凸轮轮廓曲线设计的基本原理

合集下载

凸轮轮廓曲线设计

凸轮轮廓曲线设计

凸轮轮廓曲线设计标题:深入探索凸轮轮廓曲线设计的重要性与方法导言:在机械工程领域,凸轮轮廓曲线设计是一项至关重要的任务。

凸轮作为动力传递装置的一部分,其轮廓曲线的设计直接影响到设备的运行效果和性能。

本文将深入探讨凸轮轮廓曲线设计的重要性,并介绍一些常用的设计方法和技巧。

通过阅读本文,您将能够更全面、深入地理解凸轮轮廓曲线设计的原理和应用。

第一部分:凸轮轮廓曲线设计的重要性1.1 凸轮在机械设备中的作用1.2 轮廓曲线对机械设备性能的影响1.3 凸轮轮廓曲线设计的挑战和需求第二部分:凸轮轮廓曲线设计的方法与原理2.1 数学模型与凸轮轮廓曲线的关系2.2 基于凸轮运动学的设计方法2.3 凸轮轮廓曲线的参数化设计2.4 其他常用的凸轮轮廓设计方法和工具第三部分:凸轮轮廓曲线设计的案例研究与实践3.1 凸轮轮廓曲线设计在发动机气门控制系统中的应用3.2 某机械设备凸轮轮廓曲线设计的实践经验分享3.3 其他领域中凸轮轮廓曲线设计的创新案例第四部分:凸轮轮廓曲线设计的未来发展趋势与展望4.1 自动化与智能化在凸轮轮廓曲线设计中的应用4.2 数据驱动设计方法的兴起与应用4.3 新材料与制造工艺对凸轮轮廓曲线设计的影响总结与回顾:通过本文的阐述,我们可以看出凸轮轮廓曲线设计在机械工程领域的重要性。

凸轮轮廓曲线的设计直接关系到机械设备的运行效果和性能。

在设计过程中,我们可以使用数学模型和基于运动学的方法,结合参数化设计和实践经验,来完成凸轮轮廓曲线的设计。

未来,随着自动化和智能化技术的发展,凸轮轮廓曲线设计将变得更加高效和精确,同时新材料和制造工艺的应用也将对设计提出新的要求和挑战。

对凸轮轮廓曲线设计的观点与理解:凸轮轮廓曲线设计是一项综合性的任务,要求工程师有深厚的理论基础和实践经验。

在设计过程中,我认为深度和广度的思考是至关重要的。

我们需要考虑到凸轮在机械设备中的作用和轮廓曲线对性能的影响,同时要面对挑战和需求,以确保设计出高质量的凸轮轮廓曲线。

第4.3节(盘形凸轮廓线的设计)

第4.3节(盘形凸轮廓线的设计)

第三节 盘形凸轮廓线的设计当根据工作要求和结构条件选定了凸轮机构的类型、从动件的运动规律和凸轮的基圆半径(其确定将在下节中介绍)等结构参数后,就可以设计凸轮的轮廓曲线。

凸轮廓线的设计方法有图解法和解析法,其设计原理基本相同。

本节先简要介绍图解法,后重点介绍解析法设计凸轮廓线。

一、凸轮廓线设计的基本原理图4-13 反转法设计凸轮廓线基本原理图4-13所示为一尖顶对心盘形凸轮机构,设凸轮以等角速度ω逆时针转动,推动从动件2在导路中上、下往复移动。

当从动件处于最低位置时,凸轮轮廓曲线与从动件在A 点接触,当凸轮转过1ϕ角时,凸轮的向径A A 0将转到A A '0位置,而凸轮轮廓将转到图中虚线所示的位置。

从动件尖端从最低位置A 上升至B ',上升的位移为B A S '=1,这是从动件的运动位移。

若设凸轮不动,从动件及其运动的导路一起绕A 0点以等角速度-ω转过1ϕ角,从动件将随导路一起以角速度-ω转动,同时又在导路中作相对导路的移动,如图中的虚线位置,此时从动件向上移动的位移为B A 1。

而且,11S B A B A ='=,即在上述两种情况下,从动件移动的距离不变。

由于从动件尖端在运动过程中始终与凸轮轮廓曲线保持接触,所以从动件尖端的运动轨迹即为凸轮轮廓。

设计凸轮廓线时,可由从动件运动位移先定出一系列的B 点,将其连接成光滑曲线,即为凸轮廓线。

由于这种方法是假设凸轮固定不动而使从动件连同导路一起反转,故称为反转法。

对其它类型的凸轮机构,也可利用反转法进行分析和凸轮廓线设计。

二、图解法设计凸轮廓线1. 移动从动件盘形凸轮廓线的设计(1)尖端从动件 图4-14a 所示为一偏置移动尖端从动件盘形凸轮机构。

设已知凸轮的基圆半径为b r ,从动件导路偏于凸轮轴心A 0的左侧,偏距为e ,凸轮以等角速度ω顺时针方向转动。

从动件的位移曲线如图4-14b 所示,试设计凸轮的轮廓曲线。

图4-14 尖端从动件盘形凸轮廓线设计依据反转法原理,具体设计步骤如下。

机械设计与实践教案 项目2 凸轮机构设计 (教案)

机械设计与实践教案 项目2   凸轮机构设计 (教案)

项目2 凸轮机构设计1.教学目标(1)了解凸轮机构的分类及应用;(2)了解推杆常用运动规律的选择原则;(3)掌握在确定凸轮机构的基本尺寸时应考虑的主要问题;(4)能根据选定的凸轮类型和推杆运动规律设计凸轮的轮廓曲线。

2.教学重点和难点(1)推杆常用运动规律特点及选择原则;(2)盘形凸轮机构凸轮轮廓曲线的设计;(3)凸轮基圆半径与压力角及自锁的关系。

难点:“反转法原理”与压力角的概念。

3.讲授方法多媒体课件4.讲授时数8学时任务一凸轮机构的应用【任务导入】凸轮机构是由凸轮、从动件、机架以及附属装置组成的一种高副机构。

其中凸轮是一个具有曲线轮廓的构件,通常作连续的等速转动、摆动或移动。

从动件在凸轮轮廓的控制下,按预定的运动规律作往复移动或摆动。

受奥拓汽车零部件制造有限公司委托带领学员分析汽车内燃机凸轮机构的工作过程。

【任务分析】在各种机器中,为了实现各种复杂的运动要求,广泛地使用着凸轮机构,汽车机构也不例外,如图2.1是汽车内燃机凸轮机构的工作简图。

【力学知识】平面汇交力系的简化与平衡方程按照力系中各力的作用线是否在同一平面内,可将力系分为平面力系和空间力系。

若各力作用线都在同一平面内并汇交于一点,则此力系称为平面汇交力系。

按照由特殊到一般的认识规律,我们先研究平面汇交力系的简化与平衡规律。

设刚体上作用有一个平面汇交力系F 1、F 2、…、F n ,各力汇交于A 点(图2.2a )。

根据力的可传性,可将这些力沿其作用线移到A 点,从而得到一个平面共点力系(图2.2b )。

故平面汇交力系可简化为平面共点力系。

连续应用力的平行四边形法则,可将平面共点力系合成为一个力。

在图2.3b 中,先合成力F 1与F 2(图中未画出力平行四边形),可得力F R1,即 F R1=F 1+ F 2;再将F R1与F 3合成为力F R2,即F R2=F R1+ F 3;依此类推,最后可得F R =F 1+ F 2+…+ F n =∑F i (2-1)式中 F R 即是该力系的合力。

凸轮轮廓曲线的设计

凸轮轮廓曲线的设计
B点的直角坐标为: x=(r0 + s)sinδ +(ds/dδ )cosδ 凸轮的工作廓线方程
图9-22
y=(r0 + s)cosδ -(ds/dδ )sinδ
3、摆动滚子推杆盘形凸轮机构 如图9-23所示建立Oxy坐标系。 B0点为凸轮推程段廓线的起始点, 当凸轮转过(即推杆反转)δ 角 度时,推杆处于图示AB位置,其 角位移为ψ 。
图9-21
式中e为偏距,s0 =
r02 e2 。
∵ 工作廓线与理论廓线在法线方 向的距离处处相等,且等于滚子
半径 rr 。 ∴ 当已知理论廓线上任意一点B (x ,y)时,则可得到工作廓 线上相应点B′( x ′,y ′)。 由高等数学知识,理论廓线B点处法线的斜率(与切 线斜率互为负倒数)为:
作图步骤: 1)按尖顶设计方法定出点A在推 杆复合运动中依次占据的位 置1′、2′、3′、……; 2)过点1′、2′、3′、……作 一系列代表推杆平底的直线, 得直线族; 3)作此直线族的内包络线β ,即为所求的凸轮廓线。 注意: 1)β 0与β 是非等距曲线,也不是相似曲线。 2)为了保证在所有位置平底都能与轮廓相切,平底左右 两侧的宽度必须大于导路至最远切点的距离Lmax(图 9-20),取整个平底长度 L=2Lmax+(5~7)mm。
3)作偏距圆(以凸轮中心O为圆心,以偏距e为半径作圆),与导 路相切;
4)从OA开始,沿-ω 方向依次取角度 δ 0、δ 01、δ 0′、δ 02,并将角δ 0、 δ 0′等分成与s线图对应的等分,与 基圆相交得点1、2、3、……; 5)过1、2、3、……等点作偏距圆切线(注意切向)。此切线代表 反转后推杆导路占据的位置线; 6)在各条切线上,由基圆开始向外量取S线图上的对应长度11′、 22′、33′、……,得点1′、2′、3′、……。此即代表推杆 的尖顶在复合运动中依次占据的位置;

机械原理-凸轮轮廓曲线设计图解法

机械原理-凸轮轮廓曲线设计图解法


3’ 2’ 1’ ω O 1 2
1
2
3
3
直动从动件盘形凸轮轮廓的绘制
1.对心直动尖顶从动件盘形凸轮 已知凸轮的基圆半径r0,角速度ω 和从 动件的运动规律,设计该凸轮轮廓曲线。
4’ 5’ 6’
-ω ω
3’ 2’ 1’
7’
8’ 5 6 7 8
1 2 3 4
设计步骤: ①作基圆r0。
②反向等分各运动角,得到一系列与基圆的交点。
7’ 5’ 3’ 1’ 1 3 5 78 8’ 9’ 11’ 12’ 13’ 14’ 9 11 13 15
e

ω 15’ 15 14’14
k12 k11 k10 k9 k15 k14 k13
A
13’
12’
k1 13 k 12 k32 k8 k7k6 k5k4 11 10 9
O
注意:与前不同的是——过 各等分点作偏距圆的一系列 切线,即是从动件导路在反 转过程中的一系列位置线。
11’
10’ 9’
直动平底从动件盘形凸轮轮廓的绘制

直动平底从动件盘形凸轮轮廓的绘制
-

实际廓线
直动平底从动件盘形凸轮轮廓的绘制
-

实际廓线
③过各交点作从动件导路线,确定反转后从动件尖顶在各等分点的位置。 ④将各尖顶点连接成一条光滑曲线。
直动从动件盘形凸轮轮廓的绘制
2.对心直动滚子从动件盘形凸轮 已知凸轮的基圆半径r0,滚子半径 rT ,角速度ω 和从动件的运动规 律,设计该凸轮轮廓曲线。
3’ 2’ 1’ 7’ 8’ 1 2 3 4 5 6 7 8 4’

理论轮廓
ω
5’ 6’

凸轮轮廓曲线的设计

凸轮轮廓曲线的设计

凸轮轮廓曲线的设计1. 引言凸轮是一种机械传动装置,常用于将圆周运动转换为直线或曲线运动。

凸轮的轮廓曲线设计是指根据特定要求和功能,确定凸轮的形状和尺寸的过程。

本文将详细介绍凸轮轮廓曲线的设计原理、方法和注意事项。

2. 凸轮轮廓曲线的基本原理凸轮的基本原理是通过其特定形状的外边缘,使其在旋转时能够驱动其他机械部件做直线或曲线运动。

凸轮的外形通常由一条或多条连续光滑的曲线构成,这些曲线被称为凸轮的轮廓曲线。

3. 凸轮轮廓曲线设计方法3.1 几何法几何法是最常用的凸轮轮廓曲线设计方法之一。

其基本步骤如下:1.确定所需运动类型:直线运动、往复运动、旋转运动等。

2.根据所需运动类型选择合适的基本函数:例如直线函数、正弦函数等。

3.根据基本函数的特点和要求,确定凸轮的参数:例如振幅、周期等。

4.利用基本函数和凸轮参数,绘制凸轮的轮廓曲线。

5.对绘制得到的曲线进行优化和调整,以满足设计要求。

3.2 数值法数值法是利用计算机辅助设计软件进行凸轮轮廓曲线设计的方法。

其基本步骤如下:1.确定凸轮的运动类型和要求。

2.利用计算机辅助设计软件创建凸轮模型。

3.在软件中选择合适的曲线函数和参数,并进行凸轮参数设置。

4.根据所选曲线函数和参数,生成凸轮的轮廓曲线。

5.对生成的曲线进行优化和调整,以满足设计要求。

3.3 实验法实验法是通过制作实物模型来进行凸轮轮廓曲线设计的方法。

其基本步骤如下:1.根据设计要求和实际情况,选择合适的材料和加工工艺制作凸轮模型。

2.在模型上标记出所需运动类型对应的参考点。

3.利用传感器等设备记录参考点在运动过程中的位置。

4.根据记录的数据,绘制凸轮的轮廓曲线。

5.对绘制得到的曲线进行优化和调整,以满足设计要求。

4. 凸轮轮廓曲线设计的注意事项在进行凸轮轮廓曲线设计时,需要注意以下几点:•凸轮的形状和尺寸应符合机械传动要求和设计规范。

•轮廓曲线应光滑、连续,避免出现尖锐转角和突变点。

•曲线参数的选择应合理,以确保凸轮能够正常运动并满足设计要求。

哈工大机械原理考研-第3章-凸轮机构(理论)

哈工大机械原理考研-第3章-凸轮机构(理论)

第3章凸轮机构及其设计3.1基本要求1.了解凸轮机构的类型及其特点。

2.掌握从动件的几种常用运动规律及特点。

掌握从动件行程、从动件推程、推程运动角、从动件回程、回程运动角、从动件远(近)休程及远(近)休止角及凸轮的基圆、偏距等基本概念。

3.熟练掌握并灵活运用反转法原理,应用这一原理设计直动从动件盘形凸轮机构、摆动从动件盘形凸轮机构及平底直动从动件盘形凸轮机构。

4.掌握凸轮机构基本尺寸的确定原则,根据这些原则确定凸轮机构的的压力角及其许用值、基圆半径、偏距、滚子半径等基本尺寸。

5.掌握凸轮机构设计的基本步骤,学会用计算机对凸轮机构进行辅助设计的方法。

3.2内容提要一、本章重点本章重点是从动件运动规律的选择及其特点,按预定从动件运动规律设计平面凸轮轮廓曲线和凸轮机构基本尺寸的确定。

涉及到根据使用场合和工作要求选择凸轮机构的型式、选择或设计从动件的运动规律、合理选择或确定凸轮的基圆半径、正确设计出凸轮廓线、对设计出来的凸轮机构进行分析以校核其是否满足设计要求。

1 凸轮机构的类型选择选择凸轮机构的类型是凸轮机构设计的第一步,称为凸轮机构的型综合。

凸轮的形状有平面凸轮(盘形凸轮、移动凸轮)和空间凸轮,从动件的形状有尖顶从动件、滚子从动件、平底从动件,而从动件的运动形式有移动和摆动之分,凸轮与从动件维持高副接触的方法又有分为力锁合、形锁合。

故凸轮机构的类型多种多样,设计凸轮机构时,可根据使用场合和工作要求的不同加以选择。

(1)各类凸轮机构的特点及适用场合尖顶从动件凸轮机构:优点是结构最简单,缺点是尖顶处极易磨损,故只适用于作用力不大和速度较低的场合。

滚子从动件凸轮机构:优点是滚子与凸轮廓线间为滚动摩擦,摩擦较小,可用来传递较大的动力,故应用广泛。

平底从动件凸轮机构:优点是平底与凸轮廓线接触处极易形成油膜、能减少磨损,且不计摩擦时,凸轮对从动件的作用力始终垂直于平底,受力平稳、传动效率较高,故适用于高速场合。

机械原理第9章凸轮机构及其设计

机械原理第9章凸轮机构及其设计

第二十一页,编辑于星期日:十四点 分。
②等减速推程段:
当δ =δ0/2 时,s = h /2,h/2 = C0+C1δ0/2+C2δ02/4 当δ = δ0 时,s = h ,v = 0,h = C0+C1δ0+C2δ02
0 = ωC1+2ωC2δ ,C1=-2 C2δ0 C0=-h,C1= 4h/δ0, C2=-2h/δ02
如图所示,选取Oxy坐标系,B0 点为凸轮廓线起始点。当凸轮转过δ 角度时,推杆位移为s。此时滚子中 心B点的坐标为
x (s0 s) sin e cos
y
(s0
s) cos
A7
C8 A6 C7
w
A8
-w
A9
C9 B8 B9 B7 r0
C10
B12100 ° B0
O
B1 a B2
C1 L C2φ1φ0
A10 A0
φ
Φ
o
2
1
2 3 456
180º
7 8 9 10
60º 120º
δ
(1)作出角位移线图;
(2)作初始位置;
A5
C6
B6 B1580°B4
C4
C5
φ3
φC23
A1
↓对心直动平底推杆盘形凸 轮机构
↑偏置直动尖端推杆盘形凸轮机 构
第十一页,编辑于星期日:十四点 分。
↑尖端摆动凸轮机构
↓平底摆动凸轮机构
↑滚子摆动凸轮机构
第十二页,编辑于星期日:十四点 分。
(4)按凸轮与从动件保持接触的方式分
力封闭型凸轮机构
利用推杆的重力、弹簧力或其他外力使推杆与凸轮保持接
触的
此外,还要考虑机构的冲击性能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凸轮轮廓曲线设计的基本原理
一、引言
凸轮作为机械传动中的一种重要元件,其设计对于机械传动的性能具有重要影响。

凸轮轮廓曲线设计是凸轮设计中的一个关键环节,其目的是使得凸轮在运动过程中能够满足特定的运动要求。

本文将介绍凸轮轮廓曲线设计的基本原理。

二、凸轮运动学基础
在介绍凸轮轮廓曲线设计之前,我们需要先了解一些凸轮运动学基础知识。

1. 凸轮类型
根据不同的应用场景和工作要求,凸轮可以分为以下三种类型:(1)往复式凸轮:用于转换旋转运动为往复直线运动。

(2)回转式凸轮:用于转换旋转运动为旋转或者往复曲线运动。

(3)摆线式凸轮:用于将旋转运动转换为直线往复运动。

2. 凸轮参数
在进行凸轮设计时,需要确定一些关键参数,包括:
(1)基圆半径:即未加工前的圆形母体半径。

(2)偏心距:即摇杆中心线与凸轮中心线的距离。

(3)凸轮高度:即凸轮曲线顶点到基圆半径的距离。

(4)凸轮半径:即凸轮曲线顶点到凸轮中心线的距离。

3. 凸轮运动
在运动学分析中,我们通常将凸轮视为一个旋转体,其运动可以分为
两个方向:径向和周向。

根据不同的工作要求,我们可以通过调整凸
轮参数来实现不同的运动方式。

三、凸轮轮廓曲线设计基本原理
在进行凸轮设计时,我们需要根据具体的工作要求来确定其运动方式,并且通过合理的曲线设计来实现这种运动方式。

下面将介绍一些常用
的凸轮曲线设计方法。

1. 圆弧法
圆弧法是一种简单直观的凸轮曲线设计方法。

该方法将整个曲线分为
多段圆弧,并且通过调整圆弧半径和连接处角度来控制曲线形状。


方法适用于一些简单的往复或者回转式凸轮设计。

2. 三角函数法
三角函数法是一种常用的摆线式凸轮设计方法。

该方法将凸轮曲线表
示为三角函数的形式,通过调整函数参数来控制曲线形状。

该方法适
用于一些要求高精度和高速度的摆线式凸轮设计。

3. 贝塞尔曲线法
贝塞尔曲线法是一种基于数学模型的凸轮曲线设计方法。

该方法通过定义一些控制点,并且通过调整这些控制点来实现凸轮曲线的设计。

该方法适用于一些复杂的回转式凸轮设计。

四、结论
凸轮轮廓曲线设计是凸轮设计中的一个关键环节,其目的是使得凸轮在运动过程中能够满足特定的运动要求。

在进行凸轮曲线设计时,我们需要根据具体的工作要求选择不同的设计方法,并且通过合理的参数调整来实现所需运动方式。

相关文档
最新文档