新教案22oc

合集下载

【人教版九年级数学上册教案】22.3实际问题与二次函数(第1课时)

【人教版九年级数学上册教案】22.3实际问题与二次函数(第1课时)

22.3 实质问题与二次函数第 1课时教课目标:1.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y= ax2的关系式。

2.使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。

3.让学生体验二次函数的函数关系式的应用,提升学生用数学意识。

要点难点:要点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y= ax2、y= ax2+b x + c 的关系式是教课的要点。

难点:已知图象上三个点坐标求二次函数的关系式是教课的难点。

教课过程:一、创建问题情境如图,某建筑的屋顶设计成横截面为抛物线型( 曲线 AOB)的薄壳屋顶。

它的拱高AB 为4m,拱高 CO为 0.8m。

施工前要先制造建筑模板,如何画出模板的轮廓线呢?分析:为了画出吻合要求的模板,平时要先建立合适的直角坐标系,再写出函数关系式,而后依据这个关系式进行计算,放样画图。

以下列图,以AB的垂直均分线为y 轴,以过点 O 的 y 轴的垂线为 x 轴,建立直角坐标系。

这时,屋顶的横截面所成抛物线的极点在原点,对称轴是 y 轴,张口向下,所以可设它的函数关系式为:y = ax2 (a< 0) (1)AB因为 y 轴垂直均分AB,并交 AB于点 C,所以 CB2= 2(cm) ,又 CO= 0.8m,所以点 B =的坐标为 (2 ,- 0.8) 。

因为点 B 在抛物线上,将它的坐标代人(1) ,得-0.8=a×22所以a=-0.2所以,所求函数关系式是y=- 0.2x 2。

二、引申拓展问题 1:能不可以以A点为原点, AB所在直线为x 轴,过点 A 的 x 轴的垂线为y 轴,建立直角坐标系 ?让学生认识建立直角坐标系的方法不是独一的,以 A 点为原点, AB所在的直线为x 轴,过点 A 的 x 轴的垂线为y 轴,建立直角坐标系也是可行的。

问题 2,若以 A 点为原点, AB所在直线为x 轴,过点 A 的 x 轴的垂直为y 轴,建立直角坐标系,你能求出其函数关系式吗?分析:按此方法建立直角坐标系,则 A 点坐标为 (0 , 0) ,B 点坐标为 (4 , 0),OC 所在直线为抛物线的对称轴,所以有AC=CB, AC=2m, O点坐标为 (2 ; 0. 8) 。

2022年人教版九年级数学上册第二十四章 圆教案 直线和圆的位置关系 (第2课时)

2022年人教版九年级数学上册第二十四章 圆教案  直线和圆的位置关系 (第2课时)

24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系(第2课时)一、教学目标【知识与技能】能判定一条直线是否为一条切线,会过圆上一点作圆的切线.会运用切线的判定定理和性质定理解决问题。

【过程与方法】经历切线的判定定理及性质定理的探究过程,养成学生既能自主探究,又能合作探究的良好学习习惯.【情感态度与价值观】体验切线在实际生活中的应用,感受数学就在我们身边,感受证明过程的严谨性及结论的正确性.二、课型新授课三、课时第2课时,共3课时。

四、教学重难点【教学重点】切线的判定定理及性质定理的探究和运用.【教学难点】切线的判定定理和性质的应用.五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课教师问:转动雨伞时飞出的雨滴,用砂轮磨刀时擦出的火花,都是沿着什么方向飞出的?(出示课件2)学生问:都是沿着圆的切线的方向飞出的.(二)探索新知探究一切线的判定方法教师问:如图,在⊙O中经过半径OA的外端点A作直线l⊥OA,则圆心O到直线l的距离是多少?直线l和⊙O有什么位置关系?(出示课件4)学生答:这时圆心O到直线l的距离就是⊙O的半径.由d=r得到直线l是⊙O的切线.教师问:已知圆O上一点A,怎样根据圆的切线定义过点A作圆O的切线?(出示课件5)教师作图,学生观察并思考:(1)圆心O到直线AB的距离和圆的半径有什么数量关系?(2)二者位置有什么关系?为什么?出示课件6:教师归纳:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.应用格式:∵OA为⊙O的半径,BC⊥OA于A,∴BC为⊙O的切线.教师问:下列各直线是不是圆的切线?如果不是,请说明为什么?(出示课件7)学生观察交流后口答:(1)不是,因为没有垂直.(2),(3)不是,因为没有经过半径的外端点A.教师强调:在切线的判定定理中,“经过半径的外端”和“垂直于这条半径”,两个条件缺一不可,否则就不是圆的切线.教师归纳:判断一条直线是一个圆的切线有三个方法:(出示课件8)1.定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;2.数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;3.判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.出示课件9:例1 如图,∠ABC=45°,直线AB是☉O上的直径,且AB=AC. 求证:AC是☉O的切线.教师分析:直线AC经过半径的一端,因此只要证OA垂直于AB即可.师生共同解答:证明:∵AB=AC,∠ABC=45°,∴∠ACB=∠ABC=45°.∴∠BAC=180°-∠ABC-∠ACB=90°.∵AB是☉O的直径,∴AC是☉O的切线.巩固练习:(出示课件10)如图所示,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B=30°,边BD交圆于点D.BD是⊙O的切线吗?为什么?学生独立思考后板演:解:BD是⊙O 的切线.连接OD,∵OD=OA,∠A=30°,∴∠DOB=60°.∵∠B=30°,∴∠ODB=90°.∴BD是⊙O 的切线.出示课件11:例2 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.学生思考交流后师生共同解答.证明:连接OC(如图).∵OA=OB,CA=CB,∴OC是等腰三角形OAB底边AB上的中线.∴AB⊥OC.∵OC是⊙O的半径,∴AB是⊙O的切线.巩固练习:(出示课件12-13)如图,△ABC 中,AB =AC ,O 是BC的中点,⊙O 与AB 相切于E. 求证:AC 是⊙O 的切线.教师分析:根据切线的判定定理,要证明AC是⊙O的切线,只要证明由点O 向AC所作的垂线段OF是⊙O的半径就可以了,而OE是⊙O的半径,因此只需要证明OF=OE.证明:连接OE,OA,过O作OF⊥AC.∵⊙O与AB相切于E,∴OE⊥AB.又∵△ABC中,AB=AC,O是BC的中点.∴AO平分∠BAC,又OE⊥AB,OF⊥AC.∴OE=OF.∵OE是⊙O半径,OF=OE,OF⊥AC.∴AC是⊙O的切线.出示课件14:学生对比思考.1.如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB求证:直线AB是⊙O的切线.学生答:连接OC.2.如图,OA=OB=5,AB=8,⊙O的直径为6.求证:直线AB是⊙O的切线.学生答:作垂直.教师归纳:(出示课件15)证切线时辅助线的添加方法:(1)有交点,连半径,证垂直;(2)无交点,作垂直,证半径.有切线时常用辅助线添加方法:见切点,连半径,得垂直.切线的其他重要结论:(1)经过圆心且垂直于切线的直线必经过切点;(2)经过切点且垂直于切线的直线必经过圆心.探究二切线的性质定理教师问:如图,如果直线l是⊙O 的切线,点A为切点,那么OA与l垂直吗?(出示课件16)学生思考后教师总结:切线性质:圆的切线垂直于经过切点的半径.应用格式:∵直线l是⊙O的切线,A是切点.∴直线l⊥OA.出示课件17-18,教师引导学生进行证明.证法1:反证法.证明:假设AB与CD不垂直,过点O作一条直径垂直于CD,垂足为M.则OM<OA,即圆心到直线CD的距离小于⊙O的半径,因此,CD与⊙O相交.这与已知条件“直线与⊙O相切”相矛盾.所以AB与CD垂直.证法2:构造法.作出小⊙O的同心圆大⊙O,CD切小⊙O于点A,且A点为CD的中点.连接OA,根据垂径定理,则CD⊥OA,即圆的切线垂直于经过切点的半径.教师总结:利用切线的性质解题时,常需连接辅助线,一般连接圆心与切点,构造直角三角形,再利用直角三角形的相关性质解题.(出示课件19)出示课件20:例1 如图,PA为⊙O的切线,A为切点.直线PO与⊙O交于B、C两点,∠P=30°,连接AO、AB、AC.(1)求证:△ACB≌△APO;(2)若AP求⊙O的半径.教师分析:(1)根据已知条件我们易得∠CAB=∠PAO=90°,由∠P=30°可得出∠AOP=60°,则∠C=30°=∠P,即AC=AP;这样就凑齐了角边角,可证得△ACB≌△APO;(2)由已知条件可得△AOP为直角三角形,因此可以通过解直角三角形求出半径OA的长.师生共同解答:(出示课件21-22)(1)证明:∵PA为⊙O的切线,A为切点,∴∠OAP=90°.又∵∠P=30°,∴∠AOB=60°,又∵OA=OB,∴△AOB为等边三角形.∴AB=AO,∠ABO=60°.又∵BC为⊙O的直径,∴∠BAC=90°.在△ACB和△APO中,∠BAC=∠OAP,AB=AO,∠ABO=∠AOB,∴△ACB≌△APO(ASA).(2)解:在Rt△AOP中,∠P=30°,∴AO=1,∴CB=OP=2,∴OB=1,即⊙O的半径为1.巩固练习:(出示课件23)如图所示,点A是⊙O外一点,OA交⊙O于点B,AC是⊙O的切线,切点是C,且∠A=30°,BC=1.求⊙O的半径.学生独立思考后自主解决.解:连接OC.∵AC是⊙O的切线,∴∠OCA=90°.又∵∠A=30°,∴∠COB=60°,∴△OBC是等边三角形.∴OB=BC=1,即⊙O的半径为1.(三)课堂练习(出示课件24-33)1.如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF、CM.判断CM与⊙O的位置关系,并说明理由.2.判断下列命题是否正确.(1)经过半径外端的直线是圆的切线.()(2)垂直于半径的直线是圆的切线.()(3)过直径的外端并且垂直于这条直径的直线是圆的切线.()(4)和圆只有一个公共点的直线是圆的切线.()(5)过直径一端点且垂直于直径的直线是圆的切线.()3.如下图所示,A是☉O上一点,且AO=5, PO=13, AP=12,则PA与☉O的位置关系是.4.如图,在☉O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40°B.35°C.30°D.45°5.如图,⊙O切PB于点B,PB=4,PA=2,则⊙O的半径多少?6.如图,△ABC中,AB=AC,以AB为直径的⊙O交边BC于P,PE⊥AC于E. 求证:PE是⊙O的切线.7.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.求证:CD与⊙O相切.8.已知:△ABC内接于☉O,过点A作直线EF.(1)如图1,AB为直径,要使EF为☉O的切线,还需添加的条件是(只需写出两种情况):①_________;②_____________.(2)如图2,AB是非直径的弦,∠CAE=∠B,求证:EF是☉O的切线.参考答案:1.解:CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线.2.⑴×⑵×⑶√⑷√⑸√3.相切4.C5.解:连接OB,则∠OBP=90°.设⊙O的半径为r,则OA=OB=r,OP=OA+PA=2+r.在Rt△OBP中,OB2+PB2=PO2,即r2+42=(2+r)2. 解得r=3,即⊙O的半径为3.6.证明:连接OP.∵AB=AC,∴∠B=∠C.∵OB=OP,∴∠B=∠OPB.∴∠OBP=∠C.∴OP∥AC.∵PE⊥AC,∴PE⊥OP.∴PE为⊙O的切线.7.证明:连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC.又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴CD与⊙O相切.8.解:⑴①BA⊥EF;②∠CAE=∠B.证明:连接AO并延长交☉O于D,连接CD,则AD为☉O的直径.∴∠D+∠DAC=90 °,∵∠D与∠B同对,∴∠D=∠B,又∵∠CAE=∠B,∴∠D=∠CAE,∴∠DAC+∠EAC=90°,∴EF是☉O的切线.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流. (五)课前预习预习下节课(24.2.2第3课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本节课从常见的生活情况入手,引入切线的概念,能激发学生的求知欲,接着又得出切线的判定方法及过圆上一点作已知圆的切线,又从另一侧面利用反证法,证明了切线的性质定理,这样,既证明了定理又复习了反证法.。

22创新教案

22创新教案

创新教案?我们奇妙的世界?
【教学设想】
【教学过程】
一、复习课文,导入新课
1.说说课文主要讲了什么。

2. 有感情的朗读课文第一自然段。

3.教师:同学们,我们的这个奇妙的世界充满了珍宝,而且它蕴藏着许多的知识,等着我们去发现。

这节课就让我们一起去发现、去寻找。

二、精读课文,感受奇妙
2. 指名反应。

3. 学生通过各种方式朗读第二局部内容。

4. 教师:天空的日出、云彩、雨点、落日、星星,还有春天的植物生长、夏日的树荫、秋天的落叶、冬天的冰雪这些事物,都是平常我们见过,是很普通的事物。

5. 课件出示最后两个自然段
注意省略号说明了什么?〔说明这些普通的事物还有很多很多,无法一一列举。

三、体会情感,拓展延伸
1. 出示三句用到“寻找〞这个词的句子,说说自已的理解。

〔1〕这个奇妙的世界充满了珍宝,各种颜色、各种形状、或大或小的珍宝,都要我们去寻找。

〔2〕只要仔细观察、寻找,我们就能从极普通的事物中找到美。

2. 拓展思维,说说这个世界还有哪些奇妙之处。

3. 动笔写一写这个世界其他的奇妙之处。

四、课堂小结
教师:同学们,学习了这篇课文,你有什么收获?
〔生活中不是没有美,而是缺少发现美的眼睛。

只要我人关生活中仔细地观察、寻找,就能从极普通的事物中找到美,就能发现这个世界的无穷无尽的奇妙的事物〕。

高中数学新教材第二册全套教案

高中数学新教材第二册全套教案

通过物理量路程与 位移引入向量概念, 提高学生的解决问 题、分析问题的能 力。
注意:数量只有大小,是一个代数量,可以进行代数运算、能比较大 小;向量具有大小和方向这双重要素,由于方向不能比较大小,故向 量不能比较大小.
练习:下列量不是向量的是(

(1)质量 (2) 速度 (3) 位移 (4)力 (5)加速度
1.有向线段的定义
问题、概括能力。
在线段 AB 的两个端点中,规定一个顺序,假设 A 为起点,B 为终
点,就说线段 AB 具有方向,具有方向的
a
B
线段叫做有向线段.
如图,以 A 为起点、B 为终点的有向线段 A(起点)
(终点)
记作 AB .
线段 AB 的长度也叫做有向线段 AB 的长度,记作 | AB | .
【解析】 只有④中物理学中的加速度既有大小又有方向是向 量,①②③错误.④正确.
【答案】 B
2.在下列判断中,正确的是( )
①长度为 0 的向量都是零向量;
②零向量的方向都是相同的;
③单位向量的长度都相等;
④单位向量都是同方向;
⑤任意向量与零向量都共线.
A.①②③B.②③④ C.①②⑤ D.①③⑤
【解析】 由定义知①正确,②由于零向量的方向是任意的,故 两个零向量的方向是否相同不确定,故不正确.显然③、⑤正确,④ 不正确,故选 D.
课程目标
学科素养
A. 了解向量的实际背景,理解平面向量 的概念和向量的几何表示;
B. 掌握向量的模、零向量、单位向量、 平行向量、相等向量、共线向量等概念;
1.数学抽象:平面向量的概念; 2.逻辑推理:区分平行向量、相等向量和共线向量; 3.直观想象:向量的几何表示;

最新版初中数学教案《全等三角形》精品教案(2022年创作)

最新版初中数学教案《全等三角形》精品教案(2022年创作)

第十二章全等三角形全等三角形【知识与技能】1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.【过程与方法】在图形变换以及操作的过程中开展学生的空间观念,培养学生的几何直觉.【情感态度】使学生在观察、发现生活中的全等形和实际操作中获得全等三角形的体验,在探索和运用全等三角形性质的过程中感受到数学的乐趣.【教学重点】探究全等三角形的性质.【教学难点】掌握两个全等形的对应边\,对应角.一、情境导入,初步认识问题1 观察以下列图形,指出其中形状与大小相同的图形.问题2 从上面的图形中你有什么感受?在实际生活中,你能找到形状、大小相同的图形的应用的例子么?二、思考探究,获取新知让学生交流问题1,问题2的答案,并带着问题“这些图形有什么共同特征?〞自学课本内容.【教学说明】变化的图形易引起学生的注意,使它们很快地投入到学习的情境中,并通过观察发现其中的共同特点,形成猜想.再结合自学课本,从而认识全等形、全等三角形的定义及记法.教师讲课前,先让学生完成“自主预习〞.思考1 把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?思考2 全等三角形的对应边、对应角有什么关系?为什么?、旋转、翻折的不变性,让学生通过具体操作直观感知全等三角形的概念,然后让学生通过操作和观察,猜想并验证全等三角形的性质.利用根本三角形变换出各种图形,然后观察对应边、角的变化,利于提高学生的识图能力.思考1 得到的根本图案如图:【归纳结论】1.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.“全等〞用“≌〞表示,读作“全等于〞.把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫对应角.2.全等三角形的对应边相等,对应角相等.三、运用新知,深化理解【教学说明】出示以下问题,让学生通过交流\,思考寻找问题的答案,并共同讨论:全等三角形的对应顶点\,对应边之间有什么关联.1.以下每对三角形分别全等,看看它们是怎样变化而成的,并指出对应边、对应角.2.两个全等的三角形按如下位置摆放,指出它们的对应顶点,对应角,对应边.3.如图,将△ABC沿直线BC平移,得到△DEF.(1)线段AB,DE是对应线段,有什么关系?线段AC和DF呢?(2)线段BE和CF有什么关系?为什么?(3)假设∠A=70°,∠B=40°,你知道其他各角的度数吗?为什么?4.如图,将△ABC沿直线BC平移,得到△DEF,说出你得到的结论,并说明理由.5.如图,△ABE≌△ACD,AB与AC,AD与AE是对应边,∠A=40°,∠B=30°,求∠ADC的大小.【教学说明】题3题4中要通过观察发现,EC是线段BC与EF的公共局部,从而有BC-EC=EF-EC即BE=CF的结论;可以挖掘更深层次的结论,提升分析问题的能力,如AB∥DE,AC∥DF,BE=CF,S四边形ABEG=S四边形FDGC等.完成上述题目后,引导学生做本课时创优作业“课堂自主演练〞中的题.【答案】1.图〔1〕是△EDC由△ABC绕过C点且垂直于BD的直线翻折而成,AB的对应边ED,AC的对应边EC,BC的对应边DC,∠A的对应角∠E,∠B的对应角∠D,∠ACB的对应角为∠ECD.图〔2〕是△ABC延BC边平移BE长的距离得到△DEB,AC的对应边DB,AB 的对应边为DE,CB的对应边为BE,∠A的对应角为∠D,∠C的对应角为∠DBE,∠ABC的对应角为∠E.图〔3〕是△ABD绕BD的中点旋转180°得△CDB,AB的对应边为CD,BD对应边为DB、AD的对应边为CB,∠A的对应角∠C,∠ABD的对应角为∠CDB,∠ADB的对应角为∠CBD.4.AB=DE AC=DF BC=E F∠A=∠D ∠B=∠DEF ∠ACB=∠F理由:全等三角形对应边相等,对应角相等.5.∠ADC=110°四、师生互动,课堂小结1.引导学生回忆全等三角形定义\,记法与性质.2.归纳寻找对应边\,对应角的规律:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;对应边所对的角是对应角,两条对应边的夹角是对应角.(2)公共边一般是对应边;有对顶角的,对顶角一般是对应角;公共角一般是对应角等.1.布置作业:从教材“习题”中选取.2.完成练习册中本课时的练习.本课时通过学生在做模型、画图、动手操作等活动中的体验,完成对三角形全等的认识,重点在对“三角形全等〞“对应〞等含义的理解.对“全等三角形〞的认识,可让学生采用复写纸、手撕、剪纸、扎针眼等方式获取,并鼓励学生间互相交流动手过程中的体验.教学过程中,强调学生自主探索和合作交流,经历观察、实验、归纳、类比、直觉、数据处理等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感、态度和价值观.【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又效劳于生活,表达事物之间是相互联系,相互作用的.【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.一、情境导入,初步认识观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.〔1〕你能从图案中找出多边形吗?〔2〕你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题〔2〕的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出和求证.:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE 形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.证明:在⊙O中,∵AB BC CD DE EA====,∴AB=BC=CD=DE=EA,3==,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE BCE CDA AB是正五边形.【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带着学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.【教学说明】问题3的提出是为了稳固所学知识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角也都相等,这两个条件缺一不可.同时教会学生学会举反例.培养学生思维的批判性.综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:360°n;内角的度数为:180°〔n-2〕n例1〔课本106页例题〕有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积〔结果保存小数点后一位〕.分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24〔m〕.过O点作OP⊥△OCP中,OC=R=4,CP=1/2BC=2..例2填空.【教学说明】例1是让学生了解有关正多边形的概念后,掌握正多边形的计算.同时,通过例1引导学生将实际问题转化为数学问题,将多边形化归为三角形来解决.例2通过网格来呈现问题,在解决例2时,教师指导学生用数形结合的方法来解决问题,加深对有关概念的理解.画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:〔1〕用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可防止地存在误差.〔2〕用尺规等分圆正方形的作法:如图〔1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,那么可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图〔2〕任意作一条直径AB,再分别以A、B 为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,那么A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图〔3〕由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.【教学说明】尺规作图法是一种比较准确的等分圆的方法,但有较大的局限性,它不能将圆任意等分.三、运用新知,深化理解1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,那么∠APB的度数为_______./π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,……正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.〔1〕求图1中的∠MON的度数;〔2〕在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;〔3〕试探索∠MON的度数与正n边形边数n之间的关系.〔直接写出答案〕【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.°4.解:〔1〕连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与〔1〕相同)(3)∠MON=360°/n.四、师生互动,课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?【教学说明】教师先提出问题,然后让学生自主思考并回忆,教师再予以补充和点评.1.布置作业:从教材“〞中选取.练习册中本课时练习的“课后作业〞局部.1.本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些根本概念,引导学生将实际问题转化为数学问题,表达了化归的思想.其次,在这一根底上,又教给学生用等分圆周的方法作正多边形,这可以开展学生的作图能力.2.等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最根本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.。

高中数学第22课教案

高中数学第22课教案

高中数学第22课教案
一、教学目标
1. 知道正弦、余弦、正切三角函数的周期性和奇偶性。

2. 掌握正弦、余弦、正切三角函数的图像特点。

3. 掌握利用三角函数的性质解题。

二、教学重点
1. 正弦、余弦、正切三角函数的周期性和奇偶性。

2. 正弦、余弦、正切三角函数的图像特点。

三、教学难点
1. 利用三角函数的性质解题。

四、教学准备
1. 教材、课件。

2. 黑板、彩色粉笔。

3. 试题纸、学生纸。

五、教学过程
1. 引入:通过一个实际生活中的例子引入三角函数的周期性和奇偶性的概念,引导学生了解三角函数的概念。

2. 讲解:通过讲解正弦、余弦、正切三角函数的周期性和奇偶性,让学生掌握这些函数的基本特点。

3. 练习:让学生分组进行练习,练习解题过程中运用三角函数的性质。

4. 总结:总结本节课的重点难点,强调三角函数的性质在解题中的应用。

5. 作业:布置相关作业,督促学生掌握三角函数的性质及解题方法。

六、板书设计
1. 正弦函数:周期性、奇函数。

2. 余弦函数:周期性、偶函数。

3. 正切函数:周期性。

七、教学反思
本节课主要针对三角函数的性质展开教学,通过实际例子引入,让学生了解三角函数的概念;通过讲解和练习,让学生掌握正弦、余弦、正切函数的周期性和奇偶性,以及运用这些性质解题的方法。

通过板书设计和总结,加深学生对本课内容的理解和记忆。

希望学生能在课后认真完成作业,巩固所学知识。

最新版初中数学教案《角边角和角角边 》精品教案(2022年创作)

最新版初中数学教案《角边角和角角边 》精品教案(2022年创作)

第3课时角边角和角角边一、新课导入1.导入课题:一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来形状大小相同的三角形硬纸板吗?下面我带着这个问题学习——三角形的又一个重要的判定方法.2.学习目标:〔1〕能述出“角边角〞定理.〔2〕能运用“角边角〞定理解决简单的推理证明问题.3.学习重、难点:重点:“角边角〞定理及其应用.难点:灵活运用三角形全等条件证明三角形全等.二、分层学习1.自学指导:〔1〕自学内容:探究有两个角和它们的夹边对应相等的两个三角形是否全等.〔2〕自学时间:5分钟.〔3〕自学方法:参考探究提纲进行实验操作,并进行观察、思考,得出你的结论.有困难的学生可以合作学习.〔4〕探究提纲:①动手操作:三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么结论?②将你发现的结论写下来:两角和它们的夹边分别相等的两个三角形全等〔简写成“角边角〞或“ASA〞〕.③将上述结论用几何语言表示为:在△ABC和△A′B′C′中∵∠A=∠A′,AB=A′B′,∠B=∠B′,∴△ABC≌△A′B′C′(ASA)2.自学:学生结合探究提纲进行探究学习.3.助学:〔1〕师助生:①明了学情:观察学生动手情况,特别是结论的归纳及表述是否正确、简洁.②差异指导:对学生学习中存在的问题予以分类指导.〔2〕生助生:针对个别学生学习中存在的疑点进行互助交流.4.强化:“ASA〞的文字表述及符号表述.1.自学指导:〔1〕学习内容:教材第40页例3到教材第41页“练习〞前面的内容.〔2〕自学时间:10分钟.〔3〕自学方法:结合图形,对照条件寻找符合“AS A〞的对应元素.〔4〕自学参考提纲:①例3中,要证明AD=AE,可通过证明哪两个三角形全等得到?根据条件采用哪种判定方法?△ACD≌△ABE(ASA).证明中对应相等的元素排列次序有讲究吗?公共角(公共边)是∠A.②认真阅读例4a.条件中的两个角是边的夹角吗?不是b.仔细阅读例题的证明过程,该题的证明是用我们学过哪个定理来证明的?三角形内角和定理c.该例题得出了一个什么结论?结论:两角分别相等且其中一组等角的对边相等的两个三角形全等〔简写为:角角边或AAS〕将上述结论用几何语言表示为:在△ABC和△DEF中∵∠A=∠D,∠B=∠E,BC=EF∴△ABC≌△DEF(AAS)③小组合作完成教材第41页上面的思考.a.小组长给出任意三个角的度数,小组内的所有成员动手画一画,然后比一比,画出的三角形全等吗?b.通过“思考〞的学习,我们明白了什么道理?结论:三个角分别相等的两个三角形不一定全等.c.归纳交流:判定两个三角形全等的方法有哪些?2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:对于例4的证明,学生对条件的转换容易混淆,教材第41页的思考在小组合作下学习,局部学生也会存在一定的困难.②差异指导:对学生存在的问题予以启发指导.(2)生助生:对教材第41页的“思考〞由小组共同合作交流相互帮4.强化:〔1〕有两个角及一边对应相等的两个三角形全等,其对应关系有两种情况:“ASA〞、“AAS〞〔2〕练习:①如图,EA⊥AB,DB⊥AB,∠ACE=∠BDC,AE=BC,试判断CE与CD的关系.解:∵EA⊥AB,DB⊥AB,∴∠A=∠B=90°,在△ACE和△BDC中,∠ACE=∠BDC,∠A=∠B,AE=BC,∴△ACE≌△BDC〔AAS〕.∴CE=CD.②判断:a.有两条边和一个角对应相等的两个三角形全等.(×)b.有两个角和一条边对应相等的两个三角形全等.(√)三、评价1.学生的自我评价:学生相互交流自己的学习收获和困惑.2.教师对学生的评价:〔1〕表现性评价:对学生的学习态度、方法、成果和缺乏进行点评.〔2〕纸笔评价〔课堂评价检测〕.3.教师的自我评价〔教学反思〕:本课时教学以“自主探究——合作交流〞为主体形式,先给学生独立思考的时间,提供学生创新的空间与可能,再给不同层次的学生提供一个交流合作的时机,培养学生独立探究,合作学习的能力.同时,注重让学生用自己的语言归纳和表达发现的规律,指引学生对知识与方法进行回忆总结,形成良好的反思习惯,获取优秀的学一、根底稳固〔每题10分,共50分〕△ABC和△A′B′C′中,从以下各组条件中,选取的三个条件不能保证△ABC≌△A′B′C′的是〔B〕①AB=A′B′②BC=B′C′③AC=A′C′④∠A=∠A′⑤∠B=∠B′⑥∠C=∠C′A.①②③B.①②④C.③④⑤②③⑥2.如果两个三角形中两条边和其中一边所对的角相等,那么这两个三角形〔C〕∠AEB=120°,∠ADB=30°,那么∠BCF= (D)A.150°B.40°C.80°D.90°4.如图,假设△ABC≌△ADE,∠EAC=35°,那么∠BAD=35度.5.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有6对.二、综合运用〔每题15分,共30分〕6.:如图,∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,〔1〕假设以“SAS〞为依据,还须添加的一个条件为BC=EF.〔2〕假设以“ASA〞为依据,还须添加的一个条件为∠A=∠D.〔3〕假设以“AAS〞为依据,还须添加的一个条件为∠ACB=∠F.7.如图,AB∥CD,AD∥BC,那么AD=BC,AB=DC,你能说明其中的道理吗?(可添加辅助线)解:连接AC.∵AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,又AC=CA,∴△BAC≌△DCA〔ASA〕.∴AD=BC,AB=DC.三、拓展延伸〔20分〕8.如图,E、F在BD上,且AB=CD,BF=DE,AE=CF,求证:AC与BD互相平分.证明:∵BF=DE,∴BF-EF=DE-EF,即BE=DF.在△ABE和△CDF中,AB=CD,AE=CF,BE=DF,∴△ABE≌△CDF.∴∠B=∠D.∴AB∥CD.∴∠BAO=∠DCO.在△ABO和△CDO中,∠B=∠D,AB=CD,∠BAO=∠DCO,∴△ABO≌△CDO,∴BO=DO,AO=CO,即AC与BD互相平分.【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又效劳于生活,表达事物之间是相互联系,相互作用的.【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.一、情境导入,初步认识观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.〔1〕你能从图案中找出多边形吗?〔2〕你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题〔2〕的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出和求证.:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE 形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.====,∴AB=BC=CD=DE=EA,证明:在⊙O中,∵AB BC CD DE EA==,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE BCE CDA AB3是正五边形.【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带着学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.【教学说明】问题3的提出是为了稳固所学知识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角也都相等,这两个条件缺一不可.同时教会学生学会举反例.培养学生思维的批判性.综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:360°n;内角的度数为:180°〔n-2〕n例1〔课本106页例题〕有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积〔结果保存小数点后一位〕.分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24〔m〕.过O点作OP⊥△OCP中,OC=R=4,CP=1/2BC=2..例2填空.【教学说明】例1是让学生了解有关正多边形的概念后,掌握正多边形的计算.同时,通过例1引导学生将实际问题转化为数学问题,将多边形化归为三角形来解决.例2通过网格来呈现问题,在解决例2时,教师指导学生用数形结合的方法来解决问题,加深对有关概念的理解.画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:〔1〕用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可防止地存在误差.〔2〕用尺规等分圆正方形的作法:如图〔1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,那么可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图〔2〕任意作一条直径AB,再分别以A、B 为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,那么A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图〔3〕由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.【教学说明】尺规作图法是一种比较准确的等分圆的方法,但有较大的局限性,它不能将圆任意等分.三、运用新知,深化理解1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,那么∠APB的度数为_______./π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,……正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.〔1〕求图1中的∠MON的度数;〔2〕在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;〔3〕试探索∠MON的度数与正n边形边数n之间的关系.〔直接写出答案〕【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.°4.解:〔1〕连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与〔1〕相同)(3)∠MON=360°/n.四、师生互动,课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?【教学说明】教师先提出问题,然后让学生自主思考并回忆,教师再予以补充和点评.1.布置作业:从教材“〞中选取.练习册中本课时练习的“课后作业〞局部.1.本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些根本概念,引导学生将实际问题转化为数学问题,表达了化归的思想.其次,在这一根底上,又教给学生用等分圆周的方法作正多边形,这可以开展学生的作图能力.2.等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最根本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.。

《有理数》教案 (公开课)2022年7

《有理数》教案 (公开课)2022年7

有理数教学目标(一)教学知识点1.借助生活中的实例,体会引入负数的必要性和合理性、有理数应用的广泛性.2.会判断一个数是正数和负数.3.初步学会用正、负数表示生活中具有相反意义的量.(二)能力训练要求1.体会正数和负数与现实世界的联系,会判断正数和负数.2.会用正数、负数表示相反意义的量.(三)情感与价值观要求1.为学生提供更多的现实背景,丰富的数学活动时机,体验数学和现实生活的联系,提高学习的兴趣.2.通过合作交流,提高分析和解决问题的能力.教学重点1.体验引入负数的合理性和必要性,并会用正、负数表示具有相反意义的量.2.引导学生回忆目前为止所学过的数,并给予分类.教学难点1.用正数和负数表示具有相反意义的量.2.正数和负数的概念.教学方法引导—探索—归纳的方法—即在教师的引导下,利用现实背景和学生已有知识发现数不够用了,从而经过归纳,用正、负数表示了现实背景中的具有相反意义的量.教具准备中国地形图、一支温度计、小黑板投影片五张第一张:(记作§2.1A)第二张:(记作§2.1 B)第三张:(记作§2.1 C)第四张:(记作§2.1 D)第五张:(记作§2.1 E) 教学过程 Ⅰ.课题导入[师]我们在小学数学里学过哪些数呢? [生]学过1、2、3、0、21、32、56、0.15、0.75、……等自然数、分数、小数. [师]在小学学习过自然数,如:0,1,2,3……另外还学过分数、小数.其中0和1是两个最根本的整数.零表示“没有〞,1表示计数根本单位.在整数中,2表示比1多1,3表示比2多1,4表示比3多1……依次类推,任一个自然数都可通过由零开始逐次加1得到.如果把计数单位1化小,把它分为2份、3份……,n 份,取其中的一份做单位,那么这些分数单位分别是21、31……n 1.分数32,表示2个31,分数n m ,表示m 个n1. 但这些数能满足我们生活的需要吗?还会有新的数吗? Ⅱ.讲授新课出示“中国地形图〞,引导学生观察,讨论并答复以下问题: (1)世界最顶峰——珠穆朗玛峰海拔高8848米表示什么? (2)吐鲁番盆地在地形图上标着-155(米)表示什么?[师生共析]小学地理中讲过在测量地形高度时,规定海平面的高度为0米,于是高8848米表示比海平面高出8848米,称作海拔8848米,而-155(米)表示吐鲁番盆地比海平面低155米,称作海拔-155米.在这里出现了“-155(米)〞,它带有“-〞号(读作负)表示比海平面低的高度. [师]老师再向大家提一个问题,有谁知道“新闻联播〞之后除广告外接下来的节目是什么?[生]天气预报[师]很好.现在我们来共同看一下某天我国局部城市的天气预报. (出示投影片§2.1 A)从表中可以看到什么?[生]表中的低温数字有带“-〞号的.[师]这里“-〞号表示什么呢?[生]表示这个温度比0 ℃低的温度.[师]对.在测量温度时,用到了温度计.(出示温度计).那么,温度计中又以什么为基准呢?[师生共析]把冰的溶解温度定为0 ℃,如果温度计液面上升指在0以上第5个刻度时,那么它表示的温度比0 ℃高5摄氏度,记作5 ℃.如果液面下降指在0以下第5个刻度,那么它表示的温度比0 ℃低5摄氏度,记作-5 ℃,读作负5摄氏度.上面两个例子中,分别出现了-155,-3,-4,-5这样的数,我们把这样的数叫负数.一般地,假设一个地方的高度比海平面高35米,它的海拔高度就是35米;假设一个地方的高度比海平面低15米,它的海拔高度就是-15米.温度的情况与海拔高度类似.即温度比0 ℃高8 ℃时,温度是8 ℃,当温度比0 ℃低3 ℃、4 ℃、5 ℃等时,温度就分别为-3 ℃、-4 ℃、-5 ℃等.(出示投影片§2.1 B).学生阅读,并归纳其特点:[生]正数:比0大的数.负数:在正数前面加上“-〞号的数.零:是正、负数的界限.[师]大家总结的很好.正数的特点就是比0大的数.为了突出数的符号,可以在正数前加“+〞号.如,+5,+12,+8848…….负数的特点就是在正数前面加“-〞号.零既不是正数,也不是负数,是正、负数的界限,表示“基准〞的数.零不是表示“没有〞,它表示一个实际存在的数量.下面我们共同看一个题:(出示投影片§2.1 C)某班举行知识竞赛,评分标准是:答对一题加10分,答错一题扣10分,不答复得0分;每个队的根本分均为0分.四个代表队答题情况如下表:每个代表队的最后得分是多少?你是怎么表示的?与同伴进行交流,完成下表(出示小黑板):第1题第2题第3题第4题第5题合计第一队第二队第三队第四队(学生阅读题后,分组讨论填写,请一位同学上黑板填写.教师、学生共同纠正):第一队分别为:+10、-10、+10、+10、-10、+10;第二队分别为:-10、+10、0、+10、+10、+20;第三队分别为:+10、+10、-10、-10、0、0;第四队分别为:+10、-10、+10、-10、-10、-10;强调:书写负数时不要忘了“-〞号.[师]生活中你见过带有“-〞号的数(即负数)吗?请举例.[生]见过.股市的股票的上升与下跌中下跌数用的数为负数;企业的年收入的盈利与亏损中的亏损数也为负数等等.[师]很好.在现实生活中.经常见到这些具有相反意义的量.这些量的大小都可用正、负或0表示.表示具有相反意义的量是正、负数最直接的重要应用.大家总结一下有哪些具有相反意义的量可以用正、负数表示呢?(学生讨论、总结、出示投影片§2.1 D)下面我们来看一例题:(出示投影片§2.1 E):[师生共析]刚刚我们已经知道:习惯上,人们把零上的温度、向东的行程、上升的高度等规定为正的,而把零下的温度、下降的高度、向西的行程等与前面意义相反的量规定为负的.所以我们来看例1的(1)小题:用+10分表示加10分,那么扣20分就应表示为-20分.因为扣与加是两个具有相反意义的量.在这里的“基准〞为0分.相应的(2)、(3)就可以表示出来.需要注意的是:(2)的基准是转盘不动;(3)的基准是一只乒乓球的标准质量.强调:并不是所有的基准都必须为零.在用正负数表示具有相反意义的量时,每一题都必须有一定的基准.解:(1)扣20分记作-20分.(2)沿顺时针方向转12圈记作-12圈.(3)-0.03克表示乒乓球的质量低于标准质量0.03克.Ⅲ.课堂练习课本P34练习1.(1)如果零上5 ℃记作+5 ℃,那么零下3 ℃记作什么?(2)东、西为两个相反方向,如果-4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?(3)某仓库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应记作什么? 解:(1)零下3 ℃记作-3 ℃.(2)+2米表示向东运动2米,物体原地不动记为0米. (3)运出3.8吨记作-3.8吨.[师]到目前为止,我们学过的数有哪些呢?分组讨论、总结.[师生共析]小学学过自然数(正整数与零)在自然数前面加上“-〞号(零除外)的数,就是负整数.正整数、0、负整数统称为整数.小学学过的分数(包括小数),实际上是正分数.在小学学过的分数前面加上“-〞号的数,就是负分数,正分数和负分数统称分数.整数(integer)⎪⎩⎪⎨⎧--- 3210321,,负整数:如零:,,正整数:如分数(fraction)⎪⎪⎩⎪⎪⎨⎧---5.367515.73121,,负分数:如,,正分数:如整数与分数统称为有理数(rational number)注意:有时为了研究的需要,整数也可以看成是分母为1的分数,这时分数包括整数.所以这里说“整数与分数统称有理数〞,而不应该说“整数与分数是有理数〞.在本章中的分数是指不包括整数的分数.到现在为止,我们学过的数(除π之处)都是有理数.在自然数中,零表示一个物体也没有,引入负数后,我们知道零是正、负数的界限,表示“基准〞的数,是一个实际存在的数量.从这个角度来说,有理数还可以分为正有理数、零、负有理数.即:有理数⎪⎩⎪⎨⎧负有理数零正有理数Ⅳ.课时小结(1)本节课我们学习了负数的概念,知道负数的引入是现实生活的需要.自此数就由原来的正整数、零、正分数扩大到有理数.(2)学习负数以后,我们就可以用正、负数来表示现实生活中具有相反意义的量. Ⅴ.课后作业(一)看课本P 30~34、P 35的“负数小史〞.(二)课本P35习题2.1 1~7(三)1.预习内容:课本P36§2.2 数轴2.预习提纲:(1)数轴的概念、三要素.(2)如何在数轴上表示一个数.(3)什么样的数为互为相反数.(4)在数轴上如何比较两个有理数的大小.Ⅵ.活动与探究海边的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潜水艇在海平面下30米处,现以海边堤岸高度为基准,将其记为0米.那么附近建筑物及潜水艇的高度各应如何表示?过程:用正、负数表示具有相反意义的量时,由于基准的选法不同,表示的结果也不同.如图,以海平面为基准,那么堤岸的高度为+12米,建筑物的高度为+50米,潜水艇的高度为-30米.(称绝对高度,也叫海拔高度);假设堤岸高度为基准,那么建筑物高出堤岸38米,潜水艇低于堤岸42米.用正、负数表示:建筑物的高度为+38米,潜水艇的高度为-42米.(称为相对高度)结果:以堤岸高度为基准,(即堤岸的高度为0米).那么附近建筑物的高度为+38米,潜水艇的高度为-42米.板书设计2.1 数怎么不够用了一、概念正数:比0大的数.负数:在正数前面加上“-〞号的数.零:既不是正数,也不是负数.二、正、负数的应用例题课堂练习三、数的分类四、课时小结五、课后作业平行四边形的性质总体说明〔1〕本节的主要内容包含平行四边形的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教案续页
教学 环节 学生活动 A. 学生独立完成练 习。 指名汇报。 教师辅助 教学流程 教学感悟



思考过程。
(2) 练习六第 2 题。 这里有美丽的蝴蝶, B. 它们在快乐地飞来飞 去,你们知道它们各 飞到哪一朵花上呢? (3) 练习六第 3 题。 (课件出示 6 只小鸟的 房子) 教师: 你能先估算大约 有几百只,再用竖式计算 吗? 同桌互相估算 。 利用竖式计算。 C 你能把这些小房子按 照小鸟的多少排一排 同桌讨论交流完整地口述 吗?
过程 自主练习,展示交流,相互启发,共同促进。进一步 与 掌握三位数连加的笔算以及加法的估算。 方法 情感 养成检查的习惯,自觉进行估计,并运用所学知识和 态度 方法来解决简单的实际问题。 价值观
教法 学法 学 情 分 析 教学具 准备
教师:启发、诱导、点拨。 学生:自主探究法、合作交流。 学习起 点预测 学习困 难预测 学生已经掌握了三位数加两、三位数的进位加法及 连加的笔算方法。 用估算的方法解决简单的实际问题。 多媒体课件(光盘)

5 、学生独立思考, ,集体 判断。
教案续页
教学 环节 教学流程 教学感悟
组织练习,深化认识 一件羽绒服 492 元,一条裤子 105 元。王阿姨 要买一套衣服大约要带几百元?
教学 拓展
总结 本节课我们学习了什么?,你又有哪些新的认识? 提升 你还有什么疑惑?
课堂 测评 设计
作业 设计
必 做 选 做
教案首页
课 题 连加和加法估算的 练习 课型 新授 教学 总 22 课时 授课 课时 第 8 课时 时间
教 材 分 析
教学内容: :课本第 43 页 教学重点:进一步掌握三位数加两、三位数的进位加法及连加 的笔算方法。 教学难点:能准确笔算三位数加两、三位数的进位加法。
进一步掌握三位数加两、三位数的进位加法及连加的 知识 笔算方法,对千以内的加法有一个完整的பைடு நூலகம்识。 与 技能 教 学 目 标
教案尾页
项目 内 容
连加和加法估算的练习
计算 458+214+192,用竖式计算个位时, 先算(8)加(2)比较简单。 板书 设计 268+268+268=804(厘米)
成功 不足
教学 后记
教学 灵感 学生 创新 再教 预测 査疑 补漏 内容
课后 梳理
补充 练习 设计
教案续页
教学 环节
1、出示学习目标(小黑板) 2、谈话导入。 同学们,我们已经歇息了连加和加法的估算,今天老师和 小朋友们用所学的知识一起到古老而神秘的森林去游玩吧。
教学流程
教学 感悟
导入
学生活动

教师辅助




1、创设情境:课件出示 (1) 对号入座。 计算 458+214+192 ,用 竖式计算个位时,先算 ( )加( )比较简 1、同桌说一说, 单。 (2) 说 说 我 大 约 有几 百岁。 (课件出示带有算式的大 树) 指名说, 说说你是怎样 2、 同桌说一说你是怎样 进行估算的。 算的? 教师:恭喜小勇士们, 经过我们的努力,现在可 以进入森林了。 说说各自的估算过程。 (1) 练习六第 1 题。 瞧, 这里有 3 棵好大的 树呀! (课件出示 3 棵 大树) 你们想知道它们的年 龄吗?赶快用竖式计 算一下吧。 3、学生用竖式计算, 交流汇报结果。
相关文档
最新文档