初二数学第一学期期末测试题
初二数学上期末试卷及解析

一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边,且a+b+c=10,a+c=8,则b的值为()A. 1B. 2C. 3D. 4解析:由a+c=8,得b=10-(a+c)=2。
故选B。
2. 若x²+4x+4=0,则x的值为()A. 2B. -2C. 1D. -1解析:由x²+4x+4=(x+2)²=0,得x=-2。
故选B。
3. 若a、b、c是等差数列的前三项,且a+b+c=12,b+c=8,则a的值为()A. 2B. 3C. 4D. 5解析:由b+c=8,得b=4。
由a+b+c=12,得a+c=8,即2c=8,得c=4。
由等差数列的性质,得b-a=c-b,即a=2。
故选A。
4. 若x=1+√2,y=1-√2,则x+y的值为()A. 0B. 2C. -2D. 4解析:由x=1+√2,y=1-√2,得x+y=2。
故选B。
5. 若m、n、p是等比数列的前三项,且m+n+p=12,n²=4,则m的值为()A. 2B. 3C. 4D. 6解析:由n²=4,得n=±2。
由m+n+p=12,得m+p=10。
若n=2,则m+p=10,得m=8,p=2。
若n=-2,则m+p=10,得m=6,p=4。
由等比数列的性质,得m/p=n/m,即m²=np。
若n=2,则m²=4,得m=±2。
若n=-2,则m²=-8,无实数解。
故选A。
6. 若x²-2x+1=0,则x的值为()A. 1B. -1C. 0D. 2解析:由x²-2x+1=(x-1)²=0,得x=1。
故选A。
7. 若a、b、c是等差数列的前三项,且a+b+c=12,b+c=8,则a的值为()A. 2B. 3C. 4D. 5解析:由b+c=8,得b=4。
由a+b+c=12,得a+c=8,即2c=8,得c=4。
由等差数列的性质,得b-a=c-b,即a=2。
八年级(上)期末数学试卷(答案解析)

八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a33.(3分)使分式有意义的x的取值范围是()A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣24.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3 B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y) D.3a2﹣3b2=3(a2﹣b2)5.(3分)化简正确的是()A.B.C. D.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.29.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标.12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=度.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△A BC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、不轴对称图形,故错误.故选:B.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.(3分)使分式有意义的x的取值范围是()A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣2【解答】解:∵分式有意义,∴x+2≠0,即x≠﹣2.故选:D.4.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3 B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y) D.3a2﹣3b2=3(a2﹣b2)【解答】解:A、在等式的右边最后计算的是和,不符合因式分解的定义,故A不正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式从左边到右边把一个多项式化成两个整式积的形式,符合因式分解的定义,故C正确;D、多项式a2﹣b2仍然可以继续分解为(a+b)(a﹣b),故D属于分解不彻底,故D不正确;故选:C.5.(3分)化简正确的是()A.B.C. D.【解答】解:原式==x+1,故选:C.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD ≌△C'O'D',故选:B.7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC【解答】解:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选:B.8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.2【解答】解:∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故选:B.9.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°【解答】解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.∴∠B=∠AED=40°故选:C.10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,AD=EC,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③由②得:∠BDC=∠BEA,又∵∠ADE=∠BDC,∴∠ADE=∠BEA,∴AD=AE,∴AD=AE=EC,③正确;④∵AD=AE=EC,AE+CE>AD+CD,∴AD>CD,∴AC≠2CD,故④错误,故选:C.二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标(﹣2,﹣3).【解答】解:∵M(﹣2,3),∴关于x轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为80°或40°.【解答】解:在△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,顶角∠B=80°;当∠B=∠C为底角时,2(x+30)+x=180°,解得x=40°,顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为:80°或40°.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=20度.【解答】解:∵若AB=AD=CD,∠BAD=100°,∴∠B=∠ADC=(180°﹣100°)=40°,又∵在等腰三角形ADC中,∠ADB是三角形ADC的外角,∴∠BDA=∠DAC+∠C,又∵∠C=∠DAC,∴∠C=×40°=20°,故答案为:20.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)【解答】解:(1)(a﹣1)2﹣a(a+2)=a2﹣2a+1﹣a2﹣2a=﹣4a+1;(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)=x2﹣2x﹣24+4﹣9x2=﹣8x2﹣2x﹣20.17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为4.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)【解答】解:(1)点P的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,即最小值为4.故答案为4.(2)如图,①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P,则点P即为所求.18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.【解答】解:原式=•=.当a=0时,原式==2.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.【解答】解:设2015年居民用水价格为x元/m3,则2016年1月起居民用水价格为(1+)x元/m3.…(1分)依题意得:﹣=5.解得x=1.8.检验:当x=1.8时,(1+)x≠0.所以,原分式方程的解为x=1.8.答:2015年居民用水价格为1.8元/m3.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为42cm.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°﹣67.5°=22.5°;(2)∵AD=AC,∴CF=FD=CD,∠FAD=CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=22.5°,∴∠CBE=67.5°,在△AFD和△CEB中,,∴△AFD≌△CEB,(3)CD=2BE,理由如下;∵△AFD≌△CEB,∴BE=DF,∴CD=2BE.23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.【解答】特例探究:证明:∵△ABC是等边三角形,∴AB=AC,∠DBA=∠EAC=60°,在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);解:归纳证明:△ABD与△CAE全等.理由如下:∵在等边△ABC中,AB=AC,∠ABC=∠BAC=60°,∴∠DBA=∠EAC=120°.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);拓展应用:∵点O在AB的垂直平分线上,∴OA=OB,∴∠OBA=∠BAC=50°,∴∠EAC=∠DBC.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS),∴∠BDA=∠AEC=32°,∴∠BAD=∠OBA﹣∠BDA=18°.。
八年级数学上册期末测试卷及答案【真题】

八年级数学上册期末测试卷及答案【真题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .502.将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.523.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有两个不相等的实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 4.化简x 1x -,正确的是( ) A .x - B .xC .﹣x -D .﹣x 5.已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或36.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-27.下列图形中,是轴对称图形的是( )A .B .C .D .8.已知直线m ∥n ,将一块含30°角的直角三角板ABC 按如图方式放置(∠ABC=30°),其中A ,B 两点分别落在直线m ,n 上,若∠1=20°,则∠2的度数为( )A .20°B .30°C .45°D .50°9.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC=EC ,∠B=∠EB .BC=EC ,AC=DC C .BC=DC ,∠A=∠D D .∠B=∠E ,∠A=∠D10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为_______cm .3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是________.6.如图,在平行四边形ABCD中,添加一个条件_____使平行四边形ABCD是菱形.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,再求值:已知1322x=+,求()221-4412x x xx x+-+--的值3.解不等式组:21512x xxx+>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.4.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.5.已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?6.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、A6、A7、B8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、223、13k <<.4、(﹣5,4).5、40°6、AB=BC(或AC ⊥BD)答案不唯一三、解答题(本大题共6小题,共72分)1、(1)21x y =⎧⎨=-⎩;(2)53x y =⎧⎨=⎩.2、1-3、则不等式组的解集是﹣1<x ≤3,不等式组的解集在数轴上表示见解析.4、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.5、(1)1,20 km/h ;(2)95. 6、甲、乙两个工厂每天分别能加工40件、60件新产品。
八年级(上)期末数学试卷(含答案)

八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形中具有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形2.(3分)已知点P1(﹣4,3)和P2(﹣4,﹣3),则P1和P2()A.关于原点对称B.关于y轴对称C.关于x轴对称D.不存在对称关系3.(3分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.04.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=6.(3分)下列运算正确的是()A.(x3)2=x5B.(﹣2x)2÷x=4x C.(x+y)2=x2+y2D. +=1 7.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组8.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°9.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)10.(3分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC 中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC =2S四边形AEPF,上述结论正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共5小题,每小题3分,共15分,把答案写在题中横线上)11.(3分)因式分解:x2﹣3x=.12.(3分)方程=1的解是.13.(3分)如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC 于点D,若AB=6,AC=9,则△ABD的周长是.14.(3分)若代数式x2+kx+25是一个完全平方式,则k=.15.(3分)如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、解答题(本大题共7个小题,共55分,解答应写出证明过程或演算步骤)16.(6分)计算:(1)[(a+b)2﹣(a﹣b)2]÷2ab(2)×÷(﹣)17.(8分)先化简,再求值:(1)(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中xy=1(2)先化简1﹣+,然后从0,1,﹣1,2四个数中选取一个合适的数作为x的值代入求值.18.(6分)如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF ⊥AC,垂足分别为E,F.求证:EB=FC.19.(8分)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?20.(8分)在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE.(2)如图,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变,求证:△AEF≌△BCF.21.(8分)计算下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(2)你能否由此归纳出一般性的结论(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.22.(11分)如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形中具有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形【解答】解:三角形具有稳定性.故选:A.2.(3分)已知点P1(﹣4,3)和P2(﹣4,﹣3),则P1和P2()A.关于原点对称B.关于y轴对称C.关于x轴对称D.不存在对称关系【解答】解:∵P1(﹣4,3)和P2(﹣4,﹣3),∴横坐标相同,纵坐标互为相反数,∴P1和P2关于x轴对称的点,故选:C.3.(3分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.0【解答】解:根据题意得,x﹣1=0且x+1≠0,解得x=1且x≠﹣1,所以x=1.故选:A.4.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【解答】解:由题可知:a=,b=1,c=﹣1∴b>a>c,故选:B.5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=【解答】解:设江水的流速为vkm/h,根据题意得:=,故选:D.6.(3分)下列运算正确的是()A.(x3)2=x5B.(﹣2x)2÷x=4x C.(x+y)2=x2+y2D. +=1【解答】解:A、(x3)2=x6,此选项错误;B、(﹣2x)2÷x=4x2÷x=4x,此选项正确;C、(x+y)2=x2+2xy+y2,此选项错误;D、+=﹣==﹣1,此选项错误;故选:B.7.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.8.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°【解答】解:在正五边形ABCDE中,∠A=×(5﹣2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=(180°﹣108°)=36°.故选:B.9.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)【解答】解:由题意这两个图形的面积相等,∴a2﹣b2=(a+b)(a﹣b),故选:D.10.(3分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC 中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC =2S四边形AEPF,上述结论正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠A PF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF ,故①②正确;∵△AEP ≌△CFP ,同理可证△APF ≌△BPE , ∴△EFP 是等腰直角三角形,故③错误; ∵△APE ≌△CPF , ∴S △APE =S △CPF ,∴四边形AEPF =S △AEP +S △APF =S △CPF +S △BPE =S △ABC .故④正确, 故选:C .二、填空题(本大题共5小题,每小题3分,共15分,把答案写在题中横线上)11.(3分)因式分解:x 2﹣3x= x (x ﹣3) . 【解答】解:x 2﹣3x=x (x ﹣3).故答案为:x (x ﹣3)12.(3分)方程=1的解是 x=3 .【解答】解:去分母得:x ﹣1=2, 解得:x=3,经检验x=3是分式方程的解, 故答案为:x=313.(3分)如图,已知在△ABC 中,DE 是BC 的垂直平分线,垂足为E ,交AC 于点D ,若AB=6,AC=9,则△ABD 的周长是 15 .【解答】解:∵DE 是BC 的垂直平分线, ∴DB=DC ,∴△ABD 的周长=AB +AD +BD=AB +AD +DC=AB +AC=15, 故答案为:15.14.(3分)若代数式x2+kx+25是一个完全平方式,则k=﹣10或10.【解答】解:∵代数式x2+kx+25是一个完全平方式,∴k=﹣10或10.故答案为:﹣10或10.15.(3分)如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、解答题(本大题共7个小题,共55分,解答应写出证明过程或演算步骤)16.(6分)计算:(1)[(a+b)2﹣(a﹣b)2]÷2ab(2)×÷(﹣)【解答】解:(1)原式=(a2+2ab+b2﹣a2+2ab﹣b2)÷2ab=4ab÷2ab=2;(2)原式=•(﹣)=﹣.17.(8分)先化简,再求值:(1)(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中xy=1(2)先化简1﹣+,然后从0,1,﹣1,2四个数中选取一个合适的数作为x的值代入求值.【解答】解:(1)原式=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy,当xy=1时,原式=9;(2)原式=1﹣+=1﹣+=1+=,当x=0时,原式=2.18.(6分)如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF ⊥AC,垂足分别为E,F.求证:EB=FC.【解答】证明:∵AD是△ABC的角平分线,DE⊥AB、DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△DFC中,,∴Rt△BED≌Rt△CFD(HL),∴EB=FC.19.(8分)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?【解答】解:(1)设零售价为5x元,团购价为4x元,则解得,,经检验:x=是原分式方程的解,5x=2.5答:零售价为2.5元;(2)学生数为=38(人)答:王老师的班级里有38名学生.20.(8分)在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE.(2)如图,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变,求证:△AEF≌△BCF.【解答】证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠CAE,在△ABE和△ACE中,∵∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵AB=AC,点D是BC的中点,∴AD⊥BC,即∠ADC=90°,∴∠CAD+∠C=90°,∵BF⊥AC,∠BAC=45°,∴∠CBF+∠C=90°,∠BFC=∠AFE=90°,BF=AF,∴∠CAD=∠CBF;在△AEF和△BCF中,∵,∴△AEF≌△BCF(ASA).21.(8分)计算下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)你能否由此归纳出一般性的结论(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.【解答】解:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1,故答案为:x2﹣1;x3﹣1;x4﹣1;(1)(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1;故答案为:(1)x7﹣1;(2)x n﹣1;(3)1+2+22+23+24+…+235=(2﹣1)(235+234+233+…+2+1)=236﹣1.22.(11分)如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.【解答】解:(1)CF=BD,且CF⊥BD,证明如下:∵∠FAD=∠CAB=90°,∴∠FAC=∠DAB.在△ACF和△ABD中,,∴△ACF≌△ABD∴CF=BD,∠FCA=∠DBA,∴∠FCD=∠FCA+∠ACD=∠DBA+∠ACD=90°,∴FC⊥CB,故CF=BD,且CF⊥BD.(2)(1)的结论仍然成立,如图2,∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;∴CF=BD,且CF⊥BD.。
初二上册数学期末考试试卷

初二上册数学期末考试试卷一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.5B. πC. 0.333...D. √42. 如果一个角的补角是120°,那么这个角的度数是多少?A. 60°B. 30°C. 90°D. 120°3. 以下哪个选项表示的是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = √x4. 一个等腰三角形的两边长分别为5和8,那么第三边的长度是多少?A. 3B. 5C. 8D. 105. 一个数的平方根是它本身的数有几个?A. 0个C. 2个D. 3个6. 已知一个圆的半径为3,那么这个圆的面积是多少?A. 9πB. 18πC. 27πD. 36π7. 一个数的绝对值是它本身,这个数是正数还是负数?A. 正数B. 负数C. 非负数D. 非正数8. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 109. 以下哪个选项是不等式?A. 2x + 3 = 7B. 2x + 3 > 7C. 2x + 3 < 7D. 2x + 3 ≤ 710. 一个数的立方根是它本身,这个数是以下哪个?A. 0B. 1D. 8二、填空题(每题2分,共20分)11. 一个角的余角是45°,那么这个角的度数是________。
12. 一个数的平方是25,那么这个数是________或________。
13. 一个直角三角形的两个锐角的度数之和是________。
14. 一个数的绝对值是5,那么这个数是________或________。
15. 一个数的立方是-8,那么这个数是________。
16. 一个数的倒数是1/3,那么这个数是________。
17. 一个等腰三角形的底角是40°,那么顶角的度数是________。
18. 一个圆的周长是2πr,那么这个圆的半径是________。
八年级上册数学期末考试卷附答案

八年级上册数学期末考试卷附答案一、选择题1. 下列哪个数是素数?A. 11B. 15C. 18D. 20答案:A2. 下列哪个数是合数?A. 7B. 13C. 17D. 21答案:D3. 下列哪个数是偶数?A. 5B. 9C. 12D. 15答案:C4. 下列哪个数是奇数?A. 8B. 10C. 14D. 16答案:A5. 下列哪个数是整数?A. 3.5B. 4.8C. 5.6D. 6.7答案:D二、填空题6. 3的平方是_________。
答案:97. 4的立方是_________。
答案:648. 5的平方根是_________。
答案:±√59. 6的立方根是_________。
答案:∛610. 7的平方根是_________。
答案:±√7三、解答题11. 解方程:2x + 3 = 9。
答案:x = 312. 解方程:3x 2 = 8。
答案:x = 313. 解方程:4x + 5 = 17。
答案:x = 314. 解方程:5x 6 = 19。
答案:x = 515. 解方程:6x + 7 = 23。
答案:x = 216. 解方程:7x 8 = 21。
答案:x = 517. 解方程:8x + 9 = 35。
答案:x = 418. 解方程:9x 10 = 29。
答案:x = 519. 解方程:10x + 11 = 41。
答案:x = 320. 解方程:11x 12 = 39。
答案:x = 5八年级上册数学期末考试卷附答案四、应用题21. 小华买了5个苹果,每个苹果重200克,请问小华买的苹果总重量是多少克?答案:1000克22. 小红家有一个长方形花园,长为10米,宽为5米,请问花园的面积是多少平方米?答案:50平方米23. 小刚骑自行车去学校,速度为每小时15公里,请问他从家到学校需要多长时间?答案:30分钟24. 小丽去超市购物,买了3个苹果、2个香蕉和1个橙子,苹果的价格为每个5元,香蕉的价格为每个3元,橙子的价格为每个2元,请问小丽一共花费了多少元?答案:24元五、简答题25. 请简述勾股定理的内容。
八年级数学上册期末试卷(完整)
八年级数学上册期末试卷(完整)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列计算正确的是()A.310255-=B.7111()11 11711⋅÷=C.(7515)325-÷=D.181832 39-=2.若正多边形的内角和是540︒,则该正多边形的一个外角为()A.45︒B.60︒C.72︒D.90︒3.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k 的取值范围是()A.k>12B.k≥12C.k>12且k≠1 D.k≥12且k≠14. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,列方程组正确的是()A.523220x yx y+=⎧⎨+=⎩B.522320x yx y+=⎧⎨+=⎩C.202352x yx y+=⎧⎨+=⎩D.203252x yx y+=⎧⎨+=⎩5.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差6.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=,90C ∠=,45A ∠=,30D ∠=,则12∠+∠等于( )A .150B .180C .210D .2709.如图,△ABC 中,BD 是 ∠ ABC 的角平分线,DE ∥ BC ,交AB 于 E ,∠A=60º, ∠BDC=95º,则∠BED 的度数是( )A .35°B .70°C .110°D .130°10.下列图形具有稳定性的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.3.式子3x -在实数范围内有意义,则 x 的取值范围是________.4.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC 的解析式为________.5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程:11322x x x -=---2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.解不等式组:12025112x x x ⎧+≥⎪⎪⎨+⎪-<--⎪⎩并将解集在数轴上表示.4.已知:如图,点A 、D 、C 、B 在同一条直线上,AD=BC ,AE=BF ,CE=DF ,求证:AE ∥BF .5.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF (1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.6.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、D6、A7、B8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、1002、如果两个角是同一个角的余角,那么这两个角相等3、x≥34、113y x=-+5、(-2,0)6、7三、解答题(本大题共6小题,共72分)1、无解2、11a-,1.3、﹣4≤x<1,数轴表示见解析.4、略.5、6、(1)设甲种书柜单价为180元,乙种书柜的单价为240元.(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.。
八年级数学(上)期末测试试卷含答案解析
八年级数学(上)期末测试试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:54.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.557.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.310.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=.13.(﹣2)2的平方根是.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是.17.(2分)若直线y=k x+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图①中的值是.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距千米,客车的速度是千米/时;(2)小亮在丙地停留分钟,公交车速度是千米/时;(3)求两人何时相距28千米?25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=是有理数,故A错误;B、是有理数,故B错误;C、3.是有理数,故C错误;D、﹣π是无理数,故D正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.【考点】二元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把各项中x与y的值代入方程检验即可.【解答】解:A、把x=0,y=﹣代入方程得:左边=﹣1,右边=1,不相等,不合题意;B、把x=1,y=1代入方程得:左边=2﹣1=1,右边=1,相等,符合题意;C、把x=1,y=0代入方程得:左边=﹣1,右边=1,不相等,不合题意;D、把x=﹣1,y=﹣1代入方程得:左边=﹣3,右边=1,不相等,不合题意,故选B.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形的内角和定理得出A是直角三角形,D不是直角三角形,由勾股定理的逆定理得出B、C是直角三角形,从而得到答案.【解答】解:A、三个内角之比为1:1:2,因为根据三角形内角和定理可求出三个角分别为45°,45°,90°,所以是直角三角形,故正确;B、三条边之比为1:2:,因为12+22=()2,其符合勾股定理的逆定理,所以是直角三角形,故正确;C、三条边之比为5:12:13,因为52+122=132,其符合勾股定理的逆定理,所以是直角三角形,故正确;D、三个内角之比为3:4:5,因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确.故选:D.【点评】本题考查了勾股定理的逆定理、三角形内角和定理、直角三角形的判定;熟练掌握勾股定理的逆定理和三角形内角和定理是解决问题的关键.4.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等【考点】命题与定理.【分析】利用数轴上的点与实数一一对应可对A进行判断;根据平行线的判定方法对B进行判断;根据无理数的定义对C进行判断;根据补角的定义对D进行判断.【解答】解:A、所有实数都可以用数轴上的点表示,所以A选项为真命题;B、同位角相等,两直线平行,所以B选项为真命题;C、无理数包括正无理数、负无理数,所以C选项为假命题;D、等角的补角相等,所以D选项为真命题.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得3<<4,再根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得<<,即3<<4,都减1,得2<﹣1<3.故选:B.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题关键.6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.55【考点】平行线的性质.【分析】先由垂直的定义,求出∠PEF=90°,然后由∠BEP=50°,进而可求∠BEF=140°,然后根据两直线平行同旁内角互补,求出∠EFD的度数,然后根据角平分线的定义可求∠EFP的度数,然后根据三角形内角和定理即可求出∠EPF的度数.【解答】解:如图所示,∵EP⊥EF,∴∠PEF=90°,∵∠BEP=50°,∴∠BEF=∠BEP+∠PEF=140°,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EFD=40°,∵FP平分∠EFD,∴=20°,∵∠PEF+∠EFP+∠EPF=180°,∴∠EPF=70°.故选:A.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.7.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁【考点】一元一次方程的应用.【分析】可设儿子现在的年龄是x岁,则父亲现在的年龄是3x岁,根据等量关系:7年前父亲的年龄=7年前儿子的年龄×5,依此列出方程求解即可.【解答】解:设儿子现在的年龄是x岁,依题意得:3x﹣7=5(x﹣7).解得x=14.则3x=42.即父亲和儿子现在的年龄分别是42岁,14岁.故选:A.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由年龄的倍数问题找出合适的等量关系列出方程,再求解.8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:m>5时,m﹣5>0,m+2>0,点位于第一象限,故A不符合题意;m=5时点位于y轴;﹣2<m<5时,m﹣5<0,m+2>0,点位于第二象限,故B不符合题意;m=﹣2时,点位于x轴;m<﹣2时,m﹣5<0,m+2<0,点位于第三象限,故C不符合题意;M(m﹣5,m+2)一定不在第四象限,故D符合题意;故选:D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.3【考点】等腰直角三角形.【分析】由等腰直角三角形的性质得出∠A=∠B=45°,证出四边形PECF是矩形,得出PF=CE,证出△APE和△BPF是等腰直角三角形,得出AE=PE,BF=PF,再由三角形的面积得出PE2=14,CE2=PF2=4,由勾股定理求出PC的长即可.【解答】解:∵△ABC是等腰直角三角形,∠ACB=90°,∴∠A=∠B=45°,∵PF⊥BC于点F,PE⊥AC于点E,∴∠PFB=∠PEA=90°,四边形PECF是矩形,∴△APE和△BPF是等腰直角三角形,PF=CE,∠PEC=90°,∴AE=PE,BF=PF,∵S△APE=AE•PE=PE2=7,S△PBF=PF•BF=PF2=2,∴PE2=14,CE2=PF2=4,∴PC===3;故选:B.【点评】本题考查了等腰直角三角形的判定与性质、矩形的判定与性质、勾股定理;熟练掌握等腰直角三角形的判定与性质,运用勾股定理求出PC是解决问题的关键.10.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【分析】根据正比例函数与一次函数的图象性质作答.【解答】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;当0<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;当k<0时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限;故选B.【点评】此题考查一次函数的图象问题,正比例函数的性质:正比例函数y=kx的图象是过原点的一条直线.当k>0时,直线经过第一、三象限;当k<0时,直线经过第二、四象限.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是x≤2.【考点】函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0,解得:x≤2.故答案是:x≤2.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=6或﹣3.【考点】极差.【分析】分别当x为最大值和最小值时,根据极差的概念求解.【解答】解:当x为最大值时,x﹣(﹣1)=7,解得:x=6,当x为最小值时,4﹣x=7,解得:x=﹣3.故答案为:6或﹣3.【点评】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.13.(﹣2)2的平方根是±2.【考点】平方根.【专题】计算题.【分析】先求出(﹣2)2的值,然后开方运算即可得出答案.【解答】解:(﹣2)2=4,它的平方根为:±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.【考点】一次函数与二元一次方程(组).【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解易得答案.【解答】解:∵直线y=2x+1与y=﹣x+4的交点是(1,3),∴方程组的解为.故答案为.【点评】本题考查了一次函数与一元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是26.【考点】二元一次方程组的应用.【专题】数字问题.【分析】设这个两位数个位数为x,十位数字为y,根据个位数字比十位数字大4,个位数字与十位数字的和为8,列方程组求解.【解答】解:设这个两位数个位数为x,十位数字为y,由题意得,,解得:,则这个两位数为26.故答案为:26.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是cm.【考点】平面展开-最短路径问题.【分析】将图形展开,可得到AD较短的展法两种,通过计算,得到较短的即可.【解答】解:(1)如图1,BD=BC=6cm,AB=5+10=15cm,在Rt△ADB中,AD==3cm;(2)如图2,AN=5cm,ND=5+6=11cm,Rt△ADN中,AD===cm.综上,动点P从A点出发,在长方体表面移动到D点的最短距离是cm.故答案为:cm.【点评】本题考查了平面展开﹣﹣最短路径问题,熟悉平面展开图是解题的关键.17.(2分)若直线y=kx+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为y=﹣2x+19.【考点】两条直线相交或平行问题.【专题】计算题.【分析】根据两直线平行的问题得到k=﹣2,然后把(5,9)代入y=﹣2x+b,求出b的值即可.【解答】解:根据题意得k=﹣2,把(5,9)代入y=﹣2x+b得﹣10+b=9,所以直线解析式为y=﹣2x+19.故答案为y=﹣2x+19.【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是(2,1008).【考点】规律型:点的坐标.【分析】由于2016是4的整数倍数,故A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,可见,A2016在x轴上方,横坐标为2,再根据纵坐标变化找到规律即可解答即可.【解答】解:∵2016是4的整数倍数,∴A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2016÷4=504…0,∴A2016在x轴上方,横坐标为2,∵A4、A8、A12的纵坐标分别为2,4,6,∴A2016的纵坐标为2016×=1008.故答案为:(2,1008).【点评】本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【专题】计算题.【分析】(1)先进行二次根式的乘法运算,然后合并即可;(2)利用加减消元法解二元一次方程组.【解答】解:(1)原式=3﹣6﹣3(2),①+②×5得:13y=13,解得y=1,把y=1代入②中得2x﹣1=1,解得x=1,所以原方程组的解是.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.【考点】作图-轴对称变换;全等三角形的性质;作图-平移变换.【分析】(1)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;(2)首先确定A、B、C三点向下平移4个单位长度的对应点的位置,再连接即可;(3)首先确定D点位置,然后再写出坐标即可.【解答】解:(1)(2)如图所示:;(3)(﹣4,﹣1);(﹣2,﹣1);(﹣4,3).【点评】此题主要考查了作图﹣﹣平移变换,以及关于坐标轴对称,全等三角形的判定,关键是正确确定对称点和对应点的位置.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为50人,图①中的值是12.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】计算题.【分析】(1)利用条形统计图得各组的频数,然后把它们相加即可得到抽样调查的学生的总数,再用16除以50即可得到m的值;(2)根据众数和中位数的定义求解;(3根据样本估计总体,用样本中捐款10元所占的百分比表示全校捐款10元的百分比,然后计算1900×32%即可.【解答】解:(1)本次接受随机抽样调查的学生人数为4+16+12+10+8=50(人),m%=×100%=32%;故答案为50;32;(2)本次调查获取的样本数据的众数是10元;中位数是15元;(3)1900×32%=608(人),答:估计该校捐款10元的学生人数有608人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了用样本估计总体、中位数和众数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,根据等量关系为“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,根据这两个等量关系可列方程组,再进行求解即可.(2)求小王每月工资额的范围,需要求助于函数,由(1)知生产A、B的单个时间,又每月工作总时间一定为25×8×60,所以可列一个二元一次方程,又工资计算方法已知,则可利用一个未知量,去表示另一个未知量,得到函数,进行解答.【解答】解:(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,依题意得:,解得:,答:生产一件A种产品需要15分钟,生产一件B种产品需要20分钟.(2)设小王每月生产A、B两种产品的件数分别为m、n,月工资额为w,根据题意得:,即,因为m,n为非负整数,所以0≤m≤800,故当m=0时,w有最大值为1240,当m=800时,w有最小值为1000,则小王每月工资额最少1000元,每月工资额最多1240元.【点评】此题考查了一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,列出方程组,再求解.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.【考点】平行线的判定.【专题】证明题.【分析】先由∠AGD=90°,根据三角形内角和定理得出∠A+∠D=90°,再由∠1=∠D,∠ABF=∠1+∠D,得出∠ABF=2∠D,同理得出∠DCE=2∠A,那么∠DCE+∠ABF=2(∠A+∠D)=180°,根据邻补角定义得出∠ABF+∠DBF=180°,由同角的补角相等得到∠DCE=∠DBF,根据同位角相等,两直线平行得出FB∥EC.【解答】证明:∵∠AGD=90°,∴∠A+∠D=90°,∵∠1=∠D,∠ABF=∠1+∠D,∴∠ABF=2∠D,同理:∠DCE=2∠A,∴∠DCE+∠ABF=2(∠A+∠D)=180°,又∵∠ABF+∠DBF=180°,∴∠DCE=∠DBF,∴FB∥EC.【点评】本题考查了平行线的判定,三角形内角和定理,三角形外角的性质,邻补角定义,补角的性质,根据条件得出∠DCE=∠DBF是解题的关键.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距80千米,客车的速度是80千米/时;(2)小亮在丙地停留48分钟,公交车速度是40千米/时;(3)求两人何时相距28千米?【考点】一次函数的应用;一次函数的图象;待定系数法求一次函数解析式.【专题】数形结合;分类讨论;函数思想;待定系数法;一次函数及其应用.【分析】(1)结合图象知,小明乘客车从丙地到乙地用时30分钟,行驶40千米可得客车速度,小明从甲到乙行驶1小时,可得甲乙间距离;(2)小亮在x=30到达丙地,x=78离开丙地,可得停留时间,根据小亮从丙地返回到甲地用时可得公交车速度;(3)两人相距28千米,即y=28,求出AB、DE函数解析式,令y=28可求得.【解答】解:(1)根据题意可知,当x=30时小明、小亮同时到达丙地,小亮停留在丙地;当x=60时y=40,即小明到达乙地,此时两人间的距离为40千米,∴小明乘客车从丙地到乙地用时30分钟,行驶40千米,∴客车的速度为:40÷0.5=80(千米/小时),∵小明乘客车从甲地到乙地用时60分钟,速度为80千米/小时,∴甲、乙两地相距80千米.(2)当x=78时小亮从丙地出发返回甲地,当x=138时小亮乘公交车从丙地出发返回到甲地,∴小亮在丙地停留78﹣30=48(分钟),公交车的速度为:40÷1=40(千米/小时).(3)①设AB关系式为:y1=k1x+b1由图象可得A(30,0)、B(60,40),代入得:则,解得,所以AB关系式为:(30≤x≤60),令y1=28,有,∴x=51.②设DE关系式为:y2=k2x+b2,∵(千米),∴D(90,48),由图象可得E(138,0),所以,解得:,所以DE关系式为:y2=﹣x+138 (90≤x≤138),令y2=28,有﹣x+138=28,∴x=110.所以两人在9:51和10:50相距28千米.故答案为:(1)80,80;(2)48,40.【点评】本题主要考查一次函数图象及待定系数法求一次函数解析式的能力,读懂函数图象各分段实际意义是关键,属中档题.25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD 的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.【考点】全等三角形的判定与性质;勾股定理.【分析】(1)根据平行线的性质和角平分线的定义求得∠EHF=∠EFH,证得EF=EH,根据∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,得出∠EFG=∠EGF,根据等角对等边求得EG=EF,即可证得EH=EG,即E为HG的中点;(2)连接PH,根据垂直平分线的性质得出PG=PH,在Rt△PFH中,根据勾股定理得:PH2=PF2+HF2,即可得到GP2=PF2+HF2;(3)延长PE,使PE=EM,连接MH,MF,易证得△GPE≌△HME,从而得出GP=MH,∠1=∠2,进而证得EF垂直平分PM,根据垂直平分线的性质得出PF=MF,在RT△MHF中,MF2=MH2+FH2,即可得到PF2=GP2+FH2.【解答】(1)证明:∵AB∥CD,∴∠EHF=∠HFD,∵FH平分∠EFD,∴∠EFH=∠HFD,∴∠EHF=∠EFH,∴EF=EH,∵∠GFH=90°,∴∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,∴∠EFG=∠EGF,∴EG=EF,∴EH=EG,∴E为HG的中点;(2)连接PH,如图②:∵EP⊥AB,又∵E是GH中点,∴PE垂直平分GH,∴PG=PH,在Rt△PFH中,∠PFH=90°,由勾股定理得:PH2=PF2+HF2,∴GP2=PF2+HF2;(3)如图③,延长PE,使PE=EM,连接MH,MF,在△GPE和△HME中,,∴△GPE≌△HME(SAS),∴GP=MH,∠1=∠2,∵GF⊥FH,∴∠1+∠3=90°,∴∠2+∠3=90°,∵EF⊥PM,PE=EM,∴PF=MF,在RT△MHF中,MF2=MH2+FH2,∴PF2=GP2+FH2.【点评】本题考查了全等三角形的判定和性质,线段的垂直平分线的性质,等腰三角形的判定和性质,勾股定理的应用等,找出辅助线,构建等腰三角形是解题的关键.。
八年级(上)期末数学试卷(含答案)
八年级(上)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分)1.下列手机屏幕解锁图案中,不是轴对称图形的是()A.B. C.D.2.某种病毒的直径约为0.00000028米,该直径用科学记数法表示为()A.0.28×10﹣6米B.2.8×10﹣8米 C.2.8×10﹣7米 D.2.8×10﹣6米3.使分式有意义的x的取值范围是()A.x≠0 B.x≠﹣1 C.x≠1 D.x≠24.已知a m=3,a n=4,则a m+n的值为()A.12 B.7 C.D.5.正十边形每个内角的度数是多少()A.180°B.144°C.150° D.120°6.如图,AB=BD,BC=BE,要使△ABE≌△DBC,需添加条件()A.∠ABE=∠DBC B.∠C=∠E C.∠D=∠E D.∠A=∠D7.若分式=0,则x的值是()A.﹣1 B.0 C.1 D.﹣28.一个三角形三边长分别为1、2、x,且x为整数,则此三角形的周长是()A.4 B.5 C.6 D.79.已知(x+y)2=9,且(x﹣y)2=5,则xy的值是()A.14 B.4 C.2 D.110.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=40°,求∠ABD+∠ACD=()A.30°B.40°C.50°D.60°二、填空题(本大题6小题,每小题4分,共24分)11.分解因式:a2﹣25=.12.点M(3,﹣4)关于x轴的对称点的坐标是.13.如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=°.14.如图,已知OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=2,则点P到OB的距离为.15.对于实数a、,b,定义运算⊗如下:a⊗b=,例如:2⊗4=2﹣4=,计算[2⊗2]×[3⊗2]=.16.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=°.三、解答题(本大题3小题,每小题6分,共18分)17.计算:(a2b+2ab﹣b3)÷b﹣(a+b)(a﹣b)18.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.19.如图,在△ABC中,AB=AC.(1)尺规作图:作AB的垂直平分线,交AC于点M,(不写作法,保留作图痕迹);(2)若∠A=40°,求∠CMB的度数.四、解答题(本大题3小题,每小题7分,共21分)20.先化简,再求值:•+,从﹣1,0,1三个数中选一个合适的,代入求值.21.一个工程队修一条3000米的公路,由于施工中途增加了人员,实际每天修路比原来多50%,结果提前2天完成,求实际每天修路多少米?22.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E 作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.五、解答题(本大题3小题,每小题9分,共27分)23.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,原题设其它条件不变.求证:∠CAD=∠CBF;(3)在(2)的条件下,连接CE,若∠BAC=45°,判断△CFE的形状,并说明理由.24.从边长为a的正方形剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)(2)若x2﹣9y2=12,x+3y=4,求x﹣3y的值;(3)计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)25.如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B 时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为厘米,BP的长为厘米;(用含t 的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ 会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.下列手机屏幕解锁图案中,不是轴对称图形的是()A.B. C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意.故选D.2.某种病毒的直径约为0.00000028米,该直径用科学记数法表示为()A.0.28×10﹣6米B.2.8×10﹣8米 C.2.8×10﹣7米 D.2.8×10﹣6米【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000028=2.8×10﹣7.故选:C.3.使分式有意义的x的取值范围是()A.x≠0 B.x≠﹣1 C.x≠1 D.x≠2【考点】62:分式有意义的条件.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵使分式有意义,∴x﹣2≠0,解得:x≠2.故选:D.4.已知a m=3,a n=4,则a m+n的值为()A.12 B.7 C.D.【考点】46:同底数幂的乘法.【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【解答】解:a m+n=a m•a n=3×4=12,故选:A.5.正十边形每个内角的度数是多少()A.180°B.144°C.150° D.120°【考点】L3:多边形内角与外角.【分析】先求出每一个外角的度数,然后根据每一个外角与内角互为邻补角列式求解.【解答】解:每一个外角度数为360°÷10=36°,每个内角度数为180°﹣36°=144°.故选:B.6.如图,AB=BD,BC=BE,要使△ABE≌△DBC,需添加条件()A.∠ABE=∠DBC B.∠C=∠E C.∠D=∠E D.∠A=∠D【考点】KB:全等三角形的判定.【分析】根据已知条件是两个三角形的两组对应边,所以需要添加的条件必须能得到这两边的夹角相等,选择答案即可.【解答】解:∵AB=BD,BC=BE,∴要使△ABE≌△DBC,需添加的条件为∠ABE=∠DBC,故选A.7.若分式=0,则x的值是()A.﹣1 B.0 C.1 D.﹣2【考点】63:分式的值为零的条件.【分析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.【解答】解:由题意,得x2﹣1=0且x+1≠0,解得x=1,故选:C.8.一个三角形三边长分别为1、2、x,且x为整数,则此三角形的周长是()A.4 B.5 C.6 D.7【考点】K6:三角形三边关系.【分析】首先根据三角形的三边关系确定x的范围,再确定周长范围即可.【解答】解:根据三角形的三边关系可得:2﹣1<x<2+1,即1<x<3,三角形的周长范围为:1+2+1<周长<3+2+1,即4<周长<6.故选:B.9.已知(x+y)2=9,且(x﹣y)2=5,则xy的值是()A.14 B.4 C.2 D.1【考点】4C:完全平方公式.【分析】将完全平方公式即可求出xy的值.【解答】解:x2+2xy+y2=9x2﹣2xy+y2=5,∴两式相减可得:2xy+2xy=4,∴4xy=4,∴xy=1,故选(D)10.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=40°,求∠ABD+∠ACD=()A.30°B.40°C.50°D.60°【考点】K7:三角形内角和定理.【分析】根据三角形内角和定理可得∠ABC+∠ACB=180°﹣∠A=140°,∠DBC+∠DCB=180°﹣∠DBC=90°,进而可求出∠ABD+∠ACD的度数.【解答】解:在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=140°﹣90°=50°;故选C.二、填空题(本大题6小题,每小题4分,共24分)11.分解因式:a2﹣25=(a﹣5)(a+5).【考点】54:因式分解﹣运用公式法.【分析】利用平方差公式分解即可求得答案.【解答】解:a2﹣25=(a﹣5)(a+5).故答案为:(a﹣5)(a+5).12.点M(3,﹣4)关于x轴的对称点的坐标是(3,4).【考点】P5:关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点M(3,﹣4)关于x轴的对称点M′的坐标是(3,4).故答案为:(3,4).13.如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=30°°.【考点】KK:等边三角形的性质.【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD的度数.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD=∠BAC=30°,故答案为:30°.14.如图,已知OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=2,则点P到OB的距离为2.【考点】KF:角平分线的性质.【分析】作PE⊥OB于E,根据角平分线的性质解答.【解答】解:作PE⊥OB于E,∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=2,故答案为:2.15.对于实数a、,b,定义运算⊗如下:a⊗b=,例如:2⊗4=2﹣4=,计算[2⊗2]×[3⊗2]=.【考点】2C:实数的运算;6F:负整数指数幂.【分析】根据题目所给的运算法则,分别计算出2⊗2和3⊗2的值,然后求解即可.【解答】解:2⊗2=2﹣2=,3⊗2=32=9,则[2⊗2]×[3⊗2]=×9=.故答案为:.16.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.【考点】JA:平行线的性质;K7:三角形内角和定理;PB:翻折变换(折叠问题).【分析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.三、解答题(本大题3小题,每小题6分,共18分)17.计算:(a2b+2ab﹣b3)÷b﹣(a+b)(a﹣b)【考点】4H:整式的除法;4F:平方差公式.【分析】根据整式运算法则即可求出答案.【解答】解:原式=a2+2a﹣b2﹣(a2﹣b2)=a2+2a﹣b2﹣a2+b2=2a18.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【考点】KD:全等三角形的判定与性质;J9:平行线的判定.【分析】(1)由SAS容易证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出对应角相等∠B=∠DEF,即可得出结论.【解答】证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.19.如图,在△ABC中,AB=AC.(1)尺规作图:作AB的垂直平分线,交AC于点M,(不写作法,保留作图痕迹);(2)若∠A=40°,求∠CMB的度数.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】(1)利用基本作图(作线段的垂直平分线)作AB的垂直平分线,此垂直平分线与AC的交点为M点;(2)根据垂直平分线的性质得AM=BM,则利用等腰三角形的性质得∠ABM=∠A=40°,然后根据三角形外角性质求∠CMB得度数.【解答】解:(1)如图,点M为所作;(2)∵AB的垂直平分线交AC于M,∴AM=BM,∴∠ABM=∠A=40°,∴∠CMB=∠ABM+∠A=80°.四、解答题(本大题3小题,每小题7分,共21分)20.先化简,再求值:•+,从﹣1,0,1三个数中选一个合适的,代入求值.【考点】6D:分式的化简求值.【分析】先化简题目中的式子,然后将x=0代入化简后的式子即可解答本题.【解答】解:•+====,当x=0时,原式=.21.一个工程队修一条3000米的公路,由于施工中途增加了人员,实际每天修路比原来多50%,结果提前2天完成,求实际每天修路多少米?【考点】B7:分式方程的应用.【分析】首先设原来每天修路x米,则实际每天修路(1+50%)x米,根据题意可得等量关系:原来修3000米的时间﹣实际修3000米的时间=2天,根据等量关系列出方程即可.【解答】解:设原来每天修路x米,由题意得:﹣=2,解得:x=500,经检验:x=500是原分式方程的解,(1+50%)×500=750(米),答:实际每天修路750米.22.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E 作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.【考点】KM:等边三角形的判定与性质.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6.五、解答题(本大题3小题,每小题9分,共27分)23.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,原题设其它条件不变.求证:∠CAD=∠CBF;(3)在(2)的条件下,连接CE,若∠BAC=45°,判断△CFE的形状,并说明理由.【考点】KD:全等三角形的判定与性质.【分析】(1)由条件证明△ABE≌△ACE即可;(2)利用垂直的定义可求得∠CAD+∠C=∠CBF+∠C=90°,可证得结论;(3)由条件可证明△AEF≌△BCF,可得AF=BF,可得出结论.【解答】证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠CAD+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠CAD=∠CBF;(3)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,在△AEF和△BCF中,∴△AEF≌△BCF(ASA),∴EF=CF,∵∠CFE=90°,∴△CFE为等腰直角三角形.24.从边长为a的正方形剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是B(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)(2)若x2﹣9y2=12,x+3y=4,求x﹣3y的值;(3)计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)【考点】4G:平方差公式的几何背景.【分析】(1)观察图1与图2,根据两图形阴影部分面积相等,验证平方差公式即可;(2)已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可;(3)先利用平方差公式变形,再约分即可得到结果.【解答】解:(1)根据阴影部分面积相等可得:a2﹣b2=(a+b)(a﹣b),上述操作能验证的等式是B,故答案为:B;(2)∵x2﹣9y2=12,∴x2﹣9y2=(x+3y)(x﹣3y)=12,∵x+3y=4,∴x﹣3y=3;(3)原式====.25.如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为t厘米,BP的长为5﹣t厘米;(用含t的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ 会变化吗?若变化,则说明理由;若不变,请求出它的度数.【考点】KY:三角形综合题.【分析】(1)根据题意、结合图形解答;(2)分∠PQB=90°、∠BPQ=90°两种情况,根据直角三角形的性质列式计算即可;(3)证明△ABQ≌△CAP,根据全等三角形的性质、等边三角形的内角是60°解答即可.【解答】解:(1)由题意得,BQ=t,BP=5﹣t,故答案为:t;(5﹣t);(2)设时间为t,则AP=BQ=t,PB=5﹣t,①当∠PQB=90°时,∵∠B=60°,∴∠BPQ=30°,∴PB=2BQ,得5﹣t=2t,解得,t=,②当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,得t=2(5﹣t),解得,t=,∴当第秒或第秒时,△PBQ为直角三角形;(3)∠CMQ不变,理由如下:在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,∴∠CMQ不会变化.。
八年级数学(上册)期末试卷及答案(真题)
八年级数学(上册)期末试卷及答案(真题) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .123.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.下列二次根式中,与6是同类二次根式的是( )A .12B .18C .23D .305.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .26.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一些蜂蜜,此时一只蚂蚁正好也在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,那么蚂蚁要吃到甜甜的蜂蜜所爬行的最短距离是( )A .13B .14C .15D .167.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+18.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3二、填空题(本大题共6小题,每小题3分,共18分)+=__________.1.已知a、b为两个连续的整数,且11a b<<,则a b2.已知三角形ABC 的三边长为a,b,c 满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为_____________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD=6,BE=2,则平行四边形ABCD 的周长是________.三、解答题(本大题共6小题,共72分)1.解不等式(1)7252x x -+≥ (2)11132x x -+-<2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中50+-113⎛⎫ ⎪⎝⎭2(-1).3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.5.如图,在△OBC 中,边BC 的垂直平分线交∠BOC 的平分线于点D ,连接DB ,DC ,过点D 作DF ⊥OC 于点F .(1)若∠BOC =60°,求∠BDC 的度数;(2)若∠BOC =α,则∠BDC = ;(直接写出结果)(3)直接写出OB ,OC ,OF 之间的数量关系.6.某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、C5、B6、C7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、72、直角3、13k <<.4、72°5、706、20三、解答题(本大题共6小题,共72分)1、(1)2x ≥;(2)11x >-2、-33a +,;12-.3、(1)102b -≤≤;(2)24、(1)略;(2).5、(1)120°;(2)180°-α;(3)OB +OC =2OF6、(1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学第一学期期末测试题
第Ⅰ卷 基础卷
时间:90分钟 满分:120分
一、选择题:(共36分,每题3分)
1. 下列说法正确的有 个。
① 任何正数的两个平方根的和等于0 ② 任何实数都有一个立方根 ③ 无限小数都是无理数 ④ 实数和数轴上的点一一对应
A. 1
B. 2
C. 3
D. 4 2.当x=-9时,2x 的值为_________________。
A.9
B.—9
C.3
D.—3
3.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是…………………( ).
A 1、2、3
B 2、3、4
C 3、4、5
D 4、5、6 4.下列图案中,是中心对称图形的是……………………………( ).
A B C D
5.下列各式估算正确的是( )
A 、4.602536≈
B 、38.62603≈
C 、066.043.0≈
D 、969003≈ 6.下列说法中,正确的个数为( )
(1)旋转不改变图形的形状和大小 (2)菱形的对角线互相垂直平分 (3)任意四边形都可以密铺 (4)平行四边形是中心对称图形 A 、1个 B 、2个 C 、3个 D 、4个
7. 点P(2,1+--b a )关于x 轴对称与关于y 轴对称的点的坐标相同,则b a ,的值分别是 。
A. –1, 2
B. –1, –2 C . –2, 1 D. 1, 2
8.平行四边形的周长为50,设它的长为x ,宽为y ,则y 与x 的函数关系为( )
A 、y=25-x
B 、y=25+x
C 、y=50-x
D 、y=50+x 9.根据下列表述,能确定位置的是…………( ).
A 某电影院2排
B 南京市大桥南路
C 北偏东30
D 东经118°,
北纬40°
10.过两点A (2,3),B (2,-1)作直线AB ,则AB ( ) A 、平行于x 轴 B 、平行于y 轴 C 、过原点 D 、无法确定 11.一次函数y=x 图象向下平移2个单位长度后,对应函数关系式是( )
A y=2x
B y=
2
1x C y=x +2 D y=x -2
12.如图,OA,BA 分别表示甲、乙两名学生运动的一次 函数的图象,图中s 和t 分别表示运动的路程和时间, 根据图象判断快者的速度比慢者的速度每秒快( )
A 、2.5米
B 、2米
C 、1.5米
D 、1米
二、填空题:(共18分,每题3分)
13. 121的算术平方根的平方根是 ,610--= 。
14. 如图所示的四个两两相联的等圆,是我国
“一汽”生产的大众汽车的车牌标志,右边的三个圆环可以看做是左边的圆环经过 得到的。
15. 如图,正方形OABC 的各顶点A 、B 、C 则点A 、B 、C 分别关于x 轴,y 轴,原点的坐标分别 是 , , 。
16.
已知⎩
⎨⎧==1,2y x 方程
2x -ay=5的一个解,则a = ;17.菱形的周长为20cm ,两邻角之比为1:2,则较短的对角线长为 cm 。
18.威海电信“市话”的收费标准是:(1)通话时间在三分钟以内(包括三分钟),话费为0.22元;(2)通话时间超过三分钟时,超过部分的话费按每分钟0.1元计,在一次通话中,如果通话时间超过三分钟那么话费y(元)与通话时间x(x 取整数,单位:分钟)之间的函数关系式为 。
三、解答题:(共66分,其中19、21、22、23题各8分,20题10分,24、25
题各12分)
19.(8分)化简(1)32
2
18-+
.
(2).(3+2)2.
20.(10分)解下列二元一次方程组:
12
864A
t(秒)
s(米)
B
O
(1)、⎩⎨
⎧-=+=-.
345,52y x y x (2)、⎩⎨
⎧-=-=+.
12,4y x y x
21.(8分)如图,已知OA=OB 。
(1) 说出数轴上点A 所表示的数;
(2) 比较点A 所表示的数与-2.5的大小。
22.(8分)计算下列各式并观察:
①=8100 ,②=81 ,③=81.0 ,④=0081.0 ,
通过上述各式,你能发现什么样的规律,用自己的语言叙述出来 。
23、(8分)如图, AC//ED ,点B 在AC 上,且
写出图中的平行四边形,并说出理由。
24.(12分)已知正比例函数y=k 1x 的图象与一次函数y=k 2x -9的图象都经过点
P (3,-6)。
(1)求k 1、k 2的值。
(2)在同一直角坐标系中,画出这两个函数的图象。
(3)如果一次函数与x 轴交于点A ,求A 点的坐标。
25.(12分)我们学校准备添置一批电脑,有两个方案可供选择:方案1:到商家直接购买,每台需要7000元;
方案2:学校买零部件组装,每台需要6000元,另外需要支付安装工工资等其它费用合计3000元.设学校需要电脑x台,方案1与方案2的费用分别为y1、y2元.
(1)分别写出y1、y2的函数解析式;
(2)当学校添置多少台电脑时,两种方案的费用相同?
(3)若我们学校需要添置台电脑50台,你认为采用哪一种方案较省钱?说说你的理由.
第Ⅱ卷提高卷
时间:30分钟满分:30分
1.选择题(4分)在函数x
)1
-
=中,y随x的增大而增大,则k
(-
x
k
y2
的值可能是()
A.1
B. 2
C.2
D. 2
2
2.填空题(4分)菱形的周长为20cm,两邻角之比为1:2,则较短的对角线长为 cm。
3.(10分)小明学完了“矩形”一节内容后,他想检验家中的门是不是矩形的,但他能利用的工具只的一个有刻度的20cm的直尺和一卷棉线。
他能用这些工具检验吗?请你帮他设计一个检验的办法。
(要求:方案设计合理,语言叙述清晰、流畅)
4.(12分)威海海岛大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元)。
为吸引客源,打造“诚信威海”,促进旅游,在十一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠。
一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元。
(1)三人间、双人间普通客房各住了多少间?
(2)设三人间共住了x 人,则双人间住了 人,一天一共花去住宿费用y 元表示,写出y 与x 的函数关系式;
(3)在直角坐标系内画出这个函数图象;
(4)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?。