD=∠EAB﹣∠BAD=50°﹣30°=20°;(2)根据(1)可以得到:∠EAB=∠BAC=(180°﹣∠B﹣∠C)∠BAD=90°﹣∠B,则∠EAD=∠EAB﹣∠BAD=(180°﹣∠B﹣∠C)﹣(90°﹣∠B )=(∠B﹣∠C).14.∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°15.(1)∵∠B=47°,∠C=73°,∴∠BAC=180°﹣47°﹣73°=60°,∵AD是△ABC的BC边上的高,边上的高,∴∠BAD=90°﹣47°=43°,∵AE是∠BAC的角平分线,的角平分线,∴∠BAE=∠BAC=30°,∴∠DAE=∠BAD﹣∠BAE=43°﹣30°=13°;(2))∵∠B=α°,∠C=β°,∴∠BAC=180°﹣α°﹣β°,∵AD是△ABC的BC边上的高,边上的高,∴∠BAD=90°﹣α°,∵AE是∠BAC的角平分线,的角平分线,∴∠BAE=∠BAC=(180°﹣α°﹣β°),∴∠DAE=∠BAD﹣∠BAE=90°﹣α°﹣(180°﹣α°﹣β°),=90°﹣α°﹣90°+α°+β°,=(β﹣α)°16.∵∠B=60°,∠C=45°,∴∠BAC=180°﹣60°﹣45°=75°,∵AD为∠BAC的角平分线,的角平分线,∴∠BAD=∠CAD=∠BAC=37.5°,在△ABD 中,∠ADB=180°﹣∠BAD ﹣∠B=82.5°, 则∠ADC=180°﹣∠ADB=97.5°. 17.∵∠ACB=90°, ∴∠1+∠3=90°, ∵CD ⊥AB , ∴∠2+∠4=90°,又∵BE 平分∠ABC , ∴∠1=∠2, ∴∠3=∠4, ∵∠4=∠5, ∴∠3=∠5,即∠CFE=∠CEF.18.(1)在△ABC 中,∠BAC=180°﹣∠B ﹣∠C=180°﹣50°﹣80°=50°; ∵AD 是角平分线,是角平分线, ∴∠DAC=∠BAC=25°;在△ADC 中,∠ADC=180°﹣∠C ﹣∠DAC=75°; 在△ADE 中,∠DAE=180°﹣∠ADC ﹣AED=15°. (2)∠DAE=180°﹣∠ADC ﹣AED=180°﹣∠ADC ﹣90°=90°﹣∠ADC=90°﹣(180°﹣∠C ﹣∠DAC )=90°﹣(180°﹣∠C ﹣∠BAC )=90°﹣[180°﹣∠C ﹣(180°﹣∠B ﹣∠C )]=(∠C ﹣∠B ). (3)(2)中的结论仍正确.)中的结论仍正确.∠A ʹDE=∠B+∠BAD=∠B+∠BAC=∠B+(180°﹣∠B ﹣∠C )=90°+∠B ﹣∠C ;在△DA ʹE 中,∠DA ʹE=180°﹣∠A ʹED ﹣∠A ʹDE=180°﹣90°﹣(90°+∠B ﹣∠C )=(∠C ﹣∠B ). 19.∵AB=6cm ,AD=5cm ,△ABD 周长为15cm , ∴BD=15﹣6﹣5=4cm , ∵AD 是BC 边上的中线,边上的中线, ∴BC=8cm ,∵△ABC 的周长为21cm , ∴AC=21﹣6﹣8=7cm . 故AC 长为7cm . 20.(1)填写表格如下:)填写表格如下:∠BAC 的度数40° 60° 90°120° ∠BIC 的度数的度数 110°120°135°150°∠BDI 的度数110° 120° 135°(2)∠BIC=∠BDI ,理由如下:,理由如下:∵△ABC 的三条内角平分线相交于点I , ∴∠BIC=180°﹣(∠IBC+∠ICB ) =180°﹣(∠ABC+∠ACB ) =180°﹣(180°﹣∠BAC ) =90+∠BAC ; ∵AI 平分∠BAC , ∴∠DAI=∠DAE . ∵DE ⊥AI 于I , ∴∠AID=90°.∴∠BDI=∠AID+∠DAI=90°+∠BAC . ∴∠BIC=∠BDI .21.∵∠A=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°, 又∵AD 是高,是高, ∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°, ∵AE 、BF 是角平分线,是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°, ∴∠DAE=∠DAC ﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°, ∴∠DAC=30°,∠BOA=120°. 故∠DAE=5°,∠BOA=120°. 22.(1)∵AE 是中线,是中线, ∴BE=CE=BC , (2)∵AD 是角平分线,是角平分线, ∴∠BAD=∠CAD=∠BAC , (3)∵AF 是高,是高,∴∠AFB=∠AFC=90°,(4)S △ABC =,S △ABE =,∵BC=2BE,∴S△ABC=2S△ABE,故答案为CE,BC,∠CAD,∠BAC,∠AFC,2 23.∵BM是△ABC的中线,的中线,∴MA=MC,∴C△ABM﹣C△BCM=AB+BM+MA﹣BC﹣CM﹣BM =AB﹣BC=5﹣3=2cm.答:△ABM与△BCM的周长是差是2cm.24.方法1:由题意知:AB+AC+BC=34,AB+AD+BD=30,∵AB=AC,BD=BC,∴②×2得:2AB+2AD+BC=60③,③﹣①得:2AD=26,∴AD=13cm.方法2:∵AB=AC,D是中点,且AB+AC+BC=34,∴BD=BC,AB=(AB+AC),∴AB+BD=(AB+AC)+BC=(AB+AC+BC)=17cm (周长的一半).∵AB+BD+AD=30cm,AD=30﹣17=13cm.25.能..能.由题意知:△ABD的周长=AB+BD+AD,△ACD的周长=AC+CD+AD,又因为AD是BC边上的中线,边上的中线,所以BD=CD.∵△ABD的周长比△ACD的周长小5,∴AC+CD+AD﹣(AB+BD+AD)=AC﹣AB=5.即AC与AB的边长的差为5 26.∵AD是BC边上的中线,∴BD=DC,∵AC=AB,AD=AD,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,∴AD⊥BC.27.错误..错误.因为AD虽然是线段,但不符合三角形角平分线定义,这里射线AD是∠BAC的平分线.的平分线.28.∵AD是BC边上的中线,边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长﹣△ABD的周长=5cm.∴AC﹣AB=5cm.又∵AB+AC=11cm,∴AC=8cm.即AC的长度是8cm.29.∵AD是△ABC的中线,AE是△ACD的中线,的中线, ∴BD=CD=2DE=4cm,∴BE=BD+DE=6cm,∴BC=2BD=8cm.30.∵AD是△ABC中BC边上的中线,边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差=(AB+BC+AD)﹣(AC+BC+AD)=AB﹣AC=1.。

三角形的高、中线、角平分 线练习题

三角形的高、中线、角平分    线练习题

三角形的高、中线、角平分线练习题
1、三角形的三条中线、三条角平分线、三条高都是( )
A.直线 B.射线 C.线段 D.射线或线段
2、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定
3、能把三角形的面积分成两个相等的三角形的线段是( )
A.中线B.高C.角平分线 D.以上三种情况都正确
4、如图若∠BAF=∠CAF,则____是△ABD的角平分线,____是△ABC的角平分线
5、如图AB⊥AC,则AB是△ABC的边____上的高,也是△BDC的边______上的高,也是△ABD的边____上的高.
6、如图BD、AE分别是△ABC的中线、角平分线,AC=10cm ,∠BAC=700,则AD=_____,∠BAE=____.
7、在△ABC中,AE是中线,AD是角平分线,AF是高,填空:
⑴BE=___=_____;
⑵∠BAD=_____=_____;⑶∠AFB=_____=90
8、在△ABC中AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长。

9、要使四边形木架(用四根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?n边形木架呢?。

人教版八年级数学上11.1.2三角形的高、中线、角平分线同步练习题(解析版)

人教版八年级数学上11.1.2三角形的高、中线、角平分线同步练习题(解析版)

人教版八年级数学上11.1.2三角形的高、中线、角平分线同步练习题一.选择题1、下面四个图形中,线段BD是△ABC的高的是()A. B.C. D.答案:D分析:本题考查了三角形的高线.解答:△ABC中AC边上的高是过点B且垂直于AC边(或AC边延长线)的线段,只有D 选项正确.选D.2、下列说法正确的是()A. 三角形三条高都在三角形内B. 三角形三条中线相交于一点C. 三角形的三条角平分线可能在三角形内,也可能在三角形外D. 三角形的角平分线是射线答案:B分析:本题考查了三角形的高线、中线、角平分线.解答:∵钝角三角形的三条高有2条在三角形的外部,∴A错误;∵三角形三条中线相交于一点,∴B正确;∵三角形的三条角平分线都在在三角形内,∴C错误;∵三角形的角平分线、高、中线都是线段,∴D错误;选:B.3、如图,D、E分别是△ABC的边AC、BC的中点,那么下列说法中不正确的是()A. DE是△BCD的中线B. BD是△ABC的中线C. AD=DC,BE=ECD. AD=EC,DC=BE答案:D分析:本题考查了三角形的中线.解答:∵D、E分别是△ABC的边AC、BC的中点,∴DE是△BCD的中线,BD是△ABC的中线,AD=DC,BE=EC.但不能得到AD=EC和DC=BE.选D.4、三角形一边上的中线把原三角形一定分成两个()A. 形状相同的三角形B. 面积相等的三角形C. 直角三角形D. 周长相等的三角形答案:B分析:本题考查了三角形的中线.解答:三角形一边上的中线把原三角形一定分成两个面积相等的三角形.选B.5、如图所示,AD是△ABC的角平分线,AE是△ABD的角平分线.若∠BAC=80°,则∠EAD 的度数是()A. 20°B. 30°C. 45°D. 60°答案:A分析:本题考查了三角形的角平分线.解答:∵AD△ABC的角平分线,∠BAC=80°,∴∠BAD=12∠BAC=40°.又∵AE是△ABD的角平分线,∴∠EAD=12∠BAD=20°.选A.6、在△ABC中,AD为中线,BE为角平分线,则在以下等式中:①∠BAD=∠CAD;①∠ABE=∠CBE;①BD=DC;①AE=EC. 正确的是()A. ①②B. ③④C. ①④D. ②③答案:D分析:本题考查了三角形的中线、角平分线.解答:如下图,∵AD是△ABC的中线,BE是△ABC的角平分线,∴BD=CD,∠ABE=∠CBE,∴上述结论中正确的是①①.选D.7、三角形的高线是()A. 直线B. 线段C. 射线D. 三种情况都可能答案:B分析:本题考查了三角形的高线.解答:由三角形高的定义:“过三角形的一个顶点向对边或对边所在的直线引垂线,顶点到垂足之间的线段叫三角形的高线”可知:三角形的高线是线段.选B.8、如图,△ABC的角平分线AD、中线BE相交于点O,则①AO是△ABE的角平分线;①BO 是△ABD的中线;①DE是△ADC的中线;①ED是△EBC的角平分线.4个结论中正确的有()A. 1个B. 2个C. 3个D. 4个答案:B分析:本题考查了三角形的高线、中线、角平分线.解答:(1)∵AD是△ABC的角平分线,可得∠BAO=∠CAO,∴①“AO是△ABE的角平分线”这种说法是正确的;(2)由BE是△ABC的中线可得AE=CE,但不能确定AO=DO,∴①“BO是△ABD的中线”这种说法是错误的;(3)由BE是△ABC的中线可得AE=CE,∴①“DE是△ADC的中线”这种说法是正确的;(4)∵由题中条件不能得到∠ADE=∠CDE,∴①“ED是△EBC的角平分线”这种说法是错误的;即上述说法中正确的个数为:2.二、填空题9、如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,有下列说法:①点A与点B的距离是线段AB的长;①点A到直线CD的距离是线段AD的长;①线段CD是△ABC边AB上的高;①线段CD是△BCD边BD上的高.上述说法中,正确的个数为______个答案:4分析:本题考查了三角形的高线、点到直线的距离.解答:(1)根据“连接两点的线段的长度叫做两点间的距离”可知:①中的说法是正确的;(2)根据“直线为一点到直线的垂线段的长度叫做这点到直线的距离”可知:①中的说法正确;(3)根据三角形高的定义:“过三角形的一个顶点向对边或对边所在的直线引垂线,顶点到垂足之间的线段叫三角形的高线”可知:①中的说法正确;(4)根据三角形高的定义:“过三角形的一个顶点向对边或对边所在的直线引垂线,顶点到垂足之间的线段叫三角形的高线”可知:①中的说法正确;即上述说法中正确的个数为4.10、如图所示,CD是△ABC的中线,AC=9cm,BC=3cm,那么△ACD和△BCD的周长差是______cm.答案:6分析:由三角形一边上的中线把三角形分成的两个新三角形的周长差等于原三角形中另外两边的差.解答:∵CD是△ABC的中线,∴AD=BD.∵C△ACD=AC+AD+CD,C△BCD=BC+BD+CD,∴C△ACD-C△BCD=(AC+AD+CD-(BC+BD+CD)=AC+AD+CD-BC-BD-CD=AC-BC=9-3=6(cm).11、已知,AD是△ABC的一条高,如果∠BAD=65°,∠CAD=30°,则∠BAC=______.答案:95°或35°.分析:本题考查了三角形的高线.解答:三角形的高可能在三角形内部,也可能在三角形的外部,要分两种情况讨论:①当AD 在三角形的内部时,∠BAC=∠BAD+∠CAD=65°+30°=95°; 当AD在三角形的外部时,∠BAC=∠BAD-∠CAD=65°-30°=35°.12、如图,在△ABC中,AC⊥BC,CD⊥AB于点D.则图中共有______个直角三角形.答案:3分析:本题考查了直角三角形的判定.解答:∵在△ABC中,AC⊥BC,CD⊥AB,∴∠ACB=∠ADC=∠BDC=90°,∴△ABC、△ADC、△BDC都是直角三角形.即图中共有3个直角三角形.13、如图,在△ABC中,BD是角平分线,BE是中线,若AC=24cm,则AE=______cm,若∠ABC=72°,则∠ABD=______度.答案:12 36分析:本题考查了三角形的角平分线、中线.解答:∵在△ABC中,BD是角平分线,BE是中线,∴AE=12AC=12(cm),∠ABD=12∠ABC=36°.14、如图所示.在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=8cm2,则S阴影等于______cm2.答案:1分析:根据三角形的面积公式,知△BCE的面积是△ABC的面积的一半,进一步求得阴影部分的面积是△BEC的面积的一半.解答:解:∵点E是AD的中点,∴△BDE的面积是△ABD的面积的一半,△CDE的面积是△ACD的面积的一半.则△BCE的面积是△ABC的面积的一半,即为2cm2.∵点F是CE的中点,∴阴影部分的面积是△BCE的面积的一半,即为1cm2.三、解答题15、如图,D是△ABC中BC边上的一点,DE∥AC交AB于点E,若∠EDA=∠EAD,试说明AD是△ABC的角平分线.答案:见解答.分析:由DE∥AC交AB于点E可得∠CAD=∠EDA,结合∠EDA=∠EAD,可得∠CAD=∠EAD,即可得到结论.解答:∵DE∥AC,∴∠EDA=∠CAD.∵∠EDA=∠EAD,∴∠CAD=∠EAD.∴AD是△ABC的角平分线.16、如图,在△ABC中,AD⊥BC,BE⊥AC,BC=12,AC=8,AD=6,BE的长为多少?答案:9分析:由已知易得:S△ABC=12AC⋅BE=12BC⋅AD,代入BC=12,AC=8,AD=6即可解得BE的长.解答:∵在△ABC中,AD⊥BC,BE⊥AC,BC=12,AC=8,AD=6,∴S△ABC=12BC⋅AD=11262⨯⨯=36,又∵S△ABC=12 AC·BE,∴12×8×BE=36,解得:BE=9.17、如图,在3×2的正方形网格中,小正方形的边长为1,以图中A,B,C,D,E中的三点为顶点的三角形中,面积为1的三角形有哪些?答案:△ABC,△ADE,△BCE,△ACD.分析:根据不在同一直线上的三个点可构成一个三角形分析可知,以A、B、C、D、E中的三点为顶点的三角形共有9个,再根据题目中的已知条件计算每个三角形的面积可得答案.解答:以A、B、C、D、E中的三点为顶点的三角形有:△ABC,△ABD,△ABE,△ACD,△ACE,△ADE,△BCD,△BCE,△BDE,共9个;再根据小正方形的边长为1,计算可得其中面积为1的三角形有:△ABC,△ADE,△BCE,△ACD.18、如图,已知AD为△ABC的中线,AB=5cm,且△ACD的周长比△ABD的周长少2cm,求AC的长.答案:3cm分析:由AD是△ABC的中线可得CD=BD,从而可得C△ABD-C△ACD=(AB+AD+BD)-(AC+AD+CD)=AB-AC=2,由AB=5,可解得AC=3(cm).解答:∵AD为△ABC的中线,∴BD=CD.∵△ACD的周长比△ABD的周长少2cm,∴(AB+BD+AD)-(AC+AD+CD)=AB-AC=2cm,∴AC=AB-2=5-2=3(cm).19、张大爷的四个儿子都长大成人了,也该分家了,于是张大爷准备把如图所示的一块三角形的田地平均分给四个儿子,四个儿子要求田地的形状仍然是三角形,请你帮助张大爷提出一种平分的方案.答案:见解答.分析:此题答案不唯一,(1)可根据等底、等高的三角形面积相等,把其中一边均分成4份,连接分点和对角的顶点即可;(2)根据三角形一边的中线把三角形分成面积相等的两个三角形,作一边上的中线,再作由这条中线分成的两个三角形的中线即可.解答:答案不唯一,第一种方案:如图1,四等分一条边构成的四个三角形;第二种方案:如图2,作△ABC的一条中线,再作由中线分出的两个三角形的中线就可分成四个面积相等的三角形.20、如图,AD是∠CAB的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是∠EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.答案:是,理由见解答分析:由DE∥AB,DF∥AC,可得∠EDA=∠DAF,∠FDA=∠EAD,再结合∠EAD=∠F AD,就可得∠EDA=∠FDA,从而得到DO平分∠EDF.解答:DO是∠EDF的角平分线,理由如下:∵AD是∠CAB的角平分线,∴∠EAD=∠F AD.∵DE∥AB,DF∥AC,∴∠EDA=∠F AD,∠FDA=∠EAD.∴∠EDA=∠FDA,∴DO是∠EDF的角平分线.。

三角形的高中线与角平分线练习题

三角形的高中线与角平分线练习题

4321EDCBA1CDBA三角形的高、中线与角平分线11 如图,已知△ABC 中,AQ=PQ 、PR=PS 、PR ⊥AB 于R ,PS ⊥AC 于S ,有以下三个结论:①AS=AR ;②QP ∥AR ; ③△BRP ≌△CSP ,其中( ).(A)全部正确 (B)仅①正确 (C)仅①、②正确 (D)仅①、③正确 2、 如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是( )A. ∠3=∠4B.∠B=∠DCEC.∠1=∠2.D.∠D+∠DAB=180° 3.如图,ΔACB 中,∠ACB=900,∠1=∠B.(1)试说明 CD 是ΔABC 的高;(2)如果AC=8,BC=6,AB=10,求CD 的长。

4如图,直线DE 交△ABC 的边AB 、AC 于D 、E , 交BC 延长线于F ,若∠B =67°,∠ACB =74°, ∠AED =48°,求∠BDF 的度数5、如图:∠1=∠2=∠3,完成说理过程并注明理由: 因为 ∠1=∠2所以 ____∥____ ( ) 因为 ∠1=∠3所以 ____∥____ ( )6.以下列各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,5cm B .5cm ,6cm ,10cm C .1cm ,1cm ,3cm D .3cm ,4cm ,9cm7.等腰三角形的一边长等于4,一边长等于9,则它的周长是( ) A .17 B .22 C .17或22 D .138.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形9.已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105°D.30°或75°10.一个多边形的角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.811.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定12.三角形的三边长分别为5,1+2x,8,则x的取值围是________.13.如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.初一三角形的高、中线与角平分线21 如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)∠5的度数是多少?(3)求四边形ABCD各角的度数.2.△ABC中,∠A=50°,∠B=60°,则∠A+∠C=________.3 .已知三角形的三个角的度数之比为1:2:3,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定4.△ABC中,∠A=∠B+∠C,则∠A=______度.5.如图∠1+∠2+∠3+∠4=______度.6.如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,•∠C=45°,求∠DAE与∠AEC的度数.7.以下说法错误的是()6题A.三角形的三条高一定在三角形部交于一点B.三角形的三条中线一定在三角形部交于一点C.三角形的三条角平分线一定在三角形部交于一点D.三角形的三条高可能相交于外部一点8.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,•那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.如图,BD=1BC,则BC边上的中线为______,△ABD的面积=_____的面积.2(9)10.如图,△ABC中,高CD、BE、AF相交于点O,则△BOC•的三条高分别为线段________.(10)初一三角形的高、中线与角平分线31.下列图形中具有稳定性的是()A.梯形B.菱形C.三角形D.正方形2.如图3,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,求△ABD•与△ACD的周长之差.3.如图,∠BAD=∠CAD,AD⊥BC,垂足为点D,且BD=CD.•可知哪些线段是哪个三角形的角平分线、中线或高?4.如图5,在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分为15和6两部分,求该等腰三角形的腰长及底边长.5.有一块三角形优良品种试验基地,如图所示,•由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).6.如图,在△ABC中,D、E分别是BC、AD的中点,S△ABC=4cm2,求S△ABE.7.如图,在锐角△ABC中,CD、BE分别是AB、AC上的高,•且CD、BE交于一点P,若∠A=50°,则∠BPC的度数是()8如图7-1-2-9,AD是△ABC的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△DEF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.初一三角形的高、中线与角平分线41.若三角形的外角中有一个是锐角,则这个三角形是________三角形.2.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”).3.如图1,x=______.(1) (2) (3) 4.如图2,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是_________.5.如图3,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,求∠AEB的度数.7.如图所示,在△ABC中,AB=AC,AD=AE,∠BAD=60°,则∠EDC=______.8.一个零件的形状如图7-2-2-6所示,按规定∠A应等于90°,∠B、∠D应分别是30°和20°,叔叔量得∠BCD=142°,就断定这个零件不合格,你能说出道理吗?9.(1)如图(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(2)如图(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.11.如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF•的平分线,试探索∠D与∠A之间的数量关系.12 如图,BD为△ABC的角平分线,CD为△ABC的外角∠ACE的平分线,它们相交于点D,试探索∠BDC与∠A之间的数量关系.7.3 多边形及其角和基础过关作业1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80°B.90°C.170°D.20°2.一个多边形的角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.63.角和等于外角和2倍的多边形是()A.五边形B.六边形C.七边形D.八边形4.六边形的角和等于_______度.5.正十边形的每一个角的度数等于______,每一个外角的度数等于_______.6.如图,你能数出多少个不同的四边形?7.四边形的四个角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?8.求下列图形中x的值:综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF平分∠ADC.BE与DF有怎样的位置关系?为什么?10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,)已知一个多边形的角和为540°,则这个多边形为()A.三角形B.四边形C.五边形D.六边形(2)(2005年,)五边形的角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )A.1个B.2个C.3个D.4个培优作业14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的角和增加多少度?若将n边形的边数增加1倍,则它的角和增加多少度?数学世界攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.4.7205.144°;36°点拨:正十边形每一个角的度数为:(102)18010-⨯︒=144°,每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的角和为360°,如果四个角都是锐角或都是钝角,•则角和小于360°或大于360°,与四边形的角和为360°矛盾.•所以四个角不可以都是锐角或都是钝角.若四个角都是直角,则四个角的和等于360°,与角和定理相符,所以四个角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.∴∠ABC+∠ADC=360°-180°=180°.∵∠ABE=12∠ABC,∠ADF=12∠ADC,∴∠ABE+∠ADF=12(∠ABC+∠ADC)=12×180°=90°.又∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).10.解:12n (n-3)=12×10×(10-3)=12×10×7=35(场).答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数.11.解:(5-2)×180°÷360°×12=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的角和.12.(1)C 点拨:设这个多边形的边数为n ,依题意,得(n-2)×180°=540°,解得n=5,故选C .(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;……n 边形有(3)2n n -条对角线. (2)当n 边形的边数增加1时,对角线增加(n-1)条.点拨:从n 边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n 个顶点共可引n (n-3)条,但这些对角线每一条都重复了一次,故n 边形的对角线条数为(3)2n n -. 15.180°,n ·180°.数学世界答案:是最短的路程.可用纸板做一个模型,沿AB 剪开便可看出结论.。

七年级7.1.2 三角形的高、中线与角平分线(专题课时练含答案)-

七年级7.1.2 三角形的高、中线与角平分线(专题课时练含答案)-

7.1.2 三角形的高、中线与角平分线◆知能点分类训练知能点1 三角形的高、中线与角平分线1.下列说法正确的是().A.直角三角形只有一条高B.如果一个三角形有两条高与这个三角形的两边重合,•那么这个三角形是直角三角形 C.三角形的三条高,可能都在三角形内部,也可能都在三角形外部D.三角形三条高中,在三角形外部的最多只有1条2.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是().A.锐角三角形 B.钝角三角形 C.直角三角形 D.等边三角形3.如图所示,画△ABC的一边上的高,下列画法正确的是().4.三角形的角平分线是().A.直线 B.射线 C.线段 D.以上都不对5.如图所示,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S1表示△ACM的面积,则S1与S2的大小关系是().A.S1>S2B.S1<S2C.S1=S2D.以上三种情况都可能6.下列说法:①三角形的角平分线、中线、高线都是线段;•②直角三角形只有一条高线;③三角形的中线可能在三角形的外部;④三角形的高线都在三角形的内部,并且相交于一点,其中说法正确的有().A.1个 B.2个 C.3个 D.4个7.如图所示,已知△ABC:(1)过A画出中线AD;(2)画出角平分线CE;(3)作AC边上的高.知能点2 三角形的稳定性8.下列四个图形中,具有不稳定性的图形是().9.照相机的支架是三条腿,这是利用了三角形的_________.•现实生活中还有利用三角形的这个特性的例子吗?如果知道,请写出来:________.10.如图所示,建筑工人在安装门窗时,先要把木头门窗固定好,这样搬运和安装起来才不会变形,请你设计一种方法固定木头门窗,这样做依据的数学道理是什么?◆规律方法应用11.如图所示,在△ABC中,AD⊥BC,BE⊥AC,BC=12,AC=8,AD=6,求BE的长.12.在△ABC中,AB=AC,AC边上的中线BD把三角形的周长分为12cm和15cm两部分,求三角形各边的长.◆开放探索创新13.将一个三角形的三边中点顺次连结可得到一个新的三角形,通常称为“中点三角形”,如图①所示,△DEF是△ABC的中点三角形.(1)画出图中另外两个三角形的中点三角形.(2)用量角器和刻度尺量△DEF和△ABC的三个内角和三条边,看看你有什么发现?并通过三个图的重复度量实验,验证你的发现.(3)你知道S△ABC和S△EDF的关系吗?怎样得出来的?(4)根据(2)中的结论,解答下列问题,如图所示,CD是△ABC的中线,DE是△ACD的中线,EF为△ADE的中线,若△AEF的面积为1cm2,求△ABC的面积.①②③④答案:1.B 2.C 3.C 4.C5.C (点拨:等底等高)6.A 7.略 8.D9.稳定性三条腿的凳子等10.可在门(窗)角上钉一根木条,或用木杆顶在门(窗)角上,•这样做根据的数学道理是三角形的稳定性.11.解:∵S△ABC =12BC·AD=12AC·BE,∴BC·AD=AC·BE,∴BE=1268BC ADAC⨯==9.12.解:设AB=x(cm),则AD=DC=12x(cm).(1)若AB+AD=12,即x+12x=12.所以x=8.即AB=AC=8cm,则DC=4cm,故BC=15-4=11cm,此时AB+AC>BC,所以三边长分别为8cm,8cm,11cm.(2)若AB+AD=15,即x+12x=15,所以x=10,则DC=5cm,故BC=12-5=7cm,显然此时三角形存在,所以三边长分别为10cm,10cm,7cm.综上所述,此三角形的三边长分别为:8cm,8cm,11cm或10cm,10cm,7cm.13.(1)略(2)角度相同,中点三角形各边是原三角形各边长度的一半.(3)经度量知中点三角形与原三角形相比,底和高的长度分别是原三角形的底与高的12,所以面积是原三角形面积的14.(4)△ABC面积为8cm2,解略.。

三角形的高-中线-角平分线测试题

三角形的高-中线-角平分线测试题

三角形的高中线角平分线测试题一、选择题1、能把一个三角形分成面积相等的两部分的是该三角形的一条()A.中线 B.角平分线 C.高线 D.边的垂直平分线2、已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个 B.4个 C.5个 D.6个3、如图,三边均不等长的△ABC,若在此三角形内找一点O,使得△OAB.△OBC.△OCA的面积均相等.判断下列作法何者正确()A.作中线AD,再取AD的中点OB.分别作中线AD.BE,再取此两中线的交点OC.分别作AB.BC的中垂线,再取此两中垂线的交点OD.分别作∠A.∠B的角平分线,再取此两角平分线的交点O4、如图,在△ABC中E是BC上的一点,BC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=()A、1B、2C、3D、45、如图,G为△ABC的重心,其中∠C=90°,D在AB上,GD⊥AB.若AB=29,AC=20,BC=21,则GD的长度为()A、7B、14C、D、则能摆出不同的三角形的个数是()A.1 B.2 C.3 D.47、已知小明家距离学校10千米,而小蓉家距离小明家3千米.如果小蓉家到学校的距离是d千米,则d满足()A.3<d<10B.3≤d≤10C.7<d<13D.7 ≤d≤138、△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则△ABC的形状是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定9.如图,高BD与CE交于O点,若∠BAC=72°,则∠DOE的度数( )A.72°B.18°C.108° D.162°10、已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是()A.2n-2 B.2n-1 C.2n D.2n+1二、填空题1、一个三角形的两边分别是2厘米和9厘米,第三边长是一个奇数,则第三边长为 .2、已知等腰三角形的一边等于5,另一边等于6,则它的周长等于3、四条线段的长分别为5cm,6cm,8cm,13cm,以其中任意三条线段为边可构成三角形个。

(完整版)三角形角平分线、中线、高线证明题

(完整版)三角形角平分线、中线、高线证明题

(完整版)三角形角平分线、中线、高线证明题2.证题的思路:找夹角()性质 1、全等三角形的SAS已知两边 找直角( HL )对应角相等、对应边相找第三边( SSS等。

)2、全等三角形的若边为角的对边,则找 随意角( AAS)找已知角的另一边( )已知一边一角SAS 对应边上的 高对应相边为角的邻边 找已知边的对角()AAS等。

找夹已知边的另一角()ASA3、全等三角形的找两角的夹边()对应角均分线相等。

已知两角ASA4、全等三角形的 找随意一边()AAS对应中线相等。

5、全等三角形面积相等。

6、全等三角形 周长相等。

( 以上能够简称 : 全等三角形的对应元素相等 ) 7、三边对应相等的两个三角形全等。

( SSS)8、两边和它们的夹角对应相等的两个三角形全等。

(SAS) 9、两角和它们的夹边对应相等的两个三角形全等。

(ASA)10、两个角和此中一个角的对边对应相等的两个三角形全等。

(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。

(HL)全等三角形问题中常有的协助线的作法常有协助线的作法有以下几种:1) 碰到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思想模式是全等变换中的“对折” .2) 碰到三角形的中线,倍长中线,使延伸线段与原中线长相等,结构全等三角形,利用的思想模式是全等变换中的“旋转” .3) 碰到角均分线,能够自角均分线上的某一点向角的两边作垂线,利用的思想模式是三角形全等变换中的“对折” ,所考知识点经常是角均分线的性质定理或逆定理. 4) 过图形上某一点作特定的均分线, 结构全等三角形, 利用的思想模式是全等变换中的“平移”或“翻转折叠”5) 截长法与补短法, 详细做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延伸,是之与特定线段相等,再利用三角形全等的相关性质加以说明. 这类作法,合适于证明线段的和、差、倍、分等类的题目.特别方法:在求相关三角形的定值一类的问题时, 常把某点到原三角形各极点的线段连结起来,利用三角形面积的知识解答.三角形协助线做法图中有角均分线,可向两边作垂线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4321EDCBA1CDB三角形的高、中线与角平分线11 如图,已知△ABC 中,AQ=PQ 、PR=PS 、PR ⊥AB 于R ,PS ⊥AC 于S ,有以下三个结论:①AS=AR ;②QP ∥AR ; ③△BRP ≌△CSP ,其中( ).(A)全部正确 (B)仅①正确 (C)仅①、②正确 (D)仅①、③正确2、 如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是( )A. ∠3=∠4B.∠B=∠DCEC.∠1=∠2.D.∠D+∠DAB=180° 3.如图,ΔACB 中,∠ACB=900,∠1=∠B.(1)试说明 CD 是ΔABC 的高;(2)如果AC=8,BC=6,AB=10,求CD 的长。

4如图,直线DE 交△ABC 的边AB 、AC 于D 、E , 交BC 延长线于F ,若∠B =67°,∠ACB =74°, ∠AED =48°,求∠BDF 的度数5、如图:∠1=∠2=∠3,完成说理过程并注明理由: 因为 ∠1=∠2所以 ____∥____ ( ) 因为 ∠1=∠3所以 ____∥____ ( )6.以下列各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,5cm B .5cm ,6cm ,10cm C .1cm ,1cm ,3cm D .3cm ,4cm ,9cmA.17 B.22 C.17或22 D.138.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形9.已知等腰三角形的一个角为75°,则其顶角为()A.30° B.75° C.105° D.30°或75°10.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是() A.5 B.6 C.7 D.811.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定12.三角形的三边长分别为5,1+2x,8,则x的取值范围是________.13.如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.初一三角形的高、中线与角平分线21 如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)∠5的度数是多少?(3)求四边形ABCD各内角的度数.2.△ABC中,∠A=50°,∠B=60°,则∠A+∠C=________.3 .已知三角形的三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定4.△ABC中,∠A=∠B+∠C,则∠A=______度.5.如图∠1+∠2+∠3+∠4=______度.6.如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,•∠C=45°,求∠DAE与∠AEC的度数.7.以下说法错误的是()6题A.三角形的三条高一定在三角形内部交于一点B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点D.三角形的三条高可能相交于外部一点8.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,•那么这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定9.如图,BD=1BC,则BC边上的中线为______,△ABD的面积=_____的面积.2(9)10.如图,△ABC中,高CD、BE、AF相交于点O,则△BOC•的三条高分别为线段________.(10)初一三角形的高、中线与角平分线31.下列图形中具有稳定性的是()A.梯形 B.菱形 C.三角形 D.正方形2.如图3,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,求△ABD•与△ACD的周长之差.3.如图,∠BAD=∠CAD,AD⊥BC,垂足为点D,且BD=CD.•可知哪些线段是哪个三角形的角平分线、中线或高?4.如图5,在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分为15和6两部分,求该等腰三角形的腰长及底边长.5.有一块三角形优良品种试验基地,如图所示,•由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).6.如图,在△ABC中,D、E分别是BC、AD的中点,S△ABC=4cm2,求S△ABE.7.如图,在锐角△ABC中,CD、BE分别是AB、AC上的高,•且CD、BE交于一点P,若∠A=50°,则∠BPC的度数是()8如图7-1-2-9,AD是△ABC的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△DEF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.初一三角形的高、中线与角平分线41.若三角形的外角中有一个是锐角,则这个三角形是________三角形.2.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、3.如图1,x=______.(1) (2) (3)4.如图2,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是_________.5.如图3,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,求∠AEB的度数.7.如图所示,在△ABC中,AB=AC,AD=AE,∠BAD=60°,则∠EDC=______.8.一个零件的形状如图7-2-2-6所示,按规定∠A应等于90°,∠B、∠D应分别是30°和20°,李叔叔量得∠BCD=142°,就断定这个零件不合格,你能说出道理吗?9.(1)如图(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(2)如图(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.11.如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF•的平分线,试探索∠D与∠A之间的数量关系.12 如图,BD为△ABC的角平分线,CD为△ABC的外角∠ACE的平分线,它们相交于点D ,试探索∠BDC与∠A之间的数量关系.7.3 多边形及其内角和1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80° B.90° C.170° D.20°2.一个多边形的内角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.63.内角和等于外角和2倍的多边形是()A.五边形 B.六边形 C.七边形 D.八边形4.六边形的内角和等于_______度.5.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______.6.如图,你能数出多少个不同的四边形?7.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?8.求下列图形中x的值:综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF平分∠ADC.BE与DF有怎样的位置关系?为什么?10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,南通)已知一个多边形的内角和为540°,则这个多边形为() A.三角形 B.四边形 C.五边形 D.六边形(2)(2005年,福建泉州)五边形的内角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• ) A.1个 B.2个 C.3个 D.4个培优作业14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的内角和增加多少度?若将n边形的边数增加1倍,则它的内角和增加多少度?数学世界攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.4.7205.144°;36°点拨:正十边形每一个内角的度数为:(102)18010-⨯︒=144°,每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个内角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的内角和为360°,如果四个内角都是锐角或都是钝角,•则内角和小于360°或大于360°,与四边形的内角和为360°矛盾.•所以四个内角不可以都是锐角或都是钝角.若四个内角都是直角,则四个内角的和等于360°,与内角和定理相符,所以四个内角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.∴∠ABC+∠ADC=360°-180°=180°.∵∠ABE=12∠ABC,∠ADF=12∠ADC,∴∠ABE+∠ADF=12(∠ABC+∠ADC)=12×180°=90°.又∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).10.解:12n(n-3)=12×10×(10-3)=12×10×7=35(场).答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数.11.解:(5-2)×180°÷360°×12=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的内角和.12.(1)C 点拨:设这个多边形的边数为n,依题意,得(n-2)×180°=540°,解得n=5,故选C.(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;……n边形有(3)2n n-条对角线.(2)当n边形的边数增加1时,对角线增加(n-1)条.点拨:从n边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n个顶点共可引n(n-3)条,但这些对角线每一条都重复了一次,故n边形的对角线条数为(3)2n n-.15.180°,n·180°.数学世界答案:是最短的路程.可用纸板做一个模型,沿AB剪开便可看出结论.。

相关文档
最新文档