§4.2空间图形的公理 习题课

合集下载

高中数学第一章立体几何初步1.4.2空间图形的公理练习北师大版必修2

高中数学第一章立体几何初步1.4.2空间图形的公理练习北师大版必修2

4.2 空间图形的公理时间:45分钟满分:80分班级________ 姓名________ 分数________一、选择题(每小题5分,共5×6=30分)1.下列说法正确的个数为( )①有三个公共点的两平面必重合;②平面α和平面β只有一个公共点;③三点肯定一个平面.A.1 B.2C.3 D.0答案:D解析:①当这三个公共点共线时,两平面可以相交,但不重合,故①错误;②由公理3,知两个平面如有一个公共点,则必有无数个公共点,故②错误;③不在同一直线上的三点才能肯定一个平面,③错误.故选D.2.已知α,β表示两个不同的平面,l表示直线,A,B表示两个不同的点.给出下列命题:①若A∈l,A∈α,B∈l,B∈α,则lα;②若A∈α,A∈β,B∈α,B∈β,则α∩β=AB;③若l⃘α,A∈l,则A∉α.其中正确命题的个数为( )A.0 B.1C.2 D.3答案:C解析:由公理2可知①正确;由公理3可知②正确;当点A为直线l与平面α的交点时,③错误.3.若∠AOB=∠A1O1B1,且OA∥O1A1,射线OA,O1A1的方向相同,则下列结论中正确的是( )A.OB∥O1B1,且射线OB,O1B1的方向相同B.OB∥O1B1C.OB与O1B1不平行D.OB与O1B1不必然平行答案:D解析:如图,在图1中OB∥O1B1,在图2中,OB与O1B1不平行.4.设α为两条异面直线所成的角,则α知足( )A .0°<α<90° B.0°<α≤90°C .0°≤α≤90° D.0°<α<180°答案:B解析:异面直线所成的角为锐角或直角,故选B.5.如图,在四面体S -ABC 中,G 1,G 2别离是△SAB 和△SAC 的重心,则直线G 1G 2与BC 的位置关系是( )A .相交B .平行C .异面D .以上都有可能答案:B解析:连接SG 1,SG 2并延长,别离与AB ,AC 交于点M ,N ,连接MN ,则M ,N 别离为AB ,AC 的中点,由重心的性质,知SG 1SM =SG 2SN,∴G 1G 2∥MN .又M ,N 别离为AB ,AC 的中点,∴MN ∥BC ,再由平行公理可得G 1G 2∥BC ,故选B.6.给出下列四个命题:①不共面的四点中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面;④依次首尾相接的四条线段必共面.其中正确命题的个数为( )A .0B .1C .2D .3答案:B解析:①假设其中有三点共线,则该直线和直线外的另一点肯定一个平面,这与四点不共面矛盾,故不共面的四点中任意三点不共线,所以①正确.②当A ,B ,C 共线时,结论可能不成立,所以②不正确;利用正方体模型,易知③不正确;由空间四边形,知④不正确.二、填空题(每小题5分,共5×3=15分)7.不共面的四点可以肯定__________个平面.答案:4解析:任何三点都可以肯定一个平面,从而可以肯定4个平面.8.已知正方体ABCD -A ′B ′C ′D ′中:(1)BC ′与CD ′所成的角为__________;(2)AD 与BC ′所成的角为__________.答案:(1)60° (2)45°解析:连结BA′,则BA′∥CD′,连结A′C′,则∠A′BC′就是BC′与CD′所成的角.由△A′BC′为正三角形.∴∠A′BC′=60°,由AD∥BC,∴AD与BC′所成的角就是∠C′BC.易知∠C′BC=45°.9.用一个平面去截一个正方体,截面可能是______.①三角形;②四边形;③五边形;④六边形.答案:①②③④解析:(注:这儿画了其中的特例来讲明有这几种图形)三、解答题(共35分,11+12+12)10.如图所示,AB∥CD,AB∩α=B,CD∩α=D,AC∩α=E.求证:B,E,D三点共线.证明:∵AB∥CD,∴AB,CD共面.设ABβ,CDβ,∴ACβ,又E∈AC,∴E∈β.又AB∩α=B,CD∩α=D,AC∩α=E,可知B,D,E为平面α与平面β的公共点,按照公理3,知B,E,D三点共线.11.如图,已知平面α,β,且ABCD中,AD∥BC,且AB⊂α,CD ⊂β,求证:AB,CD,l共点(相交于一点).证明:∵梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两腰,∴AB,CD必相交于一点.设AB∩CD=M,又AB⊂α,CD⊂β,∴M∈α,M∈β,∴M在α与β的交线上.又∵α∩β=l,∴M∈l,即AB,CD,l共点.12.如图,P是△ABC所在平面外一点,M,N别离是△PAB和△PBC的重心,AC=9.(1)求MN 的长;(2)若点P ,B 的位置转变,会影响M ,N 的位置和MN 的长度吗?解:(1)如图,连接PM 并延长交BA 于E ,连接PN 并延长交CB 于F ,连接EF . ∵M ,N 别离是△ABP 和△BPC 的重心,故E ,F 别离是AB ,BC 的中点,∴EF =12AC ,且EF ∥AC . 又PM PE =PN PF =23, ∴MN =23EF ,且MN ∥EF . ∴MN =23×12AC =13AC =3. (2)由(1)知MN 的长与B ,P 的位置无关,恒是定值.但如果P ,B 位置发生转变,M ,N 的位置也会改变.。

高中数学第一章立体几何初步4空间图形的基本关系与公理4.1空间图形基本关系的认识4.2空间图形的公理

高中数学第一章立体几何初步4空间图形的基本关系与公理4.1空间图形基本关系的认识4.2空间图形的公理
第十二页,共42页。
[小组合作型]
空间点、线、面的位置(wèi zhi)关系
(1)如果 a α,b α,l∩a=A,l∩b=B,l β,那么 α 与 β 的位置关系是________.
(2)如图 1-4-1,在正方体 ABCD-A′B′C′D′中, 哪几条棱所在的直线与直线 BC′是异面直线?
图 1-4-1
第十页,共42页。
两个平面若有三个公共点,则这两个平面( )
A.相交
B.重合
C.相交或重合
D.以上都不对
【解析】 若三个点在同一条直线上,则两平面可能相交;若这三个点不 在同一直线上,则这两个平面重合.
【答案】 C
第十一页,共42页。
[质疑·手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问 1: _____________________________________________________ 解惑: _______________________________________________________ 疑问 2: _____________________________________________________ 解惑: _______________________________________________________ 疑问 3: ______________________________________________________ 解惑: _______________________________________________________
平面与平面 的位置关系
面面平行 面面相交
α∥β α∩β=a
第五页,共42页。

2020_2021学年高中数学第一章4空间图形的基本关系与公理同步刷题课件北师大版必修2.pptx

2020_2021学年高中数学第一章4空间图形的基本关系与公理同步刷题课件北师大版必修2.pptx
题型2 点共线、线共点问题
9.如图,A,B,C,D为不共面的四点,E,F,G,H分别在线段AB,BC,CD,DA上.如果EF∩GH=Q, 那么点Q在直线__A__C____上.
解析 连接AC.若EF∩GH=Q,则点Q∈平面ABC,且点Q∈平面ACD.∵平面ABC∩平面ACD=AC, ∴点Q∈AC.
4.1 空间图形基本关系的认识+ 4.2 空间图形的公理 刷基础
解析 如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,所以①为假命题; 如果一个角的两边和另一个角的两边分别垂直,那么这两个角的大小关系是不确定的,所以 ③为假命题,②④是真命题.
4.1 空间图形基本关系的认识+ 4.2 空间图形的公理 刷基础
题型5 异面直线所成的角
15.[福建南平2019高一期末]在正方体ABCD-A1B1C1D1中,异面直线AD1与BD所成的角为( C ) A.30° B.45° C.60° D.90°
4.1 空间图形基本关系的认识+ 4.2 空间图形的公理 刷基础
题型4 平行公理与等角定理的应用
13.若两个三角形不在同一平面内,它们的边两两对应平行,那么这两个三角形( B )
A.全等
B.相似
C.仅有一个角相等 D.无法确定
解析 由等角定理知,这两个三角形的三个角分别对应相等,所以这两个三角形相似.
A.直线AC B.直线BC C.直线CR D.以上均不正确
解析 由题意知,∵AB∩l=R,平面α∩平面β=l,∴R∈l,l β,∴R∈β,又过Α,Β,C三 点的平面为γ,即C∈γ,∴C,R是平面β和γ的公共点,∴β∩γ=CR.故选C.
4.1 空间图形基本关系的认识+ 4.2 空间图形的公理 刷基础
解析 ∵EF 平面ABC,GH 平面ACD,∴点M∈平面ABC,点M∈平面ACD,∴点M在平面ABC与平面ACD 的交线AC上,∴点M一定在直线AC上.

北师大版数学高一必修2练习 1.4.2 空间图形的公理(二)

北师大版数学高一必修2练习 1.4.2 空间图形的公理(二)

1.下列命题中,真命题的个数是()①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角或直角相等;③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补.A.0B.1C.2 D.3解析:选B.①这两个角也可能互补,故①是错误的;②是正确的,它是等角定理的推广和延伸.③空间两条直线的垂直包括异面垂直,此时两个角有可能不相等且不互补,故③是错误的.所以结论正确的个数为1.2.已知不同的直线a,b,c,下列说法正确的是()A.a∥b,b∥c,则a∥cB.a与b异面,b与c异面,则a与c异面C.a与b相交,b与c相交,则a与c相交D.a与b所成的角与b与c所成的角相等,则a∥c解析:选A.A是公理4的内容.如图正方体中,AB,A1B1都与CC1异面,但AB与A1B1不异面,B 错,AB,A1B1都与BB1相交,但AB与A1B1不相交,C错;AB,BC都与DD1成90°角,但AB与BC不平行,D错.3.两个三角形不在同一平面内,它们的边两两对应平行,那么这两个三角形() A.全等B.相似C.仅有一个角相等D.全等或相似解析:选D.由等角定理知,这两个三角形的三个角分别对应相等,所以选D.4.一条直线与两条平行线中的一条为异面直线,则它与另一条()A.相交B.异面C.相交或异面D.平行解析:选C.如图所示的长方体ABCD-A1B1C1D1中,直线AA1与直线B1C1是异面直线,与B1C1平行的直线有A1D1,AD,BC,显然直线AA1与A1D1相交,与BC异面.5.已知空间四边形ABCD中,M,N分别为AB,CD的中点,则下列判断正确的是()A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )解析:选D .如图,取BC 的中点H ,连接MH ,HN ,MN ,据题意有MH =12AC ,MH∥AC ,HN =12BD ,HN ∥BD .在△MNH 中,由两边之和大于第三边知,MN <MH +HN =12(AC+BD ).6. 如图,在正方体ABCD -A 1B 1C 1D 1中,BD 和B 1D 1分别是正方形ABCD 和A 1B 1C 1D 1的对角线,(1)∠DBC 的两边与∠________的两边分别平行且方向相同; (2)∠DBC 的两边与∠________的两边分别平行且方向相反. 答案:(1)D 1B 1C 1 (2)A 1D 1B 17.一个正方体纸盒展开后如图,在原正方体纸盒中有下列结论:①AB ⊥EF ;②AB 与CM 所成的角为60°; ③EF 与MN 是异面直线;④MN ∥CD .以上结论中正确的是________(填序号). 解析:把正方体平面展开图还原为原来的正方体,如图所示,AB ⊥EF ,EF 与MN 是异面直线,AB ∥CM ,MN ⊥CD ,只有①③正确.答案:①③8.如图,在正方体AC 1中,AA 1与B 1D 所成角的余弦值是________.解析:因为B 1B ∥A 1A ,所以∠BB 1D 就是异面直线AA 1与B 1D 所成的角,连接B D .在Rt △B 1BD 中,设棱长为1,则B 1D = 3. cos ∠BB 1D =BB 1B 1D =13=33.所以AA 1与B 1D 所成的角的余弦值为33.答案:339. 在如图所示的正方体ABCD -A 1B 1C 1D 1中,E ,F ,E 1,F 1分别是棱AB ,AD ,B 1C 1,C 1D 1的中点,求证:(1)EF E 1F 1; (2)∠EA 1F =∠E 1CF 1. 证明:(1)连接BD ,B 1D 1, 在△ABD 中,因为E ,F 分别为AB ,AD 的中点,所以EF 12BD .同理,E 1F 112B 1D 1.在正方体ABCD -A 1B 1C 1D 1中, 因为A 1A B 1B ,A 1A D 1D ,所以B 1BD 1D .所以四边形BDD 1B 1是平行四边形,所以BD B 1D 1.所以EFE 1F 1.(2)取A 1B 1的中点M ,连接BM ,F 1M .因为MF 1B 1C 1,B 1C 1BC ,所以MF 1BC .所以四边形BCF 1M 是平行四边形.所以MB ∥CF 1.因为A 1MEB ,所以四边形EBMA 1是平行四边形.所以A 1E ∥MB ,所以A 1E ∥CF 1.同理可证:A 1F ∥E 1C .又∠EA 1F 与∠F 1CE 1两边的方向均相反, 所以∠EA 1F =∠E 1CF 1.10.如图,ABEDFC 为多面体,点O 在棱AD 上,OA =1,OD =2,在侧面ACFD 中,△OAC 和△ODF 为正三角形,在底面ABED 中,△OAB 和△ODE 也都是正三角形,求证:直线BC ∥EF .证明:设G 是线段DA 与线段EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,所以OB ∥DE ,OB =12DE ,所以OG =OD =2.同理,设G ′是线段DA 与线段FC 延长线的交点,有OG ′=OD =2,又由于G 与G ′都在线段DA 的延长线上,所以G 与G ′重合,在△GED和△GFD 中,由OB ∥DE ,OB =12DE 和OC ∥DF ,OC =12DF ,可知B ,C 分别是GE ,GF的中点,所以BC 是△GFE 的中位线,故BC ∥EF .1.已知在四面体ABCD 中,E ,F 分别是AC ,BD 的中点,若AB =2,CD =4,EF ⊥AB ,则EF 和CD 所成的角是( )A .90°B .45°C .60°D .30°解析:选D .如图,作FG ∥CD 交BC 于G ,连接EG ,则EG ∥AB ,故∠EFG (或其补角)为EF 和CD 所成的角.因为EF ⊥AB ,所以EF ⊥EG .又因为AB =2,CD =4,所以EG =1,FG =2.所以sin ∠EFG =12.所以∠EFG =30°.2. 如图,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱C 1D 1,C 1C 的中点,有以下结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线; ③直线BN 与MB 1是异面直线; ④直线AM 与DD 1是异面直线.其中正确的结论为________(把你认为正确的结论的序号都填上).解析:直线AM 与CC 1是异面直线,直线AM 与BN 也是异面直线,直线BN 与MB 1是异面直线,直线AM 与DD 1是异面直线,故①②错误,③④正确.答案:③④3. 如图所示,设E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 上的点,且AE AB =AH AD =λ,CF CB =CGCD=μ,求证:(1)当λ=μ时,四边形EFGH 是平行四边形; (2)当λ≠μ时,四边形EFGH 是梯形.证明:在△ABD 中,AE AB =AHAD =λ.所以EH ∥BD ,且EH =λBD .在△CBD 中,CF CB =CGCD=μ,所以FG ∥BD ,且FG =μBD ,所以EH ∥FG , 所以顶点E ,F ,G ,H 在由EH 和FG 确定的平面内. (1)当λ=μ时,EH =FG ,故四边形EFGH 为平行四边形; (2)当λ≠μ时,EH ≠FG ,故四边形EFGH 是梯形.4.(选做题) 如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC 12AD ,BE 12FA ,G ,H 分别为FA ,FD 的中点.(1)求证:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么?解:(1)证明:因为G ,H 分别为FA ,FD 的中点,所以GH 12AD .又BC 12AD ,所以GH BC ,所以四边形BCHG 为平行四边形.(2)由BE 12AF ,G 为FA 的中点知,BEFG ,所以四边形BEFG 为平行四边形,所以EF ∥BG . 由(1)知BGCH ,所以EF ∥CH ,所以EF 与CH 共面.又D∈FH,所以C,D,F,E四点共面.。

高中数学4.2.1空间图形基本关系的认识4.2.2空间图形的公理(一)课后课时精练北师大版必修2

高中数学4.2.1空间图形基本关系的认识4.2.2空间图形的公理(一)课后课时精练北师大版必修2

4.1 空间图形基本关系的认识 4.2 空间图形的公理(一)时间:25分钟1.如果空间四点A,B,C,D不共面,那么下列判断中正确的是( )A.A,B,C,D四点中必有三点共线B.A,B,C,D四点中不存在三点共线C.直线AB与CD相交D.直线AB与CD平行答案 B解析若A,B,C,D四点中有三点共线,则A,B,C,D四点共面;若AB与CD相交(或平行),则AB与CD共面,即得A,B,C,D四点共面.故选B.2.若点A∈平面α,点B∈平面α,点C∈直线AB,则( )A.C∈αB.C∉αC.AB⊆/αD.AB∩α=C答案 A解析因为点A∈平面α,点B∈平面α,所以ABα.又点C∈直线AB,所以C∈α.3.如图所示,用符号语言可表示为( )A.α∩β=m,nα,m∩n=AB.α∩β=m,n∈α,m∩n=AC.α∩β=m,nα,A m,A nD.α∩β=m,n∈α,A∈m,A∈n答案 A解析很明显,α与β交于m,n在α内,m与n交于A,故选A.4.如图,平面α∩平面β=l,点A∈α,点B∈α,且点C∈β,点C∉l.又AB∩l=R,设A,B,C三点确定的平面为γ,则β∩γ是( )A.直线AC B.直线BCC.直线CR D.直线AR答案 C解析∵C∈平面ABC,AB平面ABC,而R∈AB,∴R∈平面ABC,而C∈β,lβ,R ∈l,∴R∈β,∴点C,点R为两平面ABC与β的公共点,∴β∩γ=CR.5.在四面体ABCD的棱AB,BC,CD,DA上分别取E,F,G,H四点,如果EF与HG交于点M,则( )A.M一定在直线AC上B.M一定在直线BD上C.M可能在AC上,也可能在BD上D.M不在AC上,也不在BD上答案 A解析因为E,F,G,H分别是四面体ABCD的棱AB,BC,CD,DA上的点,EF与HG交于点M,所以点M为平面ABC与平面ACD的公共点,而两个平面的交线为AC,所以M一定在直线AC上.6.在正方体ABCD-A1B1C1D1中,E、F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1、EF、CD都相交的直线( )A.不存在B.有且只有两条C.有且只有三条D.有无数条答案 D解析如下图:在直线CD上任取一点H,则直线A1D1与点H确定一平面A1D1HG.显然EF与平面A1D1HG有公共点O且A1D1∥HG.又O∉HG.连接HO并延长,则一定与直线A1D1相交.由于点H有无数个,所以与A1D1、EF、CD都相交的直线有无数条.7.如图,在这个正方体中,①BM与ED平行;②CN与BM是异面直线;③CN与BE是异面直线;④DN与BM是异面直线.以上四个命题中,正确命题的序号是________.答案②④解析观察图形可知①③错误,②④正确.8.有下面几个说法:①如果一条线段的中点在一个平面内,那么它的两个端点也在这个平面内;②两组对边分别相等的四边形是平行四边形;③两组对边分别平行的四边形是平行四边形;④四边形有三条边在同一平面内,则第四条边也在这个平面内;⑤点A在平面α外,点A和平面α内的任意一条直线都不共面.其中正确的序号是________(把你认为正确的序号都填上).答案③④解析①中线段可与平面α相交;②中的四边形可以是空间四边形;③中平行的对边能确定平面,所以是平行四边形;④中三边在同一平面内,可推知第四条边的两个端点也在这个平面内,所以第四条边在这个平面内;⑤中点A与α内的任意直线都能确定一个平面.9.已知α,β为两个不同的平面,A,B,M,N为四个不同的点,a为直线,下列推理错误的是________(填序号).①A∈a,B∈a,A∈β,B∈β⇒aβ;②M∈α,M∈β,N∈α,N∈β⇒α∩β=MN;③A∈α,A∈β⇒α∩β=A.答案③解析∵A∈α,A∈β,∴A∈α∩β,由公理3知α∩β为经过点A的一条直线而不是一个点A,故③错误.故填③.10.如下图,四面体ABCD中,E、G分别为BC、AB的中点,F在CD上,H在AD上,且有DF∶FC=2∶3,DH∶HA=2∶3.求证:EF、GH、BD交于一点.证明 如图所示,连接GE 、HF ,∵E 、G 分别为BC 、AB 的中点, ∴GE ∥AC ,GE =12AC .又∵DF ∶FC =2∶3,DH ∶HA =2∶3, ∴HF ∥AC ,HF =25AC ,∴GE ∥HF ,GE >HF . ∴G 、E 、F 、H 四点共面. ∴EF 与GH 相交,设交点为O .则O ∈平面ABD ∩平面BCD ,而平面ABD ∩平面BCD =BD , ∴O ∈BD .即EF 、GH 、BD 交于一点.。

2019_2020学年高中数学第1章立体几何初步1_4_2_2空间图形的公理(第2课时)学案北师大版必修2

2019_2020学年高中数学第1章立体几何初步1_4_2_2空间图形的公理(第2课时)学案北师大版必修2

4.2 空间图形的公理(第2课时)1.空间图形的公理公理4 平行于同一条直线的两条直线平行.定理 空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补. 2.异面直线 (1)异面直线的定义不共面(不同在任何一个平面内)的两条直线叫作异面直线. (2)空间两条直线的位置关系有且只有三种共面直线⎩⎪⎨⎪⎧相交直线:在同一平面内,有且只有一个公共点.平行直线:在同一平面内,没有公共点.异面直线:不共面的两条直线,没有公共点.(3)异面直线所成的角过空间任意一点P 分别引两条异面直线a ,b 的平行线l 1,l 2(a ∥l 1,b ∥l 2),这两条相交直线所成的锐角(或直角)就是异面直线a ,b 所成的角.如果两条异面直线所成的角是直角,我们称这两条直线互相垂直,记作:a ⊥b .判断正误(正确的打“√”,错误的打“×”) (1)分别在两个平面内的直线一定为异面直线.( ) (2)两条直线垂直,则一定相交.( )(3)两条直线和第三条直线成等角,则这两条直线平行.( )(4)两条直线若不是异面直线,则必相交或平行.( )(5)两条直线无公共点,则这两条直线平行.( )(6)过平面外一点与平面内一点的连线,与平面内的任意一条直线均构成异面直线.( )(7)和两条异面直线都相交的两直线必是异面直线.( )[答案] (1)×(2)×(3)×(4)√(5)×(6)×(7)×题型一空间两直线位置关系的判定【典例1】已知a、b、c是空间三条直线,下面给出四个命题:①如果a⊥b,b⊥c,那么a∥c;②如果a、b是异面直线,b、c是异面直线,那么a、c也是异面直线;③如果a、b是相交直线,b、c是相交直线,那么a、c也是相交直线;④如果a、b共面,b、c共面,那么a、c也共面.在上述命题中,正确命题的个数是( )A.0 B.1 C.2 D.3[思路导引] 两条直线的位置关系拓展到空间中有且仅有三种:相交、平行、异面.根据具体情况,具体分析.[解析] ①a与c可能相交,也可能异面;②a与c可能相交,也可能平行;③a与c可能异面,也可能平行;④a与c可能不在一个平面内.故①②③④均不正确.[答案] A(1)判定两条直线平行与相交可用平面几何的方法去判断,而两条直线平行也可以用公理4判断.(2)判定两条直线是异面直线有定义法和排除法,由于使用定义判断不方便,故常用排除法,即说明这两条直线不平行、不相交,则它们异面.[针对训练1] 如图,正方体ABCD-A1B1C1D1中,判断下列直线的位置关系:①直线A 1B 与直线D 1C 的位置关系是________; ②直线A 1B 与直线B 1C 的位置关系是________; ③直线D 1D 与直线D 1C 的位置关系是________; ④直线AB 与直线B 1C 的位置关系是________.[解析] 根据题目条件知道直线A 1B 与直线D 1C 在平面A 1BCD 1中,且没有交点,则两直线“平行”,所以①应该填“平行”;点A 1、B 、B 1在一个平面A 1BB 1内,而C 不在平面A 1BB 1内,则直线A 1B 与直线B 1C “异面”.同理,直线AB 与直线B 1C “异面”.所以②④都应该填“异面”;直线D 1D 与直线D 1C 相交于D 1点,所以③应该填“相交”.[答案] ①平行 ②异面 ③相交 ④异面 题型二公理4及等角定理的应用【典例2】 如图,已知在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱CD ,AD 的中点.求证:(1)四边形MNA 1C 1是梯形; (2)∠DNM =∠D 1A 1C 1.[思路导引] (1)由中位线定理可证MN ∥AC ,MN =12AC .由正方体的性质得:AC ∥A 1C 1,AC =A 1C 1.从而应用公理4,可证MN ∥A 1C 1,且MN =12A 1C 1,于是命题可证.(2)利用等角定理可证.[证明] (1)如图,连接AC ,在△ACD 中,∵M ,N 分别是CD ,AD 的中点, ∴MN 是△ACD 的中位线, ∴MN ∥AC ,MN =12AC .由正方体的性质得:AC ∥A 1C 1,AC =A 1C 1.∴MN ∥A 1C 1,且MN =12A 1C 1,即MN ≠A 1C 1,∴四边形MNA 1C 1是梯形. (2)由(1)可知MN ∥A 1C 1.又∵ND ∥A 1D 1,∴∠DNM 与∠D 1A 1C 1相等或互补. 而∠DNM 与∠D 1A 1C 1均为锐角, ∴∠DNM =∠D 1A 1C 1.(1)空间两条直线平行的证明一是定义法:即证明两条直线在同一个平面内且两直线没有公共点;二是利用平面图形的有关平行的性质,如三角形中位线,梯形,平行四边形等关于平行的性质;三是利用公理4:找到一条直线,使所证的直线都与这条直线平行. (2)求证角相等一是用等角定理;二是用三角形全等或相似.[针对训练2] 长方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点.(1)求证:D1E∥BF;(2)求证:∠B1BF=∠A1ED1.[证明] (1)取BB1的中点M,连接EM,C1M.在矩形ABB1A1中,易得EM綊A1B1,∵A1B1綊C1D1,∴EM綊C1D1,∴四边形EMC1D1为平行四边形,∴D1E∥C1M.在矩形BCC1B1中,易得MB綊C1F,∴BF∥C1M,∴D1E∥BF.(2)∵ED1∥BF,BB1∥EA1,又∠B1BF与∠A1ED1的对应边方向相同,∴∠B1BF=∠A1ED1.题型三异面直线所成的角【典例3】如图所示,在正方体ABCD-EFGH中,O为侧面ADHE的中心,求:(1)BE与CG所成的角;(2)FO与BD所成的角.[思路导引] (1)由于CG∥BF,即∠EBF(或其补角)为异面直线CG与BE所成的角.(2)由于BD∥FH,故∠HFO(或其补角)为异面直线FO与BD所成的角.[解] (1)如图,因为CG∥BF,所以∠EBF(或其补角)为异面直线BE与CG所成的角,又在△BEF中,∠EBF=45°,所以BE与CG所成的角为45°.(2)连接FH,因为HD∥EA,EA∥FB,所以HD∥FB,又HD=FB,所以四边形HFBD为平行四边形.所以HF∥BD,所以∠HFO(或其补角)为异面直线FO与BD所成的角.连接HA,AF,易得FH=HA=AF,所以△AFH为等边三角形,又知O为AH的中点.所以∠HFO=30°,即FO与BD所成的角为30°.求异面直线所成的角的步骤(1)找出(或作出)适合题设的角——用平移法,遇题设中有中点,常考虑中位线;若异面直线依附于某几何体,且对异面直线平移有困难时,可利用该几何体的特殊点,使异面直线转化为相交直线.(2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.(3)结论——设由(2)所求得的角的大小为θ.若0°<θ≤90°,则θ为所求;若90°<θ<180°,则180°-θ为所求.提醒:求异面直线所成的角,通常把异面直线平移到同一个三角形中去,通过解三角形求得,但要注意异面直线所成的角θ的范围是0°<θ≤90°.[针对训练3] 如图,P 是平面ABC 外一点,PA =4,BC =25,D 、E 分别为PC 和AB 的中点,且DE =3.求异面直线PA 和BC 所成角的大小.[解] 如图,取AC 中点F ,连接DF 、EF ,在△PAC 中,∵D 是PC 中点,F 是AC 中点,∴DF ∥PA ,同理可得EF ∥BC , ∴∠DFE 为异面直线PA 与BC 所成的角(或其补角). 在△DEF 中,DE =3,又DF =12PA =2,EF =12BC =5,∴DE 2=DF 2+EF 2.∴∠DFE =90°,即异面直线PA 与BC 所成的角为90°.1.过一点与已知直线垂直的直线有( )A.一条B.两条C.无数条D.无法确定[解析] 过一点与已知直线垂直的直线有无数条,包括相交垂直和异面垂直.[答案] C2.异面直线是指( )A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线[解析] 不相交的直线有可能是平行也有可能是异面,故A不正确;如图①中,aα,bβ,但是,a∩b=A,故B不正确;如图②,aα,bα,但是a∩b=A,故C不正确;D是异面直线的定义.[答案] D3.若a、b是异面直线,b、c是异面直线,则( )A.a∥c B.a、c是异面直线C.a、c相交D.a、c平行或相交或异面[解析] a、b、c的位置关系有下面三种情况,如图所示,由图形分析可得答案为D.[答案] D4.过直线l外两点可以作l的平行线条数为( )A.1 B.2C.3 D.0或1[解析] 以如图所示的正方体ABCD -A 1B 1C 1D 1为例.令A 1B 1所在直线为直线l ,过l 外的两点A ,B 可以作一条直线与l 平行,过l 外的两点B ,C 不能作直线与l 平行,故选D.[答案] D探究空间中四边形的形状问题根据三角形的中位线、公理4证明两条直线平行是常用的方法.公理4表明了平行线的传递性,它可以作为判断两条直线平行的依据,同时也给出空间两直线平行的一种证明方法.【示例】 如图,空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.求证:四边形EFGH 是平行四边形.[思路分析] 欲证EFGH 为平行四边形,只需证EH ∥FG ,只需证BD ∥FG 且BD ∥EH . [证明] 连接BD , 因为EH 是△ABD 的中位线, 所以EH ∥BD ,且EH =12BD .同理,FG ∥BD ,且FG =12BD .因此EH ∥FG .又EH =FG ,所以四边形EFGH 为平行四边形.[引申探究] (1)本例中若加上条件“AC ⊥BD ”,则四边形EFGH 是什么形状? (2)本例中,若加上条件“AC =BD ”,则四边形EFGH 是什么形状?(3)本例中,若加上条件“AC ⊥BD ,且AC =BD ”,则四边形EFGH 是什么形状? [解] (1)由例题可知EH ∥BD ,同理EF ∥AC , 又BD ⊥AC ,因此EH ⊥EF , 所以四边形EFGH 为矩形.(2)由例题知EH ∥BD ,且EH =12BD ,同理EF ∥AC ,且EF =12AC .又AC =BD ,所以EH =EF .又EFGH 为平行四边形,所以EFGH 为菱形. (3)由(1)(2)可知,EFGH 为正方形.[针对训练] 如图所示,设E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且AE AB =AH AD =λ,CF CB =CG CD=μ(λ,μ∈(0,1)),试判断四边形EFGH 的形状.[解] 连接BD ,在△ABD 中,AE AB =AHAD=λ, ∴EH ∥BD ,且EH =λBD . 在△CBD 中,CF CB =CGCD=μ,∴FG ∥BD ,且FG =μBD ,∴EH ∥FG ,∴顶点E 、F ,G 、H 在由EH 和FG 确定的平面内. (1)当λ=μ时.EH =FG ,故四边形EFGH 为平行四边形; (2)当λ≠μ时.EH ≠FG ,故四边形EFGH 是梯形.课后作业(六) (时间45分钟)学业水平合格练(时间20分钟)1.分别和两条异面直线平行的两条直线的位置关系是( ) A .一定平行 B .一定相交 C .一定异面D .相交或异面[解析] 可能相交也可能异面,选D.[答案] D2.下列选项中,点P,Q,R,S分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ与RS是异面直线的一个图是( )[解析] 易知选项A,B中PQ∥RS,选项D中RS与PQ相交,只有选项C中RS与PQ是异面直线.[答案] C3.异面直线a,b,有aα,bβ,且α∩β=c,则直线c与a,b的关系是( ) A.c与a,b都相交B.c与a,b都不相交C.c至多与a,b中的一条相交D.c至少与a,b中的一条相交[解析] 若c与a,b都不相交,∵c与a在α内,∴a∥c.又c与b都在β内,∴b∥c.由公理4,可知a∥b,与已知条件矛盾.如图,只有以下三种情况.[答案] D4.如图,三棱柱ABC-A1B1C1中,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是( )A .CC 1与B 1E 是异面直线 B .C 1C 与AE 共面 C .AE 与B 1C 1是异面直线D .AE 与B 1C 1所成的角为60°[解析] 由于CC 1与B 1E 都在平面C 1B 1BC 内,故C 1C 与B 1E 是共面的,所以A 错误;由于C 1C 在平面C 1B 1BC 内,而AE 与平面C 1B 1BC 相交于E 点,点E 不在C 1C 上,故C 1C 与AE 是异面直线,B 错误;同理AE 与B 1C 1是异面直线,C 正确;而AE 与B 1C 1所成的角就是AE 与BC 所成的角,E 为BC 中点,△ABC 为正三角形,所以AE ⊥BC ,D 错误.[答案] C5.已知空间四边形ABCD 中,M ,N 分别为AB ,CD 的中点,则下列判断正确的是( ) A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )[解析] 取BC 的中点E ,连接ME ,EN ,又M 、N 分别为AB 、CD 的中点, ∴ME 綊12AC ,EN 綊12BD ,又在△EMN 中,ME +EN >MN ,∴12(AC +BD )>MN . [答案] D6.在四棱锥P -ABCD 中,各棱所在的直线互相异面的有________对.[解析] 以底边所在直线为准进行考查,因为四边形ABCD 是平面图形,4条边在同一平面内,不可能组成异面直线,而每一边所在直线能与2条侧棱组成2对异面直线,所以共有4×2=8(对)异面直线.[答案] 87.如图,正方体ABCD-A1B1C1D1中,AC与BC1所成角的大小是________.[解析] 连接AD1,则AD1∥BC1.∴∠CAD1(或其补角)就是AC与BC1所成的角,连接CD1,在正方体ABCD—A1B1C1D1中,AC =AD1=CD1,∴∠CAD1=60°,即AC与BC1所成的角为60°.[答案] 60°8.如图,在三棱锥A-BCD中,E,F,G分别是AB,BC,AD的中点,∠GEF=120°,则BD和AC所成角的度数为________.[解析] 依题意知,EG∥BD,EF∥AC,所以∠GEF所成的角或其补角即为异面直线AC 与BD所成的角,又∠GEF=120°,所以异面直线BD与AC所成的角为60°.[答案] 60°9.如图所示,空间四边形ABCD 中,AB =CD ,AB ⊥CD ,E 、F 分别为BC 、AD 的中点,求EF 和AB 所成的角.[解] 取AC 的中点G ,连接EG ,FG , 则FG ∥CD ,EG ∥AB ,所以∠FEG 即为EF 与AB 所成的角(或其补角), 且FG =12CD ,EG =12AB ,所以FG =EG .又由AB ⊥CD 得FG ⊥EG , 所以∠FEG =45°.故EF 和AB 所成的角为45°.10.在平行六面体ABCD -A 1B 1C 1D 1中,M 、N 、P 分别是CC 1、B 1C 1、C 1D 1的中点.求证:∠NMP =∠BA 1D.[证明] 如图,连接CB 1、CD 1,∵CD 綊A 1B 1∴四边形A1B1CD是平行四边形∴A1D∥B1C.∵M、N分别是CC1、B1C1的中点∴MN∥B1C,∴MN∥A1D.∵BC綊A1D1,∴四边形A1BCD1是平行四边形∴A1B∥CD1.∵M、P分别是CC1、C1D1的中点,∴MP∥CD1∴MP∥A1B∴∠NMP和∠BA1D的两边分别平行且方向都相反∴∠NMP=∠BA1D.应试能力等级练(时间25分钟)11.若直线a、b分别与直线l相交且所成的角相等,则a、b的位置关系是( ) A.异面B.平行C.相交D.三种关系都有可能[解析] 以正方体ABCD-A1B1C1D1为例.A1B1、AB所在直线与BB1所在直线相交且所成的角相等,A1B1∥AB;A1B1、BC所在直线与BB1所在直线相交且所成的角相等,A1B1与BC是异面直线;AB、BC所在直线与AC所在直线相交且所成的角相等,AB与BC相交,故选D.[答案] D12.如图所示,空间四边形ABCD的对角线AC=8,BD=6,M、N分别为AB、CD的中点,并且异面直线AC与BD所成的角为90°,则MN等于( )A .5B .6C .8D .10[解析] 如图,取AD 的中点P ,连接PM 、PN ,则BD ∥PM ,AC ∥PN ,∴∠MPN 即异面直线AC 与BD 所成的角,∴∠MPN =90°,PN =12AC =4,PM =12BD =3,∴MN =5.[答案] A13.如图正方体ABCD -A 1B 1C 1D 1中,与AD 1异面且与AD 1所成的角为90°的面对角线(面对角线是指正方体各个面上的对角线)共有________条.[解析] 与AD 1异面的面对角线分别为:A 1C 1、B 1C 、BD 、BA 1、C 1D ,其中只有B 1C 和AD 1所成的角为90°.[答案] 114.已知空间四边形ABCD 中,AB ≠AC ,BD =BC ,AE 是△ABC 的边BC 上的高,DF 是△BCD 的边BC 上的中线,则直线AE 与DF 的位置关系是________.[解析] 由已知,得E 、F 不重合. 设△BCD 所在平面为α则DF α,A ∉α,E ∈α,E ∉DF ∴AE 与DF 异面. [答案] 异面15.梯形ABCD 中,AB ∥CD ,E 、F 分别为BC 和AD 的中点,将平面DCEF 沿EF 翻折起来,使CD 到C ′D ′的位置,G 、H 分别为AD ′和BC ′的中点,求证:四边形EFGH 为平行四边形.[证明] ∵梯形ABCD 中,AB ∥CDE 、F 分别为BC 、AD 的中点∴EF ∥AB 且EF =12(AB +CD )又C ′D ′∥EF ,EF ∥AB ,∴C ′D ′∥AB . ∵G 、H 分别为AD ′、BC ′的中点∴GH ∥AB 且GH =12(AB +C ′D ′)=12(AB +CD )∴GH 綊EF ,∴四边形EFGH 为平行四边形.。

1.4.2空间图形的公理(一)学案(北师大版必修2)

4.2空间图形的公理(一)自主学习掌握文字、符号、图形语言之间的转化,理解公理1、公理2、公理3,并能运用它们解决点线共面问题.学会运用平面的性质证明点共线、线共点以及线共面问题.加强由实际模型到图形,再由图形返回模型的基本训练,逐步培养由图形想象出空间位置关系的能力.1.公理1:如果一条直线上的________在一个平面内,那么这条直线在此平面内.符号:__________________________________________________________________.2.公理2:经过不在同一条直线上的三点,______________一个平面.3.公理3:如果两个不重合的平面有________公共点,那么它们有且只有________通过这个点的公共直线.符号:__________________________________________________________________.4.用符号语言表示下列语句:(1)点A在平面α内但在平面β外:________.(2)直线l经过面α内一点A,α外一点B:______________________.(3)直线l在面α内也在面β内:____________.(4)平面α内的两条直线m、n相交于A:________________.对点讲练点、线共面例1已知直线a∥b,直线l与a、b都相交,求证:过a、b、l有且只有一个平面.点评证明多线共面的一种方法是先由公理2确定一个平面,再利用公理1依次证明其余各线也在这个平面内.另一种方法是先由一部分线确定一个平面,由另一部分线确定另一个平面,再让这两个面重合.变式训练1两两相交且不过同一个点的三条直线必在同一平面内.证明多点共线问题例2已知△ABC在平面α外,AB∩α=P,AC∩α=R,BC∩α=Q,如图所示.求证:P、Q、R三点共线.点评证明多点共线的方法:一是利用公理3,只需说明这些点都是两个平面的公共点,则必在这两个面的交线上.二是P、R确定一条直线,Q也在这条直线上,这也是证明共点、共线、共面问题的常用方法.变式训练2如图所示,AB∩α=P,CD∩α=P,A,D与B,C分别在平面α的两侧,AC∩α=Q,BD∩α=R.求证:P、Q、R三点共线.证明线共点问题例3在四面体ABCD中,E、G分别为BC、AB的中点,F在CD上,H在AD上,且有DF∶FC=DH∶HA=2∶3.求证:EF、GH、BD交于一点.点评证明若干条线共点,一般可先证其中两条相交于一点,再证其他线也过该点即可,本题在解答中应用了两个相交平面的公共点必然在它们的交线上这一结论.变式训练3如图所示,在正方体ABCD—A1B1C1D1中,E为AB的中点,F为AA1的中点.求证:CE、D1F、DA三线交于一点.1.三个公理的作用:公理1——判定直线在平面内的依据;公理2——判定点共面、线共面的依据;公理3——判定点共线、线共点的依据.2.注意事项(1)应用公理2时,要注意条件“三个不共线的点”.事实上,共线的三点是不能确定一个平面的.(2)在立体几何中,符号“∈”与“”的用法与读法不要混淆.(3)解决立体几何问题时注意数学符号、文字语言、图形语言间的相互转化.课时作业一、选择题1.下列命题:①书桌面是平面;②8个平面重叠起来,要比6个平面重叠起来厚;③有一个平面的长是50 m,宽是20 m;④平面是绝对的平、无厚度,可以无限延展的抽象数学概念.其中正确命题的个数为()A.1个B.2个C.3个D.4个2.点A在直线l上,而直线l在平面α内,用符号表示为()A.A∈l,l∈αB.A∈l,l⊂αC.A⊂l,l∈αD.A⊂l,l⊂α3.已知平面α与平面β、γ都相交,则这三个平面可能的交线有()A.1条或2条B.2条或3条C.1条或3条D.1条或2条或3条4.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是()A.A∈a,A∈β,B∈a,B∈β⇒aβB.M∈α,M∈β,N∈α,N∈β⇒α∩β=MNC.A∈α,A∈β⇒α∩β=AD.A、B、M∈α,A、B、M∈β,且A、B、M不共线⇒α、β重合二、填空题5.下列命题中,正确的是____________.(填序号)①若两个平面有一个公共点,则它们有无数个公共点;②若已知四个点不共面,则其中任意三点不共线;③若点A既在平面α内,又在平面β内,则α与β相交于直线l,且A在l上;④两条直线不能确定一个平面.6.读图①②,用符号语言表示下列图形中元素的位置关系.(1)图①可以用符号语言表示为________________________________________________________________________;(2)图②可以用符号语言表示为________________________________________________________________________.7.如图所示,在长方体ABCD—A1B1C1D1中,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论错误的是________.(填序号)①A、M、O三点共线;②A、M、O、A1四点共面;③A、O、C、M四点共面;④B、B1、O、M四点共面.三、解答题8.如图三个平面α、β、γ两两相交于三条直线,即α∩β=c,β∩γ=a,γ∩α=b,若直线a和b不平行.求证:a、b、c三条直线必过同一点.9.如图,已知平面α、β,且α∩β=l .设梯形ABCD 中,AD ∥BC ,且AB α,CD β. 求证:AB 、CD 、l 共点(相交于一点).4.2 空间图形的公理(一) 答案自学导引1.两点 A ∈l ,B ∈l ,且A ∈α,B ∈α⇒l α 2.有且只有3.一个 一条 P ∈α,且P ∈β⇒α∩β=l ,且P ∈l 4.(1)A ∈α,A ∉β (2)A ∈α,B ∉α且A ∈l ,B ∈l (3)l α且l β (4)m α,n α且m ∩n =A 对点讲练例1 证明 方法一⎭⎪⎬⎪⎫直线a ∥b ⇒过a ,b 有且只有一个平面,设为αl ∩a =A ⇒A ∈a l ∩b =B ⇒B ∈b⎭⎪⎬⎪⎫⇒A ∈α,B ∈α A ∈l ,B ∈l ⇒lα⇒a ,b ,l 共面.方法二 ∵a ∥b , ∴a ,b 确定一个平面α.设a∩l=A,直线a,l确定一个平面β.设b∩l=B又∵B∈α,B∈β,aα,aβ,∴平面α与β重合.故直线a,b,l共面.变式训练1已知如图所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.求证直线l1、l2、l3在同一平面内.证明方法一(同一法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴B∈l2.又∵l2α,∴B∈α.同理可证C∈α.又∵B∈l3,C∈l3,∴l3α.∴直线l1、l2、l3在同一平面内.方法二(重合法)∵l1∩l2=A,∴l1、l2确定一个平面α.∵l2∩l3=B,∴l2、l3确定一个平面β.∵A∈l2,l2α,∴A∈α.∵A∈l2,l2β,∴A∈β.同理可证B∈α,B∈β,C∈α,C∈β.∴不共线的三个点A、B、C既在平面α内,又在平面β内.∴平面α和β重合,即直线l1、l2、l3在同一平面内.例2证明方法一∵AB∩α=P,∴P∈AB,P∈平面α.又AB平面ABC,∴P∈平面ABC.∴由公理3可知:点P在平面ABC与平面α的交线上,同理可证Q、R也在平面ABC与平面α的交线上.∴P、Q、R三点共线.方法二∵AP∩AR=A,∴直线AP与直线AR确定平面APR.又∵AB∩α=P,AC∩α=R,∴平面APR∩平面α=PR.∵B∈面APR,C∈面APR,∴BC面APR.∵Q∈BC,∴Q∈面APR,又Q∈α,∴Q∈PR,∴P、Q、R三点共线.变式训练2 证明 ∵AB ∩α=P ,CD ∩α=P , ∴AB ∩CD =P .∴AB ,CD 可确定一个平面,设为β. ∵A ∈AB ,C ∈CD ,B ∈AB ,D ∈CD , ∴A ∈β,C ∈β,B ∈β,D ∈β. ∴ACβ,BDβ,平面α,β相交.∵AB ∩α=P ,AC ∩α=Q ,BD ∩α=R , ∴P ,Q ,R 三点是平面α与平面β的公共点.∴P ,Q ,R 都在α与β的交线上,故P ,Q ,R 三点共线. 例3 证明 ∵E ,G 分别为BC ,AB 的中点, ∴GE ∥AC .又∵DF ∶FC =DH ∶HA =2∶3,∴FH ∥AC 且HF =25AC ,从而FH ∥GE .故E ,F ,H ,G 四点共面. 又∵GE ≠FH 且GH ∥FH .∴四边形EFHG 是一个梯形,则GH 和EF 延长后交于一点设为O . 又O ∈GG ,GH 平面ABD , 则O ∈平面ABD ,同理O ∈平面BCD . ∴O ∈平面ABD ∩平面BCD =BD . 则O 在直线BD 上.所以EF 、GH 、BD 交于一点.变式训练3 证明 连接EF ,D 1C ,A 1B . ∵E 为AB 的中点, F 为AA 1的中点,∴EF 綊12A 1B .又∵A 1B ∥D 1C ,∴EF ∥D 1C ,∴E ,F ,D 1,C 四点共面,且EF 綊12D 1C ,∴D 1F 与CE 相交于点P .又D1F平面A1D1DA,CE平面ABCD.∴P为平面A1D1DA与平面ABCD的公共点.又平面A1D1DA∩平面ABCD=DA,根据公理3,可得P∈DA,即CE、D1F、DA相交于一点.课时作业1.A[由平面的概念,它是平滑、无厚度、可无限延展的,可以判断命题④正确,其余的命题都不符合平面的概念,所以命题①、②、③都不正确,故选A.] 2.B3.D4.C[∵A∈α,A∈β,∴A∈α∩β.由公理可知α∩β为经过A的一条直线而不是A.故α∩β=A的写法错误.]5.①②③6.(1)α∩β=l,mα,nβ,l∩n=P,m∥l(2)α∩β=l,m∩α=A,m∩β=B7.④解析连接AO,AO是平面AB1D1和平面AA1C1C的交线,∵M∈A1C,A1C面AA1C1C,∴M∈面AA1C1C,又M∈面AB1D1,∴M∈AO,即A1M1O三点共线,因此①②③均正确.只有④不正确.8.证明∵α∩γ=b,β∩γ=a,∴a⊂γ,b⊂γ.由于直线a和b不平行,∴a、b必相交.设a∩b=P,如图,则P∈a,P∈b.∵a⊂β,b⊂α,∴P∈β,P∈α.又α∩β=c,∴P∈c,即交线c经过点P.∴a、b、c三条直线相交于同一点.9.证明∵梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两条腰,∴AB,CD必定相交于一点,设AB∩CD=M.又∵ABα,CDβ,∴M∈α,且M∈β,∴M∈α∩β.又∵α∩β=l,∴M∈l,即AB,CD,l共点.。

高中数学-北师大版必修二 空间图形的公理4及等角定理 课件

图 1-4-16
提示:如图,在空间中任取一点 O,作直线 a′∥a,b′∥b,则两条相交直 线 a′,b′所成的锐角或直角 θ 即两条异面直线 a,b 所成的角.
2.a′与 b′所成角的大小与什么有关,与点 O 的位置有关吗?通常点 O 取 在什么位置?
提示:a′与 b′所成角的大小只由 a,b 的相互位置确定,与点 O 的选择无 关,一般情况下为了简便,点 O 选取在两条直线中的一条直线上.
又∵A1K∥BQ 且 A1K=BQ, ∴四边形 A1KBQ 为平行四边形, ∴A1Q∥BK, 由公理 4 有 A1Q∥CM, 同理可证 A1P∥CN, 由于∠PA1Q 与∠MCN 对应边分别平行,且方向相反, ∴∠PA1Q=∠MCN.
求异面直线所成的角 [探究问题] 1.已知直线 a,b 是两条异面直线, 如何作出这两条异面直线所成的角?
如图 1-4-17,在空间四边形 ABCD 中,AD=BC
=2,E,F 分别是 AB,CD 的中点,若 EF= 3,求异面直线
AD,BC 所成角的大小.
【导学号:64442028】
图 1-4-17
[思路探究] 根据求异面直线所成角的方法,将异面直线 AD,BC 平移到 同一平面内解决.
[解] 如图,取 BD 的中点 M,连接 EM,FM. 因为 E,F 分别是 AB,CD 的中点, 所以 EM 12AD,FM 12BC, 则∠EMF 或其补角就是异面直线 AD,BC 所成的角. 因为 AD=BC=2,所以 EM=MF=1, 在等腰△MEF 中,过点 M,作 MH⊥EF 于 H,
公理4的应用
如图 1-4-12,已知 E,F,G,H 分别是空间四边形 ABCD 的边
AB,BC,CD,DA 的中点.
【导学号:64442027】

空间图形的公理课件(北师大版必修二)


课前探究学习
课堂讲练互动
活页限时训练
初中的一些结论在空间中成立,如:如果两条平行线中的一条 垂直于第三条直线,那么另一条也垂直于第三条直线.但是, 初中的一些结论在空间中不成立,如:如果两条直线都和第三 条直线垂直,那么这两条直线平行.初中的结论在空间中成立 的标准是已知条件能确定在同一个平面内,在空间中就成立, 否则不成立.
课前探究学习
课堂讲练互动
活页限时训练
(2)平面分空间: 类比直线分平面,我们知道一个平面将空间分成两部分;两个 平面如果平行则将空间分成三部分,如果相交则把空间分成四 部分;三个平面可以将空间分成四或六或七或八部分.以此类 推,我们也可以求出四个平面、五个平面„„分别把空间分成 多少部分.
课前探究学习
课前探究学习
课堂讲练互动
活页限时训练
课前探究学习
课堂讲练互动
活页限时训练
[规范解答] 法一 (直接平移法)如图,连接 A1C1,B1D1,并设 它们相交于点 O,取 DD1 的中点 G,连接 OG. 则 OG∥B1D,EF∥A1C1, ∴∠GOA1 为异面直线 DB1 与 EF 所成的角或其补角.(6 分) ∵GA1=GC1,O 为 A1C1 的中点, ∴GO⊥A1C1. ∴异面直线 DB1 与 EF 所成的角为 90° 分) .(12
课堂讲练互动
活页限时训练
题型一 等角定理的应用 【例 1】 已知 E、E1 分别是正方体 ABCD- 1B1C1D1 的棱 AD、 A A1D1 的中点. 求证:∠BEC=∠B1E1C1. [思路探索] 欲证两个角相等,可通过等角定理或其推论实现.
课前探究学习
课堂讲练互动
活页限时训练
题型二 异面直线所成的角 【例 2】如图,正方体 AC1 中,E,F 分别是 A1B1,B1C1 的中点, 求异面直线 DB1 与 EF 所成角的大小. 审题指导 要求异面直线所成的角, 关键是作出异面直线所成的 角,然后把它归结到三角形中再解三角形就可以得到答案. 【解题流程】 作平行线 → 找出平面角 → 解三角形 → 结果

2019_2020学年高中数学第一章立体几何初步4.2公理4及等角定理练习(含解析)北师大版必修2

第二课时公理4及等角定理填一填1.公理4(1)文字语言:平行于同一条直线的两条直线平行.(2)符号表述:a∥b,b∥c⇒a∥c.2.两条直线的位置关系(1)共面直线①平行直线:特征:在同一平面内没有公共点.记法:直线m与直线n平行,记作m∥n.②相交直线特征:在同一平面内有且只有一个公共点.记法:直线m与直线n相交于点A,记作m∩n=A.(2)异面直线:特征:不共面的两条直线,没有公共点.3.等角定理空间中,两个角的两条边分别对应平行,这两个角相等或互补.4.异面直线所成的角定义前提两条异面直线a,b作法过空间任意一点P分别引两条异面直线a,b的平行线l1,l2结论这两条相交直线所成的锐角(或直角)即为异面直线a,b所成的角范围记异面直线a与b所成的角为θ,则0°<θ≤90°特殊情况当θ=90°时,a与b互相垂直,记作a⊥b.判一判1.2.两条异面直线所成的角一定是锐角.(×)3.和两条异面都相交的两直线必是异面直线.(×)4.如果两条平行直线中的一条与某一条直线垂直,那么另一条直线也与这条直线垂直.(√)5.空间等角定理为定义异面直线所成的角提供了理论依据.(√)6.如果两条相交直线与另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.(√)7.对于直线a,b,c,若a∥b,b∥c,则a∥c.(√)8.空间三条直线a c异面.(×)想一想1.空间中,没有公共点的两条直线一定平行吗?提示:不一定,在平面内没有公共点的两条直线平行,在空间没有公共点的两条直线可能平行,也可能异面.2.证明两条直线平行的方法有哪些?提示:(1)公理4:即找到第三条直线,证明这两条直线都与之平行,这是一种常用方法,要充分用好平面几何知识,如有中点时用好中位线性质等;(2)平行直线的定义:证明在同一平面内,这两条直线无公共点.3.运用“等角定理”判定两个角是相等还是互补的方法是什么?提示:(1)判定两个角的方向是否相同,若相同则必相等,若相反则必互补;(2)判定这两个角是否均为锐角或均为钝角,若均是则相等,若不均是则互补.4.求两异面直线所成的角的三个步骤是什么?提示:(1)作:根据所成角的定义,用平移法作出异面直线所成的角;(2)证:证明作出的角就是要求的角;(3)计算:求角的值,常利用解三角形得出.可用“一作二证三计算”来概括.同时注意异面直线所成角θ的范围是0°<θ≤90°.思考感悟:练一练1.空间任意两个角β为( )A.60° B.120°C.30° D.60°或120°答案:D2.如果两条直线a和b没有公共点,那么a与b的位置关系是( )A.共面 B.平行C.异面 D.平行或异面答案:D3.如图,正方体ABCD-A1B1C1D1中,AD1与A1C1所成角的大小是________.答案:60°4.设α为两条异面直线所成的角,则α满足( )A.0°<α<90° B.0°<α≤90°C.0°≤α≤90° D.0°<α<180°答案:B5.已知a,b,c是空间三条直线,则下列命题中正确命题的序号为________.①若a⊥b,b∥c,则a⊥c②若a,b相交,b,c相交,则a,c也相交③若a,b平行,b,c平行,则a,c也平行答案:①③知识点一公理4及等角定理的应用1.已知AB ∥PQ ,BC ∥QR ,若∠ABC =30°,则∠PQR 等于( ) A .30° B.30°或150° C .150° D.以上结论都不对解析:由空间等角定理,可知∠PQR 与∠ABC 相等或互补,故∠PQR =30°或150°. 答案:B2.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别是棱CC 1,BB 1及DD 1的中点,证明:∠BGC =∠FD 1E .证明:因为E ,F ,G 分别是正方体的棱CC 1,BB 1,DD 1的中点, 所以CE 綊GD 1,BF 綊GD 1.所以四边形CED 1G 与四边形BFD 1G 均为平行四边形. 所以GC 綊D 1E ,GB 綊D 1F .又∠BGC 与∠FD 1E 对应两边的方向相同, 所以∠BGC =∠FD 1E .知识点二 异面直线及所成的角3.如图,在空间四边形ABCD 中,AD =BC =2,E ,F 分别是AB ,CD 的中点,若EF =3,求异面直线AD ,BC 所成角是( )A .30° B.45° C .60° D.120°解析:如图,取BD 的中点M , 连接EM ,FM .因为E ,F 分别是AB ,CD 的中点,所以EM 綊12AD ,FM 綊12BC ,则∠EMF 或其补角就是异面直线AD ,BC 所成的角. 因为AD =BC =2, 所以EM =MF =1,在等腰△MEF 中,过点M 作MH ⊥EF 于H ,在Rt△MHE 中,EM =1,EH =12EF =32,则sin∠EMH =32,于是∠EMH =60°, 则∠EMF =2∠EMH =120°.所以异面直线AD ,BC 所成的角为∠EMF 的补角,即异面直线AD ,BC 所成的角为60°.故选C.答案:C4.如图所示,已知三棱锥A -BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M ,N 分别是BC ,AD 的中点,求直线AB 和MN 所成的角.解析:如图,取AC 的中点P ,连接PM ,PN ,因为点M ,N 分别是BC ,AD 的中点,所以PM ∥AB ,且PM =12AB ;PN ∥CD ,且PN =12CD ,所以∠MPN (或其补角)为AB 与CD 所成的角. 所以∠PMN (或其补角)为AB 与MN 所成的角. 因为直线AB 与CD 成60°角, 所以∠MPN =60°或∠MPN =120°. 又因为AB =CD ,所以PM =PN , (1)若∠MPN =60°, 则△PMN 是等边三角形, 所以∠PMN =60°,即AB 与MN 所成的角为60°. (2)若∠MPN =120°,则易知△PMN 是等腰三角形. 所以∠PMN =30°,即AB 与MN 所成的角为30°.综合知识公理4及等角定理5.如图,等腰直角三角形ABC 中,∠A =90°,BC =2,DA ⊥AC ,DA ⊥AB ,若DA =1,且E 为DA 的中点.求异面直线BE 与CD 所成角的余弦值.解析:取AC 的中点F ,连接BF 、EF ,在△ACD 中,E 、F 分别是AD 、AC 的中点,所以EF ∥CD ,所以∠BEF 即为所求的异面直线BE 与CD 所成的角(或其补角).在Rt△EAB 中,AB =1,AE =12AD =12,所以BE=52. 在Rt△AEF 中,AF =12AC =12,AE =12,所以EF =22. 在Rt△ABF 中,AB =1,AF =12,所以BF =52. 在等腰△EBF 中,cos∠FEB =12EF BE =2452=1010,所以异面直线BE 与CD 所成角的余弦值为1010. 6.在四棱锥A -BCDE 中,底面四边形BCDE 为梯形,BC ∥DE .设CD ,BE ,AE ,AD 的中点分别为M ,N ,P ,Q .(1)求证:M ,N ,P ,Q 四点共面;(2)若AC ⊥DE ,且AC =3BC ,求异面直线DE 与PN 所成角的大小. 解析:(1)证明:∵CD ,BE ,AE ,AD 的中点分别为M ,N ,P ,Q , ∴PQ 为△ADE 的中位线,MN 为梯形BCDE 的中位线. ∴PQ ∥DE ,MN ∥DE ,∴PQ ∥MN ,∴M ,N ,P ,Q 四点共面. (2)∵PN 为△ABE 的中位线, ∴PN ∥AB .又BC ∥DE ,∴∠ABC 即异面直线DE 与PN 所成的角. 又AC ⊥DE , ∴AC ⊥BC ,在Rt△ACB 中,tan∠ABC =AC BC =3BCBC=3,∴∠ABC =60°.∴异面直线DE 与PN 所成的角为60°.基础达标一、选择题1.若a,b为异面直线,直线c∥a,则c与b的位置关系是( )A.相交 B.异面C.平行 D.异面或相交解析:由空间直线的位置关系,知c与b可能异面或相交.答案:D2.在三棱锥P-ABC中,PC与AB所成的角为70°,E,F,G分别为PA,PB,AC的中点,则∠FEG等于( )A.20° B.70°C.110° D.70°或110°解析:因为E,F,G分别为PA,PB,AC的中点,所以EF∥AB,EG∥PC,所以∠FEG或其补角为异面直线PC与AB所成的角,又AB与PC所成的角为70°,所以∠FEG为70°或110°.答案:D3.一条直线与两条异面直线中的一条相交,那么它与另一条直线之间的位置关系是( )A.平行 B.相交C.异面 D.相交或平行或异面解析:如图分别为相交、平行、异面的情形.答案:D4.E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点,则EG与FH的位置关系是( )A.异面 B.平行C.相交 D.重合解析:由题意画出图后,易得EG,FH是平行四边形EF-GH的对角线.答案:C5.若P是两条异面直线l,m外的任意一点,则( )A.过点P有且仅有一条直线与l,m都平行B.过点P有且仅有一条直线与l,m都垂直C.过点P有且仅有一条直线与l,m都相交D.过点P有且仅有一条直线与l,m都异面解析:逐个分析,过点P与l,m都平行的直线不存在;过点P与l,m都垂直的直线只有一条;过点P与l,m都相交的直线不一定存在;过点P与l,m都异面的直线有无数条.答案:B6.已知在正方体ABCD-A1B1C1D1中(如图所示),l平面A1B1C1D1,且l与B1C1不平行,则下列结论一定不可能的是( )A.l与AD平行B.l与AB异面C.l与CD所成的角为30°D.l与BD垂直解析:假设l∥AD,则由AD∥BC∥B1C1,可得l∥B1C1,这与“l与B1C1不平行”矛盾,所以l与AD不平行.答案:A7.如图所示,在正三角形ABC中,D,E,F分别为各边的中点,G,H,I,J分别为AF,AD,BE,DE的中点,将△ABC沿DE,EF,DF折成三棱锥以后,HG与IJ所成角的度数为( ) A.90° B.60°C.45° D.0°解析:将三角形折成空间几何体,如图所示,HG与IJ是一对异面直线.因为IJ∥AD,HG∥DF,所以DF与AD所成的角为HG与IJ所成的角,又∠ADF=60°,所以HG与IJ所成的角为60°.答案:B二、填空题8.已知∠BAC=∠B1A1C1,AB∥A1B1,则AC与A1C1的位置关系是________.解析:如图所示,∠BAC=∠B1A1C1,AB∥A1B1,由图可知AC与A1C1可能平行、相交或异面.答案:平行、相交或异面9.如图所示,已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AD ,AA 1的中点. (1)直线AB 1和CC 1所成的角为________; (2)直线AB 1和EF 所成的角为________. 解析:(1)因为BB 1∥CC 1,所以∠AB 1B 即为异面直线AB 1与CC 1所成的角,∠AB 1B =45°.(2)连接B 1C ,易得EF ∥B 1C ,所以∠AB 1C 即为直线AB 1和EF 所成的角. 连接AC ,则△AB 1C 为正三角形, 所以∠AB 1C =60°.答案:(1)45° (2)60°10.在空间四边形ABCD 中,点E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,若AC =BD ,且AC ⊥BD ,则四边形EFGH 的形状是________.解析:如图,E ,F ,G ,H 分别为中点,所以EF 綊12AC ,GH 綊12AC ,所以EF 綊GH ,所以四边形EFGH 为平行四边形. 又AC ⊥BD ,所以FG ⊥GH .因为AC =BD , 所以FG =GH ,所以EFGH 为正方形. 答案:正方形 11.如图所示,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱C 1D 1,C 1C 的中点,有以下四个结论: ①直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB 1是异面直线; ④直线AM 与DD 1是异面直线.其中正确的结论为________(注:把你认为正确结论的序号都填上).解析:由异面的定义判断可知③④正确.答案:③④12.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上结论中正确结论的序号为________.解析:还原成正方体如图所示,可知①正确.②AB∥CM,不正确.③正确.④MN⊥CD.不正确.答案:①③三、解答题13.如图,正方体ABCD-A1B1C1D1中,M,N分别是A1B1,B1C1的中点,问(1)AM和CN是否是异面直线?(2)D1B和CC1是否是异面直线?说明理由.解析:由于M,N分别是A1B1和B1C1的中点,可证明MN∥AC,因此AM与CN不是异面直线.由空间图形可感知D1B和CC1为异面直线的可能性较大,判断的方法可用反证法.(1)不是异面直线.理由:因为M,N分别是A1B1,B1C1的中点,所以MN∥A1C1.又因为A1A綊C1C,所以A1ACC1为平行四边形.所以A1C1∥AC,得到MN∥AC,所以A,M,N,C在同一个平面内,故AM和CN不是异面直线.(2)是异面直线,证明如下:假设D1B与CC1在同一个平面CC1D1D内,则B∈平面CC1D1D,C∈平面CC1D1D.所以BC平面CC1D1D,这与ABCD-A1B1C1D1是正方体相矛盾.所以假设不成立,故D 1B 与CC 1是异面直线.14.已知点A 是△BCD 所在平面外一点,AD =BC ,E ,F 分别是AB ,CD 的中点,且EF =22AD ,求异面直线AD 和BC 所成的角.解析:如图,设G 是AC 的中点,连接EG ,FG .因E ,F 分别是AB ,CD 的中点,故EG ∥BC ,且EG =12BC ,FG ∥AD ,且FG =12AD .由异面直线所成角定义可知EG 与FG 所成锐角或直角为异面直线AD ,BC 所成的角,即∠EGF 为所求的角.由BC =AD 知EG =GF =12AD ,又EF =22AD ,由勾股定理可得∠EGF =90°,即异面直线AD和BC 所成的角为90°.能力提升15.如图,在三棱锥A -BCD 中,O ,E 分别是BD ,BC 的中点,AO ⊥OC ,CA =CB =CD =BD =2,AB =AD =2,求异面直线AB 与CD 所成角的余弦值.解析:取AC 的中点M ,连接OM ,ME ,OE ,由E 为BC 的中点知ME ∥AB , 由O 为BD 中点知OE ∥DC ,所以直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角.在△OME 中,EM =12AB =22,OE =12DC =1,因为OM 是Rt△AOC 斜边AC 上的中线,所以OM =12AC =1,取EM 的中点H ,连OH , 则OH ⊥EM , 在Rt△OEH 中,所以cos∠OEM =EH OE =12×221=24. 16.如图,E ,F ,G ,H 分别是三棱锥A -BCD 的边AB ,BC ,CD ,DA 上的点,且AE EB =AH HD =λ,CF FB =CG GD =μ.(1)若λ=μ,判断四边形EFGH 的形状;(2)若λ≠μ,判断四边形EFGH 的形状; (3)若λ=μ=12,且EG ⊥HF ,求AC BD的值. 解析:(1)因为AE EB =AH HD =λ,所以EH ∥BD ,且EH =λ1+λBD .① 又因为CF FB =CG GD =μ.所以FG ∥BD ,且FG =μ1+μBD .②又λ=μ,所以EH 綊FG (公理4).因此λ=μ时,四边形EFGH 为平行四边形.(2)若λ≠μ,由①②,知EH ∥FG ,但EH ≠FG ,因为λ≠μ时,四边形EFGH 为梯形.(3)因为λ=μ,所以四边形EFGH 为平行四边形.又因为EG ⊥HF ,所以四边形EFGH 为菱形.所以FG =HG .所以AC =(λ+1)HG =32HG =32FG , 又BD =1+μμFG =3FG , 所以AC BD =12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【解析】①中GH∥MN,②中MN与GH异面,③中MN与GH相交,④ 中MN与GH异面. 答案:②④
三、解答题(每题8分,共16分)
7.(2010·西安高一检测)正方体ABCD-A′B′C′D′的棱长 为8 cm,M,N,P分别是AB,A′D′,BB′棱的中点.
(1)画出过M,N,P三点的平面与平面A′B′C′D′及平面
二、填空题(每题4分,共8分) 5.(2010·豫东三校联考)给出以下四种说法:(设α 、β 表
示平面, l表示直线,A、B、C表示点)
(1)若A∈l,A∈α ,B∈l,B∈α ,则l Ú α ; (2)A∈α ,A∈β ,B∈α ,B∈β ,则α ∩β =AB; (3)若l
Ü α ,A∈l,则A α ;
2.a,b是异面直线,b,c是异面直线,则a、c的位置关系
是(
)
(B)相交或平行 (D)平行或异面
(A)相交、平行或异面 (C)异面 【解析】选A.如图所示在正方体中, a与b异面,直线c可在图中c1、c2、 c3三个位置,与a分别平行、异面、 相交.
3.平面α ∩平面β =l,点A∈α ,B∈α ,C∈β ,且C l,AB∩l=R,
是棱AA1与CC1的中点,则经过P、B、Q三点的截面是(
(A)邻边不相等的平行四边形 (B)菱形但不是正方形 (C)矩形 (D)正方形
)
【解题提示】画截面的关键在于画面与面的交线,交线只 要有两个公共点就能画出.画出截面后可计算边长判断其形状 .
【解析】选B.
连接BP并延长交B1A1的延长线于E, 连接BQ并延长交B1C1的延长线于F,连接EF. 则D1在直线EF上,连接QD1,PD1, 则四边形BQD1P为经过P、B、Q三点的截面. 可证BQ=QD1=D1P=PB但∠PD1Q≠90°. 因此四边形BQD1P是菱形但不是正方形.
一、选择题(每题4分,共16分) 1.(2010·深圳高一检测)下列说法正确的是( (A)三点确定一个面 (B)四边形一定是平面图形 )
(C)梯形一定是平面图形
(D)两个平面有不在同一条直线上的三个交点 【解析】选C.由公理2知A错,B错.
由公理2的推论及梯形有一组对边平行知C正确.
由公理3知D错.
(4)若A、B、C∈α ,A、B、C∈β ,且A、B、C不共线,则α
与β 重合.
则上述说法中正确的个数是__________.
【解析】由公理1知(1)正确;由公理3知(2)正确.由公理
2知(4)正确.对于(3),若l
A∈l,也有A∈α.故(3)不正确. 答案:3
α,则有可能l∩α=A.此时
6.如图,G、H、M、N分别是正三棱柱的顶点或所在棱的中点, 则表示直线GH、MN是异面直线的图形是______.
3
所以,PQ= 4 10 cm.
3
说明
• 第7题(2)问正方体中上下底面的字母互 换效果会更好一些
讲解分析
• 这一节重点讲解三角形全等和平行四边形 的证明和应用
BB′C′C的交线,并说明画法的依据; (2)设过M,N,P三点的平面与B′C′交于点Q,求PQ的长. 【解析】(1)如图,延长MP、 A′B′相交于点E,连接NE,交 B′C′于点Q,连接QP,则NE为 平面MNP与平面A′B′C′D′的 交线,PQ为平面MNP与平面 确定平面γ ,则β ∩γ =(
(A)直线AC (C)直线CR (B)直线BC (D)以上都不对
)
【解析】选C.由AB∩l=R知R∈AB,R∈l,又α∩β=l, ∴l β,∴R∈β,R∈γ.
又C∈β,C∈γ,∴β∩γ=CR.
4.(2010·湛江高一检测)正方体ABCD-A1B1C1D1中,P、Q分别
且E∈直线A′B′,∴E∈平面MNP, 且E∈平面A′B′C′D′,易知,N∈平面MNP,
且N∈平面A′B′C′D′,所以,NE为平面MNP与平面
A′B′C′D′的交线,显然,PQ为平面MNP与平面BB′C′C的 交线; (2)由已知和(1)得MB=B′E=4 cm,又△EB′Q∽△EA′N, 所以,B′Q= 4 cm,又B′P=4 cm,
相关文档
最新文档