双核酞菁钴磺酸盐

合集下载

PDS脱硫脱氰催化剂的简介

PDS脱硫脱氰催化剂的简介

PDS脱硫脱氰催化剂的简介PDS法焦炉煤气脱硫脱氰技术自1982年问世以来的20年中,虽经历了多次失败,但最终获得了成功,现就PDS的合成和助催化剂的发现简介如下。

1 PDS的合成最初,发现PDS(双核酞菁钴六磺酸铵)并不是单一的化合物,而是含有单环酞菁钴磺酸铵和多环酞菁钴磺酸铵的混合物。

另外,还含有无活性物质氯化铵和ADA、对苯二酚、硫酸亚铁、硫酸锰、水杨酸等助催化剂。

再经进一步的研究,取得了较大的进展。

一是发现双核酞菁钴砜十磺酸铵结构的摩尔吸氧量是双核酞菁钴六磺酸铵结构的2倍,单核酞菁钴六磺酸铵的结构也有类似的性质;二是加入导向催化剂后,可合成不含氯化铵的双核酞菁钴六磺酸铵和双核酞菁钴砜十磺酸铵,使PDS的合成技术有了长足进步。

即可合成具有砜结构和活性更高的PDS,且纯PDS 中不含氯化铵。

2 PDS的助催化剂及性质最初,我们选择了吡啶或磺化吡啶作助催化剂,取得了很好的效果,但考虑到助催化剂有较大毒性和PDS的催化活性比一般催化剂高103~104倍,故初期就没有使用助催化剂,而使用了氯化铵含量为13%的纯PDS。

最初,因刘家峡化肥厂的煤气脱硫装置是由ADA法改为PDS法的,投产后的40天内,脱硫效果一天比一天好,但40天后脱硫效率降至70%~75%。

主要原因是脱硫循环液中的ADA已消耗完,再次将脱硫液的ADA浓度调整到0.3~0. 4g/L 后,脱硫效率又恢复到99%以上,净煤气中的残硫量仅为3mg/m3。

此后,在上海杨树浦煤气厂的试用中也再次证明,只要脱硫液中的ADA含量保持在30 mg/L, PDS法的脱硫就能正常运行。

从而证明,PDS法脱硫时,若没有助催化剂,就难以使脱硫效率稳定在较高的水平。

若助催化剂的浓度过高,又易使PDS 中毒。

根据我们的生产实践,PDS法循环脱硫液中的ADA含量应控制在30 mg/L以下。

若ADA含量≥3.0 g/L,就会使PDS中毒。

还应特别强调指出,当用PDS法取代ADA法时,脱硫液必须保持NaVO3/ADA ≥2,直至取代完成。

PDS法脱硫液泄漏事件环境污染分析与防控

PDS法脱硫液泄漏事件环境污染分析与防控

PDS法脱硫液泄漏事件环境污染分析与防控卫丽;李瑞云;李超;惠晓梅【摘要】本文介绍了某炼焦企业PDS法脱硫液泄漏环境污染事件概况,分析了脱硫液产生环节、主要成分和污染特征,并总结出有效的防控措施。

这对于环境风险防控与环境应急处置具有一定借鉴作用。

%This paper describes an environmental pollution affair of fluid leakage from PDS desulphurization process in a coking enterprise, analyzes desulfurization process, the main ingredients and pollution characteristics of desulfurization fluid, and summarizes the effective prevention and control measures� It has certain reference significance for the environmental risk prevention and control and accident emergency disposal.【期刊名称】《环境与可持续发展》【年(卷),期】2016(041)004【总页数】3页(P98-100)【关键词】脱硫液;泄漏;污染特征;防控【作者】卫丽;李瑞云;李超;惠晓梅【作者单位】山西新科联环境技术有限公司,太原 030002;山西国环环境科技有限公司,太原 030002;山西省生态环境研究中心,太原 030009;山西省生态环境研究中心,太原 030009【正文语种】中文【中图分类】X21某炼焦企业脱硫工序采用PDS(双核酞菁钴磺酸盐)法脱硫工艺,具有工艺简单、效率高、成本低等优点。

某日该企业脱硫车间发生脱硫液管道发生爆裂。

关于PDS湿法脱硫工艺的分析与控制

关于PDS湿法脱硫工艺的分析与控制

关于PDS湿法脱硫工艺的分析与控制摘要:PDS湿法脱硫技术较为成熟的化学脱硫技术之一,在沼气和尾气处理中得到了广泛的应用,PDS脱硫技术的应用效果与包括扩散因素和反应因素在内的多种因素有关。

本文对PDS脱硫技术的工艺过程进行分析,并对相关因素的控制进行探讨,对提高该技术的脱硫效果具有重要意义。

关键词:PDS;湿法脱硫技术;工艺流程;影响因素;控制PDS是一种脱硫催化剂的商品名称,是酞菁钴磺酸盐金属有机化合物,我国中国东北师范大学从1977年开始就研究用它作催化剂加入到碱性溶液或氨水中用于气体脱硫,目前中国有几百家工厂使用这方法脱硫,包括沼气、煤气、焦炉气、合成氨厂半水煤气、炼厂气等气体的脱硫。

由于该脱硫技术不仅受到化学反应因素的影响,还受到扩散因素的影响,一旦这些条件控制不好,将会对脱硫系统的正常工作带来负面影响,因此有必要对这些影响因素及其控制方法进行探讨,提高PDS湿法脱硫技术水平。

1.反应机理PDS脱硫催化剂的主要成分是双核酞菁钴磺酸盐,其结构式如下:酞菁钴为蓝色,在酸碱性介质中不分解、热稳定性和水溶性好、无毒、对硫化物具有很强的催化活性。

这种高活性的产生根源在于它们分子结构的特殊性,即贯通于整个分子的大π电子共轭体系与中心金属的可变性能及酞菁环对中心金属离子不同价态的稳定作用相结合是构成这类化合物特殊催化性能的基础。

动力学研究发现PDS脱硫催化剂的催化机理模型如下:(1)当有双核酞菁钴类参与的液相催化吸收反应过程的活化能较低。

(2)氧在催化剂分子上配位结合,且从催化剂分子获取电子被活化成O2-,同时中心金属离子的价态发生相应的变化。

(3)双核金属酞菁类化合物的稳定构型以及O2与催化剂分子结合的最佳方位。

综上所述,双核酞菁钴类化合物催化下的H2S液相氧化反应过程为自由基反应,其中HS-和O2在催化剂分子上实现电子转移是自由基的引发过程。

由于HS·自由基和O2-在催化剂分子上的两个中心金属离子上协同产生,且O2-通过交换反应可以产生新的HSx·自由基,因而奠定了在所有目前已合成的金属酞菁类化合物中,唯有双核金属酞菁类化合物在催化氧化液相H2S反应中可能表现出极高的催化活性,其作用机理可分以下四步:(1)在碱性溶液中将溶解的氧吸附而活化。

合成气脱硫脱碳

合成气脱硫脱碳

合成气脱硫脱碳脱硫的目的:硫化物是各种催化剂的毒物,对甲烷转化和甲烷化催化剂、中温变换催化剂、低温变换催化剂、甲醋合成催化剂、氨合成催化剂的活性有显著影响。

硫化物还会腐蚀设备和管道,给后面工段的生产带来许多危害。

因此,对原料气中硫化物进行清除是十分必要的。

1.1干法脱硫中国五环化学工程公司(原化工部第四设计院)推荐使用RS - II 型(或RS - III) 活性炭脱除变换气中的H2S。

实际使用中,为提高活性炭的工作硫容,常向变换气中补入一定量的空气,这给后续工序的安全生产留下了一定的隐患。

由于原料煤来源的多样化、劣质化,使得脱硫槽出口的H2S 波动大,脱硫剂更换频繁,工人劳动强度大,亦不经济。

对于甲醇厂,变换气脱硫后,还需精脱硫,干法脱硫净化度不高,将大大提高精脱硫成本。

1.2湿法脱硫由于采用干法变换气脱硫存在硫容低、更换频繁和净化度不高等缺点,越来越多的厂家采用湿式氧化还原法脱除变换气中的H2S ,湿法主要有ADA法、栲胶法、MSQ 法和PDS 法。

1.2.1.栲胶法栲胶法是我国特有的脱硫技术,是使用最多的变换气脱硫技术。

栲胶是由植物的果皮、叶和干的水淬液熬制而成,主要成分是丹宁。

由于来源不同,丹宁组分也不同,但都是由化学结构十分复杂的多羟基芳烃化合物组成,具有酚式或醌式结构。

其脱硫原理如下:碱性水溶液吸收H2S、CO2 :Na2CO3 + H2S NaHCO3 + NaHSNa2CO3 + CO2 + H2O 2NaHCO3五价钒氧化HS- 析出硫磺,五价钒被还原成价钒:2V5 + + HS- 2V4 + + S + H+同时醌态栲胶氧化HS- 析出硫磺,醌态栲胶被还原成酚态栲胶:TQ + HS- THQ + S醌态栲胶氧化四价钒离子,使钒获得再生:TQ + V4 + + H2O V5 + + THQ + OH-空气中的氧氧化酚态栲胶,使栲胶获得再生,同时生成H2O2 :2THQ + O2 2TQ + H2O2德州化肥厂是合成氨联醇厂,原采用干法脱硫,使用过程中,发现干法脱硫硫容低,使用寿命短,更换频繁,流程长,压差大,能耗高。

合成气脱硫脱碳

合成气脱硫脱碳

合成气脱硫脱碳脱硫的目的:硫化物是各种催化剂的毒物,对甲烷转化和甲烷化催化剂、中温变换催化剂、低温变换催化剂、甲醋合成催化剂、氨合成催化剂的活性有显著影响。

硫化物还会腐蚀设备和管道,给后面工段的生产带来许多危害。

因此,对原料气中硫化物进行清除是十分必要的。

1.1干法脱硫中国五环化学工程公司(原化工部第四设计院)推荐使用RS - II 型(或RS - III) 活性炭脱除变换气中的H2S。

实际使用中,为提高活性炭的工作硫容,常向变换气中补入一定量的空气,这给后续工序的安全生产留下了一定的隐患。

由于原料煤来源的多样化、劣质化,使得脱硫槽出口的H2S 波动大,脱硫剂更换频繁,工人劳动强度大,亦不经济。

对于甲醇厂,变换气脱硫后,还需精脱硫,干法脱硫净化度不高,将大大提高精脱硫成本。

1.2湿法脱硫由于采用干法变换气脱硫存在硫容低、更换频繁和净化度不高等缺点,越来越多的厂家采用湿式氧化还原法脱除变换气中的H2S ,湿法主要有ADA法、栲胶法、MSQ 法和PDS 法。

1.2.1.栲胶法栲胶法是我国特有的脱硫技术,是使用最多的变换气脱硫技术。

栲胶是由植物的果皮、叶和干的水淬液熬制而成,主要成分是丹宁。

由于来源不同,丹宁组分也不同,但都是由化学结构十分复杂的多羟基芳烃化合物组成,具有酚式或醌式结构。

其脱硫原理如下:碱性水溶液吸收H2S、CO2 :Na2CO3 + H2S NaHCO3 + NaHSNa2CO3 + CO2 + H2O 2NaHCO3五价钒氧化HS- 析出硫磺,五价钒被还原成价钒:2V5 + + HS- 2V4 + + S + H+同时醌态栲胶氧化HS- 析出硫磺,醌态栲胶被还原成酚态栲胶:TQ + HS- THQ + S醌态栲胶氧化四价钒离子,使钒获得再生:TQ + V4 + + H2O V5 + + THQ + OH-空气中的氧氧化酚态栲胶,使栲胶获得再生,同时生成H2O2 :2THQ + O2 2TQ + H2O2德州化肥厂是合成氨联醇厂,原采用干法脱硫,使用过程中,发现干法脱硫硫容低,使用寿命短,更换频繁,流程长,压差大,能耗高。

焦炉煤气脱硫技术路线

焦炉煤气脱硫技术路线

焦炉煤气脱硫技术路线、现状及五种工艺对比焦炉煤气中的硫化物是一种有害物质,若不对其进行脱除,不仅会腐蚀生产设备,而且会带来环境污染,因此焦炉煤气在使用前必须进行脱硫处理。

本文对目前国内应用较多的焦炉煤气脱硫技术方案进行介绍,包括PDS法、HPF法、改良ADA法等。

通过对这些脱硫工艺在脱硫效果、碱源、成本等方面进行比较,发现PDS法和HPF法因其脱硫效率高、不需要外加碱源、生产流程简洁,被大多数企业所青睐,综合效益最佳。

引言煤在炼焦生产时一般72%~78%转化为焦炭,22%~28%转化为荒煤气,干煤中含有质量分数为0.5%~1.2%的硫,其中有20%~30%的硫转到荒煤气中,形成有机和无机硫化物。

而焦炉煤气中,硫化氢的含硫量占总含硫量的90%以上。

焦炉煤气中的硫化氢是一种有害物质,它会对化学产品回收设备和煤气输送管道产生腐蚀。

硫化氢含量高的焦炉煤气用于炼钢,会导致钢的质量下降; 用于合成氨生产,会导致催化剂中毒失效和管道设备等腐蚀;用于工业和民用燃料,其燃烧所排放废气中的硫化物会污染环境,对人体健康造成危害。

因此,焦炉煤气不论是用作工业原料还是城市燃气都需要对其进行脱硫净化。

煤气脱硫不仅可以改善煤气质量,减轻设备腐蚀,还可以提高经济效益。

本文对目前企业中常用的焦炉煤气脱硫方法进行分类介绍,主要对常用的一些湿式氧化脱硫法,包括PDS法、HPF法、改良ADA法等进行分析对比,说明各种工艺的优缺点。

1 焦炉煤气脱硫方法焦炉煤气脱硫工艺发展至今已经有50余种。

虽然工艺数量众多,但是根据反应的接触条件以及催化剂的种类的不同,总体上可以分为两大类: 一类是干法脱硫; 另一类是湿法脱硫。

1.1 干法脱硫干法脱硫是利用固体吸附剂,例如活性炭、氢氧化铁等脱除煤气中的硫化氢,使煤气中硫化氢的含量达到1~2mg/m3。

该工艺在脱硫反应中无液体存在,脱硫环境完全干燥。

一般适用于量不大的煤气脱硫或者精度要求较高的焦炉煤气二次脱硫( 即为在一次脱硫的基础上根据煤气的使用需要来进行第二次精脱硫)。

煤气脱硫

煤气脱硫

煤气脱硫鼓入空气,用空气进行氧化再生并析出单指硫。

大量的硫泡沫在再生塔内生成,并浮于塔顶扩大部分。

由此利用位差自流入硫泡沫槽,经澄清分层,清夜返回循环槽,硫泡沫放至真空过滤机进行过滤,成为硫膏。

硫膏经处理制得硫磺产品。

再生塔内的液体自下流到脱硫塔顶部循环使用。

要求溶液的pH值在8.5~9.1之间,pH值若小于8.5会导致反应速度太慢,太高会增加副反应,使碱耗增大,同时硫析出速度加快,易造成堵塔。

图3—9 脱硫过程示意图1—吸收塔;2—再生塔;3—循环槽湿法脱硫常用的方法如下:(1)FRC法FRC法由日本开发研制,利用焦炉煤气中的氨,在催化剂苦味酸的作用下脱除H2S,利用多硫化铵脱除HCN。

其装置是由吸收塔和再生塔组成,前者用以吸收粗煤气中的硫化氢,后者用以硫化氢氧化和催化剂再生。

将煤气用弗玛克斯液洗涤,所含硫化氢被洗涤液吸收后,脱硫即可完成,其吸收反应为:NH3+H2S=NH4HS。

将吸收污液送入再生塔,使之与空气接触,氧化硫化氢的同时再生催化剂,然后送回吸收塔顶循环,循环液中悬浮再生的固体硫磺,用离心机分离回收。

该工艺脱硫效率高达99%以上、脱氰效率为93%,煤气经吸收塔后,H2S可降到20mg/m3,HCN可降到100mg/m3。

催化剂苦味酸耗量少且便宜易得,操作费用低;再生率高,新空气用量少、废气含氧量低,无二次污染。

但因苦味酸是爆炸危险品,运输存储困难,且工艺流程长、占地多、投资大等因素,其使用受到一定限制。

(2) HPF法HPF法是国内自行开发的以氨为碱源、HPF为复合催化剂的湿式液相催化氧化脱硫脱氰工艺,主要由脱硫和再生两部分组成。

该法也是以煤气中的氨为碱源,脱硫液在吸收了煤气中H2S后,在复合催化剂HPF作用下氧化再生,最终H2S转化为单体硫得以除去,脱硫液循环使用,生成的硫泡沫放人熔硫釜,经间歇熔硫、冷却成型后外售。

HPF催化剂活性高、流动性好,不仅对脱硫脱氰过程起催化作用,而且对再生过程也有催化作用,脱硫脱氰效率高。

焦化脱硫废液处理工艺及操作

焦化脱硫废液处理工艺及操作

焦化脱硫废液处理工艺及操作北京化工大学水处理研究中心建滔(河北)化工有限公司目录◆1、技术背景◆2、工艺过程◆3、设备◆4、技术保密◆5、致谢1、技术背景◆焦化厂以氨为碱源、采用H P F催化剂(由双核酞菁钴磺酸铵(P D S)、对苯二酚和硫酸亚铁混合而成)的脱硫工艺中,脱硫液在含盐量达到一定值后,脱硫效率会降低,必须排放一部分,再补充新的脱硫液,排出的一部分则作为脱硫废液。

◆脱硫废液的具体组成如下(样品来自建滔(河北)焦化有限公司)◆p H:8.26◆S S:0.22%◆N H3:94000m g/L◆色度:3240P C U◆浊度:492N T U◆单质S:0。

4m g/L◆(N H4)2S2O3:42g/L◆N H4C N S:148g/L◆H2S:0。

1g/L◆(N H4)2S O4:8.2g/L◆硫元素总含量:24。

6%(以硫酸根计算)脱硫废液不经处理即行排放,既浪费了物料,又严重污染了环境.因此,从该铵盐体系废液中回收氨、水和硫氰酸铵,从而消除脱硫废液对环境的污染是很重要的,同时还可以使脱硫工艺更加完善。

氨和水可以重新进入脱硫系统,硫氰酸铵又是很有价值的工业原料,回收处理变废为宝,既可以提高企业的经济效益,又可以解决脱硫废液对环境的污染.北京化工大学水处理研究中心的焦化脱硫液处理技术,开发了脱硫液处理、硫氰酸铵回收、氨和水回用组合工艺,可以从焦化脱硫液中回收硫氰酸铵,达到无废水排放。

◆对企业来说,将焦化脱硫废液喷洒在煤场或外排,要向环保部门上交大量的治污费用,只有投入,没有收益:◆经济效益=-(排污水费+排污罚款+污水处理费)◆而采用北京化工大学的处理脱硫废液方案将使企业获得很大的收益:◆经济效益=产品收益费+氨原料节省费+节水费+排污罚款-废水处理费◆从脱硫废水中回收的硫氰酸铵具有非常高的工业价值,其收益可以为企业带来非常高的经济效益。

而水价上涨和排污罚款越来越重是大势所趋,科技进步则使污水处理费不断降低,因而从污水零排放获得的收益将越来越大.2、工艺过程及设备◆工艺流程简图(附后)2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档