通信系统仿真实验报告
通信系统建模与仿真实验报告

实验报告哈尔滨工程大学教务处制实验一:低通采样定理和内插与抽取实现一、实验目的用Matlab 编程实现自然采样与平顶采样过程,根据实验结果给出二者的结论;掌握利用MATLAB 实现连续信号采样、频谱分析和采样信号恢复的方法。
二、实验原理1.抽样定理若)(t f 是带限信号,带宽为m ω, )(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱 )(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。
因此,当s ω≥m ω时,不会发生频率混叠;而当 s ω<m ω 时将发生频率混叠。
2.信号重建经采样后得到信号)(t f s 经理想低通)(t h 则可得到重建信号)(t f ,即:)(t f =)(t f s *)(t h其中:)(t f s =)(t f ∑∞∞--)(s nT t δ=∑∞∞--)()(s s nT t nT f δ,)()(t Sa T t h c csωπω= 所以:)(t f =)(t f s *)(t h =∑∞∞--)()(s s nT t nT f δ*)(t Sa T c csωπω =πωcs T ∑∞∞--)]([)(scsnT t Sa nT f ω上式表明,连续信号可以展开成抽样函数的无穷级数。
利用MATLAB 中的t t t c ππ)sin()(sin =来表示)(t Sa ,有 )(sin )(πt c t Sa =,所以可以得到在MATLAB 中信号由)(s nT f 重建)(t f 的表达式如下:)(t f =πωcs T ∑∞∞--)]([sin )(s cs nT t c nT f πω 我们选取信号)(t f =)(t Sa 作为被采样信号,当采样频率s ω=2m ω时,称为临界采样。
我们取理想低通的截止频率c ω=m ω。
下面程序实现对信号)(t f =)(t Sa 的采样及由该采样信号恢复重建)(t Sa :三、 实验内容已知信号()()990(1)cos 2(10050)m x t m m t π==++∑,试以以下采样频率对信号采样:(a) 20000s f Hz =; (b) 10000s f Hz =; (c)30000s f Hz =,求x(t)信号原信号和采样信号频谱,及用采样信号重建原信号x’(t)时序图。
《通信系统仿真技术》实验报告

封面作者:Pan Hongliang仅供个人学习《通信系统仿真技术》实验报告实验一:SystemView操作环境的认识与操作1.实验题目:SystemView操作环境的认识与操作2.实验内容:正弦信号(频率为学号后两位,幅度为(1+学号后两位*0.1)、平方分析、及其谱分析;并讨论定时窗口的设计对仿真结果的影响。
3.实验原理:在设计窗口中单击系统定时快捷功能按钮,根据仿真结果设定相关参数。
采样点数=(终止时间-起止时间)×〔采样率〕+1正玄信号S(t)=cos(wt)其平方P(t)=cos(wt)*cos(wt)=[cos(2wt)+1]/2P(t)频率是S(t)的二倍4.实验仿真:实验结论:SystemView是一个信号级的系统仿真软件,主要用于电路与通信系统的设计、仿真,是一个强有力的动态系统分析工具,能满足从数字信号处理、滤波器设计、直到复杂的通信系统等不同层次的设计、仿真要求。
实验二:学习系统参数的设定与图符的操作实验题目:学习系统参数的设定与图符的操作实验内容:将一正弦信号(频率为学号后两位,幅度为(1+学号后两位*0.1)V)与高斯信号相加后观察输出波形及其频谱,由小到大改变高斯噪声的功率,重新观察输出波形及其频谱。
实验原理:高斯信号就是信号的各种幅值出现的机会满足高斯分布的信号。
当高斯信号不存在是正玄信号不失真,随着高斯信号的增加正玄信号的失真会越来越大。
实验仿真:实验结论:恒参信道的干扰信号常用高斯白噪声信号来等效。
而无线信道是一种时变的衰落信道,其衰落特性主要表现为具有多普勒功率谱特性的快衰落和具有阴影效应的慢衰落。
实验三:接收计算器的使用及滤波器的设计实验题目:接收计算器的使用及滤波器的设计实验内容:1、正弦信号(频率为学号后两位,幅度为(1+学号后两位*0.1)V)、及其平方分析窗口的接收计算器的使用;(实现3个以上运算功能)。
2、单位冲激响应仿真、增益响应分析。
通信系统仿真实验报告

通信系统仿真实验报告摘要:本篇文章主要介绍了针对通信系统的仿真实验,通过建立系统模型和仿真场景,对系统性能进行分析和评估,得出了一些有意义的结果并进行了详细讨论。
一、引言通信系统是指用于信息传输的各种系统,例如电话、电报、电视、互联网等。
通信系统的性能和可靠性是非常重要的,为了测试和评估系统的性能,需进行一系列的试验和仿真。
本实验主要针对某通信系统的部分功能进行了仿真和性能评估。
二、实验设计本实验中,我们以MATLAB软件为基础,使用Simulink工具箱建立了一个通信系统模型。
该模型包含了一个信源(source)、调制器(modulator)、信道、解调器(demodulator)和接收器(receiver)。
在模型中,信号流经无线信道,受到了衰落等影响。
在实验过程中,我们不断调整系统模型的参数,例如信道的衰落因子以及接收机的灵敏度等。
同时,我们还模拟了不同的噪声干扰场景和信道状况,以测试系统的鲁棒性和容错性。
三、实验结果通过实验以及仿真,我们得出了一些有意义的成果。
首先,我们发现在噪声干扰场景中,系统性能并没有明显下降,这说明了系统具有很好的鲁棒性。
其次,我们还测试了系统在不同的信道条件下的性能,例如信道的衰落和干扰情况。
测试结果表明,系统的性能明显下降,而信道干扰和衰落程度越大,系统则表现得越不稳定。
最后,我们还评估了系统的传输速率和误码率等性能指标。
通过对多组测试数据的分析和对比,我们得出了一些有价值的结论,并进行了讨论。
四、总结通过本次实验,我们充分理解了通信系统的相关知识,并掌握了MATLAB软件和Simulink工具箱的使用方法,可以进行多种仿真。
同时,我们还得出了一些有意义的结论和数据,并对其进行了分析和讨论。
这对于提高通信系统性能以及设计更加鲁棒的系统具有一定的参考价值。
通信系统仿真实验报告

《通信系统仿真技术》实验报告姓名:李傲班级:14050Z01学号: 1405024239实验一:Systemview操作环境的认识与操作1、实验目的:熟悉systemview软件的基本环境,为后续实验打下基础,熟悉基本操作,并使用其做出第一个自己的project,并截图2、实验内容:1>按照实验指导书的1.7进行练习2>正弦信号(频率为学号*10,幅度为(1+学号*0.1)V)、及其平方谱分析;并讨论定时窗口的设计对仿真结果的影响。
3、实验仿真:图1系统连结图(实验图中标注参数,并对参数设置、仿真结果进行分析)4、实验结论输出信号底部有微弱的失真,调节输入的频率的以及平方器的参数,可以改变输入信号的波形失真,对于频域而言,sin信号平方之后,其频率变为原来的二倍,这一点可有三角函数的化简公式证明实验二:滤波器使用及参数设计1、实验目的:1、学习使用SYSTEMVIEW 中的线性系统图符。
2、掌握典型FIR 滤波器参数和模拟滤波器参数的设置过程。
3、按滤波要求对典型滤波器进行参数设计。
实验原理:2、实验内容:参考实验指导书,设计出一个低通滤波器,并对仿真结果进行截图,要求在所截取的图片上用便笺的形式标注自己的姓名、学号、班级。
学号统一使用序号3、实验仿真:系统框架图输入输出信号的波形图输入输出信号的频谱图4、实验结论对于试验中低通滤波器的参数设置不太容易确定,在输入完通带宽度、截止频率和截止点的衰落系数等滤波器参数后,如果选择让SystemView 自动估计抽头,则可以选择“Elanix Auto Optimizer”项中的“Enabled”按钮,再单击“Finish”按钮退出即可。
此时,系统会自动计算出最合适的抽头数通常抽头数设置得越大,滤波器的精度就越实验三、模拟线性调制系统仿真(AM)(1学时)1、实验目的:1、学习使用SYSTEMVIEW 构建简单的仿真系统。
3、掌握模拟幅度调制的基本原理。
通信系统仿真实验报告

Matlab通信原理仿真实验一 Matlab 基本语法与信号系统分析一、实验目的:1、掌握MATLAB 的基本绘图方法;2、实现绘制复指数信号的时域波形。
二、实验设备与软件环境:1、实验设备:计算机2、软件环境:MATLAB R2009a三、实验内容:1、MATLAB 为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。
MATLAB 程序如下:x = -pi:0.1:pi; y1 = sin(x); y2 = cos(x); %准备绘图数据figure(1); %打开图形窗口subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x ,y1绘图title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x ,y2绘图xlabel('time'),ylabel('y')%第二幅图横坐标为’time ’,纵坐标为’y ’运行结果如下图:-4-3-2-101234-1-0.500.51plot(x,y1)-1-0.500.51timey2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图:MATLAB程序如下:x=-pi:.1:pi;y1=sin (x);y2=cos (x);figure (1);%subplot (2,1,1);plot (x,y1);title ('plot (x,y1)');grid on%subplot (2,1,2);plot (x,y2);xlabel ('time');ylabel ('y')subplot(1,2,1),stem(x,y1,'r') %绘制红色的脉冲图subplot(1,2,2),stem(x,y1,'g') %绘制绿色的误差条形图运行结果如下图:3、一个复指数信号可以分解为实部和虚部两部分。
扩频通信系统仿真实验报告

扩频通信系统仿真实验报告一、引言扩频通信是一种通过扩展信号带宽来传输信息的技术。
在扩频通信系统中,发送方将待传输的信息数据序列与扩频码序列相乘,再通过信道传输到接收方。
接收方通过与发送方使用相同的扩频码序列相乘,并将结果进行积分操作,从而将扩频信号提取出来。
本文通过MATLAB软件使用数字仿真的方法,对扩频通信系统进行了仿真实验,包括扩频信号的产生、传输和提取等过程,最后通过性能指标评估扩频通信系统的性能。
二、实验内容1.扩频信号的产生:首先生成待传输的数字信息序列,然后与扩频码进行点乘产生扩频信号。
2.信道传输:模拟信道传输过程,包括加性高斯白噪声(AWGN)等噪声影响。
3.扩频信号的提取:接收方使用与发送方相同的扩频码对接收到的信号进行点乘与积分操作,从而提取出扩频信号。
4.性能评估:通过比较接收信号与发送信号的相关性和误码率等性能指标来评估扩频通信系统的性能。
三、实验步骤1.扩频信号的产生:首先生成随机的数字信息序列,然后使用伪随机序列作为扩频码与数字信息序列相乘,产生扩频信号。
2.信道传输:将扩频信号通过信道传输,并添加加性高斯白噪声模拟噪声影响。
3.扩频信号的提取:接收方使用与发送方相同的扩频码对接收到的信号进行点乘与积分操作,提取出扩频信号。
4.性能评估:通过计算接收信号与发送信号的相关性和统计误码率等性能指标来评估扩频通信系统的性能。
实验结果展示4.性能评估:通过计算接收信号与发送信号的相关性和统计误码率等性能指标来评估扩频通信系统的性能。
相关性较高且误码率较低表示系统性能较好。
四、实验结论通过本次扩频通信系统的仿真实验,我们可以得出以下结论:1.扩频通信系统能够有效抵抗噪声影响,提高信道的抗干扰能力。
2.扩频码的选择对系统性能有较大影响,合适的扩频码可以提高系统性能。
3.扩频通信系统的误码率与信噪比有关,当信噪比较高时,系统的误码率较低。
总之,扩频通信系统在信息传输中具有较好的性能和鲁棒性,通过对其进行仿真实验可以更好地理解其工作原理和性能特点。
通信系统实训报告

一、实训目的通过本次通信系统实训,使学生对通信系统的基本原理、组成、工作过程及性能指标有更深入的了解,掌握通信系统的基本操作方法和实验技能,培养学生的动手能力和分析问题、解决问题的能力。
二、实训内容1. 实验一:通信系统基本模型与性能指标(1)实验目的:了解通信系统的基本模型,掌握通信系统的性能指标。
(2)实验内容:分析通信系统的基本模型,研究通信系统的性能指标,如误码率、信噪比、带宽等。
(3)实验步骤:① 研究通信系统的基本模型,分析其组成部分。
② 研究通信系统的性能指标,如误码率、信噪比、带宽等。
③ 比较不同通信系统的性能指标。
2. 实验二:模拟通信系统与数字通信系统(1)实验目的:了解模拟通信系统与数字通信系统的基本原理,掌握其特点和应用。
(2)实验内容:研究模拟通信系统与数字通信系统的基本原理,分析其特点和应用。
(3)实验步骤:① 研究模拟通信系统的基本原理,分析其特点。
② 研究数字通信系统的基本原理,分析其特点。
③ 比较模拟通信系统与数字通信系统的优缺点。
3. 实验三:无线通信系统(1)实验目的:了解无线通信系统的基本原理,掌握其工作过程。
(2)实验内容:研究无线通信系统的基本原理,分析其工作过程。
(3)实验步骤:① 研究无线通信系统的基本原理,分析其特点。
② 分析无线通信系统的工作过程,包括发射、传播、接收等环节。
③ 研究无线通信系统的关键技术,如调制、解调、编码、解码等。
4. 实验四:通信系统实验平台操作(1)实验目的:掌握通信系统实验平台的操作方法,提高实验技能。
(2)实验内容:学习通信系统实验平台的操作方法,进行实际操作。
(3)实验步骤:① 熟悉实验平台的结构和功能。
② 学习实验平台的操作方法,如连接设备、设置参数、观察波形等。
③ 进行实际操作,验证实验原理。
三、实训总结通过本次通信系统实训,我对通信系统的基本原理、组成、工作过程及性能指标有了更深入的了解。
以下是我对本次实训的总结:1. 通信系统的基本模型包括信源、信道、信宿等部分,性能指标有误码率、信噪比、带宽等。
通信系统仿真实验报告概要

《通信系统仿真》实验报告信息工程学院电子工程系 陈亚环 实验一 高频小信号放大器的MULTISIM 仿真实验目的:1、了解MULTISIM 的基本功能、窗口界面、元器件库及工具栏等;2、掌握MULTISIM 的基本仿真分析方法、常用仿真测试仪表等;3、掌握高频小信号放大器MULTISIM 仿真的建模过程。
实验内容及结果:(一)单频正弦波小信号放大器的MULTISIM 仿真。
1)根据图一所示高频小信号放大器电路,创建仿真电路原理图。
要求输入信号的幅度在2mV---1V 之间、频率在1MHz---20MHz 之间;图一 高频小信号放大器电路2)根据实际情况设置好电路图选项,接入虚拟仪器并设置合适的参数。
打开仿真开关,运行所设计好的电路,给出输入输出信号的波形图和频谱图。
根据初步仿真结果改变电路元器件的型号和参数,使输出信号波形无失真、幅度放大10倍以上; 仿真电路图:输入输出信号的波形图:3)由交流分析方法可以得到电路的谐振频率MHz f 1.100=。
根据波特仪测试可观察得电路的谐振频率MHz f 62.80=。
改变输入信号的频率,通过交流分析方法和波特仪观察电路谐振频率的几乎无变化。
4)、改变输入信号的幅度,用示波器观察输出电压波形,测量出输出波形不失真情况下输入信号幅度的变化范围为2mV 到25mV 。
5)、改变输入信号的频率,用示波器观察输出电压幅度的变化情况通频带B 为23MHz 矩形系数K 0.1为3.55 通频带曲线见坐标纸。
6)、改变R5(负载)的值,用示波器观察输出电压波形和峰峰值的变化情况R5-峰峰值的关系曲线见坐标纸(二)多频正弦波合成小信号放大器的MULTISIM 仿真测试及其分析。
1. 多频正弦波合成小信号放大器的MULTISIM 仿真电路图输入信号幅值及频率分别为20mv ,14MHz 、22mv ,16MHz 、25mv ,15MHz 2. 多频正弦波合成小信号放大器的输入输出波形测试通过虚拟示波器观察输入输出信号基本放大10倍且只有小部分波形失真分析其原因是输入信号的频率参数分散导致一部分频率的放大倍数较小从而导致波形的部分失真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信系统仿真实验报告
通信系统仿真实验报告
摘要:
本实验旨在通过仿真实验的方式,对通信系统进行测试和分析。
通过搭建仿真环境,我们模拟了通信系统的各个组成部分,并通过实验数据对系统性能进行评估。
本报告将详细介绍实验的背景和目的、实验过程、实验结果以及对结果的分析和讨论。
1. 引言
随着信息技术的发展,通信系统在现代社会中扮演着重要的角色。
通信系统的性能对于信息传输的质量和效率起着至关重要的作用。
因此,通过仿真实验对通信系统进行测试和分析,可以帮助我们更好地了解系统的特性,优化系统设计,提高通信质量。
2. 实验背景和目的
本次实验的背景是一个基于无线通信的数据传输系统。
我们的目的是通过仿真实验来评估系统的性能,并探讨不同参数对系统性能的影响。
3. 实验环境和方法
我们使用MATLAB软件搭建了通信系统的仿真环境。
通过编写仿真程序,我们模拟了信号的传输、接收和解码过程。
我们对系统的关键参数进行了设定,并进行了多次实验以获得可靠的数据。
4. 实验结果
通过实验,我们得到了大量的数据,包括信号传输的误码率、信噪比、传输速率等。
我们对这些数据进行了整理和分析,并绘制了相应的图表。
根据实验结
果,我们可以评估系统的性能,并对系统进行改进。
5. 结果分析和讨论
在对实验结果进行分析和讨论时,我们发现信号传输的误码率与信噪比呈反比
关系。
当信噪比较低时,误码率较高,信号传输的可靠性较差。
此外,我们还
发现传输速率与信号带宽和调制方式有关。
通过对实验数据的分析,我们可以
得出一些结论,并提出一些建议以改善系统性能。
6. 结论
通过本次仿真实验,我们对通信系统的性能进行了评估,并得出了一些结论和
建议。
实验结果表明,在设计和优化通信系统时,我们应注重信号传输的可靠
性和传输速率。
通过不断改进系统参数和算法,我们可以提高通信系统的性能,实现更高质量的数据传输。
7. 展望
本次实验只是对通信系统进行了初步的仿真测试,还有许多方面有待进一步研
究和探索。
未来,我们可以进一步优化系统设计,提高系统的抗干扰能力和传
输速率。
同时,我们还可以考虑其他因素对系统性能的影响,如多路径传输、
功耗等。
总结:
通过本次仿真实验,我们深入了解了通信系统的性能评估方法和优化思路。
通
过不断改进和优化,我们可以建立更加可靠和高效的通信系统,为现代社会的
信息传输提供更好的支持。