初中数学辅助线.
数学辅助线做法技巧初中

数学辅助线做法技巧初中
数学辅助线是初中数学教学中常用的一种画图方法,可以帮助学生更好地理解和掌握各种数学概念和计算方法。
以下是数学辅助线做法技巧的一些要点:
1. 准确选择辅助线:在做题前,需要仔细分析题目要求和给定条件,准确选择适合的辅助线。
一般来说,辅助线的作用是使问题简化、明了,因此应当选择能够达到这一目的的辅助线。
2. 画图精细:辅助线的画法需要精细,尽量避免出现误差和混淆。
画线时建议使用铅笔轻轻勾画,检查无误后再用黑色笔进行加粗。
3. 辅助线的使用顺序:通常情况下,先画出重要的线条,如角平分线、垂线等,然后再考虑是否需要添加其他的辅助线。
4. 计算过程中注意标注:在使用辅助线进行计算时,需要注意清晰标注各个线段的长度、角度大小等信息,以方便后续的计算和验证。
5. 练习熟练度:数学辅助线是需要经验和技巧的,需要多进行练习和掌握。
可以通过做题、模拟考试等方式提高熟练度。
总之,数学辅助线是初中数学教学中重要的画图方法,能够帮助学生更好地理解和掌握各种概念和计算方法。
在使用辅助线时,需要准确选择、精细画图、注意标注、按顺序使用,同时也需要进行反复训练和提高熟练度。
中考数学几何辅助线大全及常考题型解析

中考数学几何辅助线大全及常考题型解析中考数学几何辅助线作法及常考题型解析第一部分常见辅助线做法等腰三角形:1.作底边上的高,构成两个全等的直角三角形2.作一腰上的高; 3.过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。
梯形1.垂直于平行边2.垂直于下底,延长上底作一腰的平行线3.平行于两条斜边4.作两条垂直于下底的垂线5.延长两条斜边做成一个三角形菱形1.连接两对角2.做高平行四边形1.垂直于平行边2.作对角线——把一个平行四边形分成两个三角形3.做高——形内形外都要注意矩形1.对角线2.作垂线很简单。
无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。
还有一些关于平方的考虑勾股,A字形等。
三角形图中有角平分线,可向两边作垂线(垂线段相等)。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
解几何题时如何画辅助线①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
②在比例线段证明中,常作平行线。
③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
初中平面几何常见添加辅助线的方法

初中平面几何常见添加辅助线的方法平面几何是数学中的一个重要分支,通过在平面上描述和研究几何图形之间的关系和性质。
在解决平面几何问题中,添加辅助线是一种常见且有效的方法,可以帮助我们更好地理解和分析问题。
下面是初中平面几何常见的添加辅助线的方法:1.使用垂直辅助线:垂直辅助线是指与已知线段垂直的辅助线,可以用来分割和构造几何图形。
比如,在矩形中,可以通过连接矩形的对角线来构造一条垂直辅助线,从而将矩形分割为两个等腰直角三角形。
2.使用平行辅助线:平行辅助线是指与已知线段平行的辅助线,可以用来帮助构造平行线段和证明平行性质。
例如,在平行四边形中,可以通过连接相邻顶点和平行线段的端点来构造平行辅助线,从而证明平行四边形的对边相等。
3.使用角平分线:角平分线是指将一个角平分为两个等角的辅助线。
在解决涉及角的等分、相等或相似性质问题时,添加角平分线是非常有用的方法。
例如,在等腰三角形中,可以通过连结底边中点和顶角顶点的直线来构造角平分线,从而证明等腰三角形的顶角相等。
4.使用中线:中线是指连接一个几何图形的两边中点的辅助线。
在解决涉及几何图形的中点、平行四边形和三角形性质问题时,添加中线是一种常见的方法。
例如,在四边形中,可以通过连接相对边的中点来构造中线,从而证明中线互相平分。
5.使用高线:高线是指从多边形的一个顶点向对边所引的垂线。
在解决多边形的高、重心、垂心和外心问题时,添加高线是非常有用的方法。
例如,在三角形中,可以通过从一个顶点向对边引垂线来构造高线,从而证明高线汇聚于三角形的垂心。
6.使用辅助图形:有时,我们可以通过在平面上添加一些辅助图形来辅助解决几何问题。
例如,在求解平行四边形的面积时,可以通过添加一个垂直边和一个三角形来将平行四边形划分为两个高度相等的矩形,从而方便计算面积。
在实际应用中,我们可以根据具体问题的要求来灵活地选择合适的辅助线方法。
添加辅助线不仅可以帮助我们更好地理解和分析问题,还可以提高解题效率和准确性。
初中数学常用辅助线添加技巧

初中数学常用辅助线添加技巧人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。
一.添辅助线有二种情况:1 按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2 按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形; 当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
初中数学几何辅助线经典100题

初中数学几何辅助线经典100题摘要:1.引言:初中数学几何辅助线的重要性2.初中数学几何辅助线的作用1.揭示图形中隐含的性质2.聚拢集中原则3.化繁为简原则3.初中数学几何辅助线的应用实例1.添加辅助线求解几何问题2.利用辅助线解决复杂几何题目4.如何掌握初中数学几何辅助线的技巧1.多做练习题2.分析错题,总结经验3.参加培训课程,寻求专业指导5.结论:初中数学几何辅助线对于提高几何成绩的重要性正文:初中数学几何辅助线在解决几何问题中起到了至关重要的作用。
它可以帮助学生更好地理解题目,清晰地揭示图形中隐含的性质,从而更容易地找到解决问题的方法。
本文将从以下几个方面详细介绍初中数学几何辅助线的作用和应用技巧。
首先,初中数学几何辅助线的作用主要体现在三个方面:揭示图形中隐含的性质、聚拢集中原则和化繁为简原则。
当我们在解决几何问题时,如果条件与结论间的逻辑关系不明朗,可以通过添加适当的辅助线,将条件中隐含的有关图形的性质充分揭示出来,以便取得过渡性的推论,达到推导出结论的目的。
同时,通过添置适当的辅助线,可以将图形中分散、远离的元素聚拢到有关图形上来,使题设条件与结论建立逻辑关系,从而推导出要求的结论。
对于一些复杂的几何题目,我们可以通过添加辅助线将问题化繁为简,更容易地找到解题思路。
其次,初中数学几何辅助线的应用实例有很多。
例如,在解决一些求解几何问题的题目时,我们可以通过添加辅助线找到图形中的关键点,从而简化问题。
同样,在解决复杂几何题目时,我们可以利用辅助线将问题分解为若干个简单的部分,逐步解决,最终得出结论。
那么,如何掌握初中数学几何辅助线的技巧呢?首先,我们需要多做练习题,熟能生巧。
通过不断地练习,我们可以更好地理解几何辅助线的作用,掌握添加辅助线的方法。
其次,我们需要分析错题,总结经验。
在解决几何问题时,如果遇到困难,我们可以回顾一下之前做过的类似题目,看看是否有可以借鉴的地方。
同时,我们也可以参加培训课程,寻求专业指导,了解一些解题技巧和方法。
初中数学辅助线添加法

初中数学辅助线添加法一、添加辅助线的两种情况1、按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2、按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形:出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形:几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。
初中数学须掌握的几何辅助线技巧

初中数学必须掌握的几何辅助线技巧01几何常见辅助线口诀三角形图中有角平分线,可向两边作垂线也可将图对折看,对称以后关系现角平分线平行线,等腰三角形来添角平分线加垂线,三线合一试试看线段垂直平分线,常向两端把线连线段和差及倍半,延长缩短可试验线段和差不等式,移到同一三角去三角形中两中点,连接则成中位线三角形中有中线,倍长中线得全等四边形平行四边形出现,对称中心等分点梯形问题巧转换,变为三角或平四平移腰,移对角,两腰延长作出高如果出现腰中点,细心连上中位线上述方法不奏效,过腰中点全等造证相似,比线段,添线平行成习惯等积式子比例换,寻找线段很关键直接证明有困难,等量代换少麻烦斜边上面作高线,比例中项一大片圆形半径与弦长计算,弦心距来中间站圆上若有一切线,切点圆心半径连切线长度的计算,勾股定理最方便要想证明是切线,半径垂线仔细辨是直径,成半圆,想成直角径连弦弧有中点圆心连,垂径定理要记全圆周角边两条弦,直径和弦端点连弦切角边切线弦,同弧对角等找完要想作个外接圆,各边作出中垂线还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦内外相切的两圆,经过切点公切线若是添上连心线,切点肯定在上面要作等角添个圆,证明题目少困难02由角平分线想到的辅助线一、截取构全等如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。
这里面用到了角平分线来构造全等三角形。
另外一个全等自已证明。
此题的证明也可以延长BE与CD的延长线交于一点来证明。
自己试一试。
二、角分线上点向两边作垂线构全等如图,已知AB>AD,∠BAC=∠FAC,CD=BC。
求证:∠ADC+∠B=180°。
分析:可由C向∠BAD的两边作垂线。
近而证∠ADC与∠B之和为平角。
三、三线合一构造等腰三角形如图,AB=AC,∠BAC=90°,BD为∠ABC的平分线,CE⊥BE。
初中数学辅助线应用技巧总结

初中数学辅助线应用技巧总结数学是一门需要逻辑思维和推理能力的学科,而辅助线是在解决数学问题时起到辅助作用的直线。
学会灵活运用辅助线可以帮助我们更好地理解和解决数学问题。
本文将总结几种初中数学辅助线的应用技巧。
一、应用技巧1:利用垂直线垂直线是辅助线中最常见的一种。
在解决几何问题时,垂直线可以帮助我们确定几何图形的性质。
例如,在求解平面几何问题时,我们可以利用垂直线来证明两条直线垂直。
在作图时,通过画出垂直线可以辅助我们队几何图形进行分析。
二、应用技巧2:运用平行线平行线也是常用的辅助线之一。
在解决平面几何问题时,可以利用平行线的特性来求解未知角度、边长或形状。
例如,当我们需要求解两条直线平行时,可以通过与这两条直线交叉的另一条直线来构造平行线,从而帮助我们解决问题。
三、应用技巧3:利用等腰三角形等腰三角形是一个重要的几何图形,其辅助线的运用可以帮助我们解决关于三角形的问题。
例如,在求解三角形的面积或者角度时,我们可以构造等腰三角形,从而简化问题的解决。
另外,等腰三角形的对称性质也在解决证明问题时起到重要作用。
四、应用技巧4:利用垂直平分线垂直平分线是连接线段的中点并垂直于该线段的直线。
在解决几何问题时,利用垂直平分线可以帮助我们证明角的相等、线段的相等以及几何图形的对称性质。
例如,当我们需要证明一个四边形是矩形时,可以利用垂直平分线来证明其中的两个角相等。
五、应用技巧5:利用相似三角形相似三角形是指形状相似但大小不同的三角形。
在解决几何问题时,我们可以通过构造相似三角形来求解未知边长或者角度。
例如,在利用勾股定理求解三角形问题时,常常需要使用相似三角形的性质进行推导和证明。
六、应用技巧6:使用角平分线角平分线是将一个角分成两个相等的角的直线。
在解决几何问题时,角平分线可以帮助我们证明角的相等或者构造特定的几何图形。
例如,在求解两个角相等时,可以通过画出角平分线来帮助我们得出证明结果。
七、应用技巧7:利用直行线直行线是指两条相交直线间的形成的四个角中有两个是相等的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小试中考中圆的问题
辅助线秘诀一
已知直径或作直径,我们要想到2件事:
⑴直径上有个隐藏的中点(圆心)
⑵利用圆周角定理构造了直角三角形
辅助线秘诀二
作半径
⑴连半径、造等腰
⑵作过切点的半径
辅助线秘诀三
涉及弦长,弦心距。
可构造垂径定理的模型,为利用勾股定理创造条件。
辅助线秘诀四
切线的证明:
⑴有交点:连半径,证垂直;
⑵无交点:作垂直,证半径.
辅助线秘诀五
已知圆心角度数,要想到同弧所对圆周角的度数,反之亦然。
辅助线秘诀六
出现等弧问题时,我们要想到:
⑴在同圆或等圆中相等的弧所对的弦相等,弦心距也相等
⑵在同圆或等圆中相等的弧所对的圆心角相等,圆周角也相等
辅助线秘诀七
已知三角函数值或求某个角的三角函数值时:要想到把角放在直角三角形中,没有的话要构造直角三角形
注意:同角或等角的同名三角函数值相等。
辅助线秘诀八
圆中出现内接正多边形时:
作边心距,抓住一个直角三角形来解决问题
辅助线秘诀九
已知两圆相切,常用的辅助线是:
⑴作公切线,连接过切点的半径得到垂直关系
⑵作连心线。
辅助线秘诀十
已知两圆相交,常用的辅助线是:
⑴作两圆公共弦
⑵作连心线
【例1】
已知:如图AB和CD是⊙O的两条弦,且AB⊥CD。
垂足为H,连接AC、BD。
作OE⊥
DB于E,求证:OE=1
2 AC。
【例2】
已知:D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO。
⑴求证:BD是⊙O的切线;
⑵若E是劣弧BC上一点,AE与BC相交于点F,△BEF的面积为8,且
2 cos
3
BFA
∠=,
求△ACF的面积。