数学建模的相关问题求解方法

合集下载

数学建模优化问题的求解方法

数学建模优化问题的求解方法

数学建模优化问题的求解方法
数学建模优化问题的求解方法有很多。

下面列举几种常见的方法:
1. 数学规划方法:包括线性规划、整数规划、非线性规划、动态规划等。

这些方法通过数学模型和约束条件来描述问题,并通过寻找最优解来优化问题。

2. 图论方法:将问题抽象成图或网络,并利用图论算法来求解最优解。

常见的算法有最短路径算法、最小生成树算法、最大流算法等。

3. 近似算法:对于复杂的优化问题,往往很难找到精确的最优解。

近似算法通过寻找接近最优解的解来近似优化问题。

常见的近似算法有贪心算法、近邻算法、模拟退火算法等。

4. 遗传算法:模拟生物进化的过程,通过选择、交叉和变异等操作来搜索问题的解空间,并逐步优化解。

遗传算法适用于复杂问题和无法直接求解的问题。

5. 物理方法:将优化问题转化为物理模型,利用物理规律求解。

比如蚁群算法模拟蚂蚁找食物的行为,粒子群算法模拟鸟群觅食的行为等。

以上只是数学建模优化问题求解方法的几种常见方法,实际问题求解时要根据问题的特点选择适合的方法,并结合领域知识和实际情况进行调整和优化。

数学建模10种常用算法

数学建模10种常用算法

数学建模10种常用算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问 题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处参数估计C.F.20世纪60年代,随着电子计算机的。

参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。

数学建模解决问题的思路和方法

数学建模解决问题的思路和方法

数学建模解决问题的思路和方法数学建模是指运用数学方法来解决实际问题的过程。

在当前社会中,数学建模已成为解决许多实际问题的主要手段之一。

本文将探讨数学建模解决问题的思路和方法。

一、问题的建模思路在解决问题时,首先需要确定问题的特征和目标,然后将问题转化为数学模型。

数学模型是基于实际问题建立的描述该问题过程的数学表达式或算法。

建立数学模型的过程包括以下几个步骤:1. 理解问题在解决问题时,我们需要理解问题的背景、特征和目标。

通过深入了解问题,并发现可能存在的规律和联系,进一步确定数学建模方案。

2. 收集数据在建模之前,我们需要收集实际数据,确定问题的各种参数和条件。

数据的准确性和完整性对于建立有效的模型至关重要。

3. 建立数学模型在数据收集完成后,我们可以根据分析和理解所得到的有关规律、特征和目标,选取合适的数学方法和工具建立模型。

建立数学模型可能需要通过实验验证和不断调整来提高模型的准确性。

4. 验证和调整在建立模型后,需要对模型进行验证和调整。

验证模型的准确性能够帮助我们评估建立的模型是否真正解决问题并且具有普适性。

如果模型存在问题,我们需要根据实际情况进行调整。

二、数学建模的常用方法1. 数学模型数学模型是数学建模的核心,也是将实际问题转化为数学问题的关键要素。

数学模型可以是依靠方程来描述的,也可以是基于统计方法的。

在建立数学模型时,需要根据具体问题选择合适的数学方法和工具。

2. 数值计算数值计算可以通过计算机来完成,包括解方程、求解空间和时间分布和优化问题等。

由于实际问题多为复杂系统,数值计算具有便捷、简单的特点,通常是最常用的解决方案之一。

3. 统计分析统计分析是一种描述和分析大量数据的方法。

通常用于根据样本来推断总体数据特征或预测未来趋势。

统计有助于理解和研究实际问题,并构建更准确的预测模型和决策方案。

4. 模拟仿真模拟仿真是一种使用计算机来模拟实际过程的方法。

模拟仿真通过分析物理或机理方程模拟过程,以便更好地理解该过程的运作和性质。

数学建模常用的十种解题方法

数学建模常用的十种解题方法

数学建模常用‎的十种解题方‎法 摘要当需要从定量‎的角度分析和‎研究一个实际‎问题时,人们就要在深‎入调查研究、了解对象信息‎、作出简化假设‎、分析内在规律‎等工作的基础‎上,用数学的符号‎和语言,把它表述为数‎学式子,也就是数学模‎型,然后用通过计‎算得到的模型‎结果来解释实‎际问题,并接受实际的‎检验。

这个建立数学‎模型的全过程‎就称为数学建‎模。

数学建模的十‎种常用方法有‎蒙特卡罗算法‎;数据拟合、参数估计、插值等数据处‎理算法;解决线性规划‎、整数规划、多元规划、二次规划等规‎划类问题的数‎学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计‎算机算法;最优化理论的‎三大非经典算‎法:模拟退火法、神经网络、遗传算法;网格算法和穷‎举法;一些连续离散‎化方法;数值分析算法‎;图象处理算法‎。

关键词:数学建模;蒙特卡罗算法‎;数据处理算法‎;数学规划算法‎;图论算法 一、蒙特卡罗算法‎蒙特卡罗算法‎又称随机性模‎拟算法,是通过计算机‎仿真来解决问‎题的算法,同时可以通过‎模拟可以来检‎验自己模型的‎正确性,是比赛时必用‎的方法。

在工程、通讯、金融等技术问‎题中, 实验数据很难‎获取, 或实验数据的‎获取需耗费很‎多的人力、物力, 对此, 用计算机随机‎模拟就是最简‎单、经济、实用的方法; 此外, 对一些复杂的‎计算问题, 如非线性议程‎组求解、最优化、积分微分方程‎及一些偏微分‎方程的解⑿, 蒙特卡罗方法‎也是非常有效‎的。

一般情况下, 蒙特卜罗算法‎在二重积分中‎用均匀随机数‎计算积分比较‎简单, 但精度不太理‎想。

通过方差分析‎, 论证了利用有‎利随机数, 可以使积分计‎算的精度达到‎最优。

本文给出算例‎, 并用MA TA LA B 实现。

1蒙特卡罗计‎算重积分的最‎简算法-------均匀随机数法‎二重积分的蒙‎特卡罗方法(均匀随机数)实际计算中常‎常要遇到如的‎()dxdy y x f D ⎰⎰,二重积分, 也常常发现许‎多时候被积函‎数的原函数很‎难求出, 或者原函数根‎本就不是初等‎函数, 对于这样的重‎积分, 可以设计一种‎蒙特卡罗的方‎法计算。

解题技巧如何利用数学建模解决实际问题

解题技巧如何利用数学建模解决实际问题

解题技巧如何利用数学建模解决实际问题数学建模是一种将实际问题转化为数学问题,并通过建立数学模型分析问题的方法。

它在解决实际问题中起着重要的作用。

本文将介绍一些解题技巧,以及如何利用数学建模来解决实际问题。

一、解题技巧1. 理清问题的关键在解决实际问题时,首先需要理清问题的关键点。

仔细阅读问题描述,找出问题中最重要的因素和需要解决的目标。

通过将问题抽象为一个数学模型,更好地理解问题的本质。

2. 将问题转化为数学语言一旦理清问题的关键,我们就可以将问题转化为数学语言。

通过对问题要素进行量化,将其转化为数学表达式或方程式。

这样,问题就可以通过数学模型进行分析和求解。

3. 利用已有的数学工具解决实际问题时,往往可以借助已有的数学工具。

例如,线性规划、最优化理论、微积分等。

熟练掌握这些数学工具,可以更高效地解决问题。

二、利用数学建模解决实际问题的步骤1. 问题理解和分析首先,我们需要仔细理解和分析实际问题。

了解问题的背景、目标和限制条件。

通过与问题相关的人员交流,获取更多的细节和信息。

2. 建立数学模型在理解和分析问题的基础上,我们可以开始建立数学模型。

根据问题的性质和要求,选择合适的数学方法和工具。

将问题转化为数学表达式或方程组。

3. 求解数学模型一旦建立了数学模型,我们就可以开始求解。

利用数学工具和计算机软件,对模型进行求解和优化。

根据求解结果,得出对实际问题的结论和解决方案。

4. 模型验证和应用完成数学模型的求解后,需要对模型进行验证。

将模型的结果与实际问题进行比对,看是否符合问题的要求。

如果模型的结果与实际情况相符,就可以将模型应用到实际问题中。

三、案例分析为了更好地理解利用数学建模解决实际问题的过程,我们以一个经典案例作为例子。

例:面包配送路线规划假设一个面包配送员需要在城市的多个区域间进行配送。

每个区域的面包需求量不同,而配送员需要尽量减少配送距离和时间。

我们可以利用数学建模来解决这个问题。

首先,我们需要理解问题的背景和要求。

实际问题的数学建模和解决方法

实际问题的数学建模和解决方法

实际问题的数学建模和解决方法数学建模是将实际问题转化为数学模型,并利用数学方法对问题进行分析和求解的过程。

在实际生活中,我们面临各种各样的问题,例如交通拥堵、疾病传播、环境污染等,这些问题的解决离不开数学建模的应用。

本文将通过几个具体案例,介绍实际问题的数学建模和解决方法。

案例一:交通拥堵问题交通拥堵是城市中常见的难题。

为了缓解交通拥堵,我们可以使用数学建模的方法来分析和优化交通流。

首先,我们可以将城市的交通网络抽象成一个图,节点表示交叉口,边表示道路。

然后,根据实际情况,给每条边赋予一个权重,表示该道路的通行能力。

接下来,我们可以使用最短路径算法来求解最短路径,并将结果应用于交通规划和调度。

案例二:疾病传播问题疾病传播是公共卫生领域的重要问题。

为了有效地控制疾病的传播,我们可以使用数学建模的方法来分析和预测疾病的传播路径和速度。

首先,我们可以将人群划分为不同的类别,如易感者、感染者和康复者。

然后,我们可以建立传染病传播的动力学模型,例如SIR模型,来描述不同类别之间的转化关系。

接下来,我们可以使用微分方程组来求解该模型,并根据模型的结果进行疾病控制和预防策略的制定。

案例三:环境污染问题环境污染是全球面临的重要挑战之一。

为了减少环境污染的影响,我们可以使用数学建模的方法来分析和评估不同的治理措施。

首先,我们可以建立环境污染的传输模型,考虑污染物在大气、地表和地下水中的运移规律。

然后,我们可以使用数学方法,如有限元法或数值模拟方法,来求解该模型,并评估不同治理方案的效果。

最后,根据模型的结果,制定相应的环境保护政策和措施。

总结起来,数学建模是解决实际问题的一种重要方法。

通过将实际问题抽象为数学模型,并运用数学方法对模型进行求解和分析,我们能够更好地理解问题的本质和规律,并提出有效的解决方案。

在今后的发展中,数学建模将在各个领域发挥重要作用,为我们解决更多实际问题提供帮助。

以上是对题目“实际问题的数学建模和解决方法”的论述,通过介绍交通拥堵、疾病传播和环境污染等不同领域的案例,说明了数学建模在解决实际问题中的应用。

数学建模经典问题

数学建模经典问题

数学建模经典问题
数学建模是一种将现实问题转化为数学问题,并通过数学方法求解的过程。

经典的数学建模问题有很多,以下列举几个典型的例子。

1. 集装箱装载问题:如何在给定的集装箱内,最大化货物的装
载量?这个问题可以转化为一个优化问题,通过线性规划等方法求解。

2. 旅行商问题:如何在给定的一组城市中,找到一条遍历所有
城市且总路程最短的路径?这个问题可以通过遗传算法等方法求解。

3. 贪心算法:贪心算法是一种基于贪心策略的算法,它通常用
于优化问题。

比如,假设有一组活动,每个活动都有一个开始时间和结束时间,如何在不发生冲突的情况下,安排尽可能多的活动?这个问题可以通过贪心算法求解。

4. 马踏棋盘问题:如何让一匹马在棋盘上走遍所有格子,且每
个格子只走一次?这个问题可以通过回溯算法求解。

5. 神经网络:神经网络是一种模仿人脑神经元结构和功能的计
算模型。

它可以用于分类、回归、聚类等问题。

这些经典的数学建模问题都有着广泛的应用价值,它们不仅给我们提供了解决实际问题的方法,也为我们深入理解数学方法的应用提供了宝贵的经验和启示。

- 1 -。

数学建模中的一些方法和技巧

数学建模中的一些方法和技巧

数学建模中的一些方法和技巧数学建模是应用数学的一种重要方法,是将实际问题转换为数学模型、通过数学工具和计算机等手段求解问题的过程。

在数学建模中,我们需要学习一些方法和技巧,才能更好地解决问题。

下面将介绍一些数学建模中常用的方法和技巧。

一、问题分析及建模思路问题分析是解决问题的第一步,它能帮助我们更好地理解问题、找出问题的瓶颈和难点。

在问题分析时,我们可以应用许多工具和方法,如思维导图、因果图、流程图、SWOT分析等,以便更好地理解和分析问题。

然后,我们需要根据问题的特点,确定问题的解决思路和建模方向。

建模思路通常可以分为数学模型的建立、模型的求解和模型的验证三个步骤。

二、模型的建立模型的建立是解决问题的关键步骤,它要求我们准确地描述问题、选取合适的变量和参数,并据此建立数学模型。

模型的建立中,最重要的是模型的选取和参数的设定,这直接影响模型的精度和应用效果。

在模型选取中,我们需要考虑问题的实际情况,根据问题的特点和要求选择不同类型的数学模型,如线性规划模型、非线性规划模型、动力学模型、概率模型等。

在参数设定中,我们需要确定初始条件、边界条件、控制参数等,以确保模型的可靠性和适用性。

三、模型的求解模型的求解是解决问题的关键步骤,它要求我们准确地描述问题、选取合适的变量和参数,并据此建立数学模型。

常用的求解方法包括解析求解、数值求解、近似求解等。

在求解过程中,我们需要使用不同的数学工具和计算机软件,如Matlab、Python、Excel等,以便更好地分析和求解问题。

求解时需要注意控制精度和避免误差,以确保结果的可靠性和准确性。

四、模型的验证模型的验证是解决问题的重要步骤,它要求我们对模型的结果进行评估和验证,以检验模型的可靠性和适用性。

常用的验证方法包括观测比较、实验比较、模型验证等。

在模型验证中,我们需要注意模型的适用范围和误差范围,以及模型的修正和改进方法。

同时,我们还需要对模型的结果进行解释和分析,并据此提出合理的建议和方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模的相关问题求解方法:1.量纲分析法是在物理领域建立数学模型的一种方法,主要是依据物理定律的量纲齐次原则来确定个物理量之间的关系,量纲齐次原则是指一个有意义的物理方程的量纲必须一致的,也就是说方程的两边必须具有相同的量纲,即: dim左=dim右并且,方程中每一边的每一项都必须有相同的量纲。

例子见书《数学建模方法与实践》P17—P232.线性规划法线性规划法是运筹学的一个重要分支应用领域广泛。

从解决各种技术领域中的优化问题,到工农业生产、商业经济、交通运输、军事等的计划和管理及决策分析。

线性规划所解决的问题具有以下共同的特征:(1)每一个问题都有一组未知数(x1,x2,……,xn)表示某一方案;这些未知数的一组定值就代表一个具体方案。

由于实际问题的要求,通常这些未知数取值都是非负的。

(2)存在一定的限制条件(即约束条件),这些条件是关于未知数的一组线性等式或线性不等式来表示。

(3)有一个目标要求,称为目标函数。

目标函数可表示为一组未知数的线性函数。

根据问题的需要,要求目标函数实现最大化或最小化。

例子见书《数学建模方法与实践》P26—P303.0—1规划法用于解决指派问题,是线性规划的特殊情况。

例子见书《数学建模方法与实践》P314.图解法用于求解二维线性规划的一种几何方法,其方法步骤见书《数学建模方法与实践》P345.单纯形法也是一种求解线性规划的常用方法,其基本原理和方法见书《数学建模方法与实践》P37——P39,计算步骤P40。

6.非线性规划法在目标函数和(或)约束条件很难用线性函数表示时,如果目标函数或约束条件中,有一个或多个是变量的非线性函数,则称这种规划问题为非线规划问题。

例子见书《数学建模方法与实践》P44——P457.最短路及狄克斯特拉算法狄克斯特拉算法是图论中用于计算最短路的一种方法,详见书《数学建模方法与实践》P588.克罗斯克尔算法克罗斯克尔算法是用来求解一个连通的赋权图的最小生成树的方法,详见书《数学建模方法与实践》P599.普莱姆算法同上10.欧拉回路及弗洛来算法欧拉回路是指若存在一条回路。

使他经过图中每一条边且只经过一次又回到起始点,成这种回路为欧拉回路,并成图为欧拉图。

在一个图中,连接一个节点的边数称为该节点的度数。

欧拉图的性质见书《数学建模方法与实践》P61。

弗罗莱算法是计算欧拉回路的一种方法。

详见书《数学建模方法与实践》P61。

11.网络流与最大流最小截集定理对于任意给定的图,图上不同的截集有不同的容量。

同时图上不同的流又不同的流值。

称具有最小容量的截集为最小截集,具有最大容量的流为最大流。

网络理论的基本定理将证明最大流的流值等于最下截集的容量。

定理见书《数学建模方法与实践》P65。

12.概率统计模型在实际生活中,往往会遇到一些随机出现的事件,如物质的“供需”。

还有一些需根据出现的数据来归类,从而确定某一事件的归属问题。

解决这些问题的数学工具就是概率统计的知识。

例子见书书《数学建模方法与实践》P73。

其中有随机性存储模型和多元统计判别模型。

但是概率统计方法有很多不足之处:要求大量数据、要求有典型的统计规律、计算工作量等。

13.层次分析法层次分析法是一种定量分析和定性分析相结合的多目标决策分析方法。

特别是将决策者的经验给与量化,对目标(因素)结构复杂且缺乏必要的数据的情况下实用。

层次分析法原理、标度、层次模型、计算方法、层次分析法的计算步骤等见书《数学建模方法与实践》P93—P96。

14.变分法动态过程的另一类问题是所谓的动态优化问题,这类问题一般要归结为求最优控制函数使某个泛函达到极值。

当控制函数可以事先确定为某种特殊的函数形式时,问题又简化为求普通函数的极值。

求解泛函极值问题的方法主要有变分法和最优控制理论方法。

变分法是研究泛函极值问题的一种经典数学方法。

最优控制问题是现代科学技术中经常遇到的研究课题。

利用经典的变分法可最大(小)值原理,可以对实际动态系统的最优控制问题建立数学模型。

书《数学建模方法与实践》P100。

另见书《数学建模教材》P218。

15.曲线拟合的线性最小二乘法线性最小二乘法曲线拟合问题的提法是,已知一组(二维)数据,即平面上的n 个点(x i ,i y )i = 1,2,……,n ,ix 互不相同,寻求 一个函数(曲线) y = f (x ),使f (x )在某种准则下与所有数据点最为接近,即曲线拟合得最好。

详见书《数学建模教材》P189线性最小二乘法是解决曲线拟合最常用的方法基本思路是:令1212()()()()m m f x x x x a a a r r r =++…+,其中r (x ) k 是事先选定的一组线性无关的函数,k a 是待定系数(k = 1,2,……,m ,m < n )。

拟合准则是使i y ,i = 1,2,……,n ,与()i f x 的距离i δ的平方和最小,称为最小二乘准则。

16.插值法插值:求过已知有限个数据点的近似函数。

插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。

而面对一个实际问题,究竟应该用插值还是拟合,有时容易确定,有时则并不明显插值方法下面介绍几种基本的、常用的插值:拉格朗日多项式插值、牛顿插值、分段线性插值、Hermite 插值和三次样条插值。

详见书《数学建模教材》P17517.偏最小二乘回归在实际问题中,经常遇到需要研究两组多重相关变量间的相互依赖关系,并研究用一组变量(常称为自变量或预测变量)去预测另一组变量(常称为因变量或响应变量),除了最小二乘准则下的经典多元线性回归分析(MLR ),提取自变量组主成分的主成分回归分析(PCR )等方法外,还有近年发展起来的偏最小二乘(PLS )回归方法。

偏最小二乘回归提供一种多对多线性回归建模的方法,特别当两组变量的个数很多,且都存在多重相关性,而观测数据的数量(样本量)又较少时,用偏最小二乘回归建立的模型具有传统的经典回归分析等方法所没有的优点。

偏最小二乘回归分析在建模过程中集中了主成分分析,典型相关分析和线性回归分析方法的特点,因此在分析结果中,除了可以提供一个更为合理的回归模型外,还可以同时完成一些类似于主成分分析和典型相关分析的研究内容,提供更丰富、深入的一些信息。

详见书《数学建模教材》P531。

18.排队论排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常常要排队。

此时要求服务的数量超过服务机构(服务台、服务员等)的容量。

也就是说,到达的顾客不能立即得到服务,因而出现了排队现象。

这种现象不仅在个人日常生活中出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机待修,水库的存贮调节等都是有形或无形的排队现象。

由于顾客到达和服务时间的随机性。

可以说排队现象几乎是不可避免的。

排队论(Queuing Theory )也称随机服务系统理论,就是为解决上述问题而发展的一门学科。

它研究的内容有下列三部分:(i )性态问题,即研究各种排队系统的概率规律性,主要是研究队长分布、等待时间分布和忙期分布等,包括了瞬态和稳态两种情形。

(ii )最优化问题,又分静态最优和动态最优,前者指最优设计。

后者指现有排队系统的最优运营。

(iii )排队系统的统计推断,即判断一个给定的排队系统符合于哪种模型,以便根据排队理论进行分析研究。

详见书《数学建模教材》P11919.对策论对策论亦称竞赛论或博弈论。

是研究具有斗争或竞争性质现象的数学理论和方法。

在日常生活中,经常看到一些具有相互之间斗争或竞争性质的行为。

具有竞争或抗性质的行为称为对策行为。

在这类行为中。

参加斗争或竞争的各方各自具有不同的目标和利益。

为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。

对策论就是研究对策行为中斗争各方是否存在着最合理的行动方案,以及如何找到这个合理的行动方案的数学理论和方法。

详见书《数学建模教材》P155。

20. 马氏链模型现实世界中有很多这样的现象:某一系统在已知现在情况的条件下,系统未来时刻的情况只与现在有关,而与过去的历史无直接关系。

比如,研究一个商店的累计销售额,如果现在时刻的累计销售额已知,则未来某一时刻的累计销售额与现在时刻以前的任一时刻累计销售额无关。

上节中的几个例子也均属此类。

描述这类随机现象的数学模型称为马氏模型。

详见书《数学建模教材》P21.神经网络模型人工神经元模型作为人工神经网络(artificial neural network ,以下简称NN )的基本单元的神经元模型,它有三个基本要素:(i )一组连接(对应于生物神经元的突触),连接强度由各连接上的权值表示,权值为正表示激活,为负表示抑制。

(ii )一个求和单元,用于求取各输入信号的加权和(线性组合)。

(iii )一个非线性激活函数,起非线性映射作用并将神经元输出幅度限制在一定范围内(一般限制在(0,1)或(−1,1)之间)。

网络结构及工作方式除单元特性外,网络的拓扑结构也是NN 的一个重要特性。

从连接方式看NN 主要有两种。

(i )前馈型网络(ii )反馈型网络 详见书《数学建模教材》P232从作用效果看,前馈网络主要是函数映射,可用于模式识别和函数逼近。

反馈网络按对能量函数的极小点的利用来分类有两种:第一类是能量函数的所有极小点都起作用,这一类主要用作各种联想存储器;第二类只利用全局极小点,它主要用于求解最优。

例子见书《数学建模教材》P232。

22.灰色系统理论从信息的完备性与模型的构建上看,对另一类系统诸如社会系统、农业系统、生态系统等,人们无法建立客观的物理原型,其作用原理亦不明确,内部因素难以辨识或之间关系隐蔽,人们很难准确了解这类系统的行为特征,因此对其定量描述难度较大,带来建立模型的困难。

这类系统内部特性部分已知的系统称之为灰色系统。

灰色系统理论建模的主要任务是根据具体灰色系统的行为特征数据,充分开发并利用不多的数据中的显信息和隐信息,寻找因素间或因素本身的数学关系。

灰色预测的步骤:1,数据的检验与处理;2,建立模型;3,检验预测值;4,预测预报。

详细的步骤见数学建模教材,灰色系统及其应用P18-P19。

灰色系统分析方法如果⊗是离散灰数,则有{}~~()|{1,2,...,}A x k k K n ∀∈⊗⇒∈=∈=⊗⊗。

如果灰数⊗中的白化数是按区间连续分布的,则有{}~~(,)[,],(,),[,),(,]It a b a b a b a b a b ∀∈⊗⇒∈∈⊗⊗ 可用于预测、对事件的决策这种方法简单、效率高,但其预测方向不好把握。

23.关联度分析方法灰色系统理论提出了一种新的分析方法—关联度分析方法,即根据因素之间发展态势的相似或相异程度来衡量因素间关联的程度,它揭示了事物动态关联的特征与程度。

相关文档
最新文档