七年级数学平行线几何模型之M型解题方法专题练习

合集下载

第7章 平面图形的认识(二)-平行线中的常见模型 苏科版七年级数学下册专题练习(含答案)

第7章 平面图形的认识(二)-平行线中的常见模型 苏科版七年级数学下册专题练习(含答案)

七年级下册平面图形的认识(二):专题:平行线中的常见四大模型专题:平行线中的常见模型模型一:“猪蹄”模型(也称“M”模型)模型一“猪蹄”模型(M模型)点P在EF左侧,在AB、 CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.典型例题例1:如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为( )A.70° B.65° C.35° D.5°例2:如图,AD∥CE,∠ABC=95°,则∠2﹣∠1的度数是( )A.105°B.95°C.85°D.75°例3:如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,求∠2的度数.例4:如图,AB∥CD,∠E=35°,∠F=∠G=30°,则∠A+∠C的度数为 .例5:如图,AB∥CD,∠E=120°,∠F=90°,∠A+∠C的度数是( )A.30°B.35°C.40°D.45°例6:如图,AB∥CD,∠E+∠G=∠H,则∠A+∠B+∠C+∠D+∠F的度数为 .例7:如图,直线l1∥l2,点∠α、∠β夹在两平行线之间.(1)若∠α=∠β,∠1=40°,求∠2的度数;(2)直接写出∠1、∠2、∠α、∠β之间的数量关系,不用说明理由.例8:(1)如图1,已知AB∥CD,若∠EAF=∠EAB,∠ECF=∠ECD,求证:∠AFC=∠AEC;(2)如图2,若AB∥CD,∠EAF=∠EAB,∠ECF=∠ECD,求证:∠AFC=∠AEC;(3)若AB∥CD,∠EAF=∠EAB,∠ECF∠ECD,则∠AFC与∠AEC的数量关系是 (用含有n的代数式表示,不证明).例9:如图①,已知AB∥CD,CE、BE的交点为E,现作如下操作:第1次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第2次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第3次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE1C=∠BEC;(3)从图①开始进行上述的n次操作,若∠BE n C=α°,求∠BEC的大小(直接写出结论).模型二:“铅笔”模型(也称“U”型模型)模型二:“铅笔”模型(“U”型)点P在EF右侧,在AB、 CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=360°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.典型例题例1:一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=135°,则∠ABC= 度.例2:如图,直线l1∥l2,若∠1=35°,则∠2+∠3= .例3:如图,已知AB∥CD,E为AB,CD之间一点,连接BE,DE.(1)猜想∠BED时,∠B,∠D的数量关系,并证明;(2)作∠ABE,∠CDE的角平分线BF,DF交于点F.①依题意补全图形;②直接用等式表示∠BFD与∠BED的数量关系.例4:如图,已知AB∥CD,∠ABE与∠CDE的平分线相交于点F.(1)如图1,若∠E=70°,求∠BFD的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,写出∠M和∠E之间的数量关系,并证明你的结论.例5:实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射的光线为n.(1)当m∥n时,若∠1=50°,则∠2= ,∠3= ;(2)当m∥n时,若∠1=x°(0<x<90),则∠3= ;(3)根据(1)(2)结果,反过来猜想:当两平面镜a,b的夹角∠3为多少度时,m∥n.请说明理由(可以在图中添加适当的角度标记进行说明)例6:如图,AB∥CD,点E为两直线之间的一点.(1)如图1,若∠BAE=35°,∠DCE=20°,则∠AEC= ;(2)如图2,试说明,∠BAE+∠AEC+∠ECD=360°;(3)①如图3,若∠BAE的平分线与∠DCE的平分线相交于点F,判断∠AEC与∠AFC 的数量关系,并说明理由;②如图4,若设∠E=m,∠BAF=∠FAE,∠DCF=∠FCE,请直接用含m、n的代数式表示∠F的度数.模型三:“抬头”模型(也称“靴子”或称“臭脚”模型)模型三“抬头”模型(“靴子”模型)点P在EF右侧,在AB、 CD外部“靴子”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.典型例题例1:如图,AB//CD,∠P=40°,∠D=100°,则∠ABP的度数是 .例2:已知,AB∥CD.(1)如图1,求证:∠A-∠C=∠E;(2)如图2,EF平分∠AEC,CF平分∠ECD,∠F=105°,求∠A的度数.例3:已知直线∥,点A,B在直线上(B在A左侧),点C在直线b上,E点在直线b下方,连接 AE 交直线b于点D.(1)如图1,若∠BAD=110°,∠DCE=45°,求∠DEC的度数;(2)如图2,∠BAD 的邻补角的角平分线与∠DEC 的角平分线所在的直线交于点M,试探究∠AME与∠ECD之间的数量关系,并说明理由.例4:已知AB∥CD.(1)如图1,求证:∠EAB=∠C+∠E;(2)如图2,点F在∠AEC内且在AB、CD之间,EF平分∠AEC,CF平分∠ECD,请猜想∠F与∠EAB的数量关系并证明;(3)如图3,点M在AB上,点N在CD上,点E是AB上方一点,点G在AB、CD之间,连接EM、EN,GM的延长线MF平分∠AME,NE平分∠CNG,若2∠MEN+∠MGN=105°,求∠AME的度数.:模型四:“骨折”模型(也称“X射线”模型)模型四“骨折”模型点P在EF左侧,在AB、 CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.例1:如图,AB∥CD,∠E=40°,∠A=110°,则∠C的度数为 .例2:如图,AB∥CD,∠ABE=125°,∠C=30°,则∠α=( )A.70°B.75°C.80°D.85°例3:已知:如图,AB∥CD.(1)若∠1=∠2,试判断∠E与∠F的大小关系,并说明你的理由.(2)猜想∠1、∠2、∠E、∠F之间存在怎样的数量关系?并说明理由.例4:(1)(问题)如图1,若AB∥CD,∠AEP=40°,∠PFD=130°.求∠EPF的度数;(2)(问题迁移)如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.例5:已知AB∥MN.(1)如图1,求证:∠N+∠E=∠B;(2)若F为直线MN、AB之间的一点,∠E=∠EFB,BG平分∠ABF交MN于点G,EF 交MN于点C.①如图2,若∠N=57°,且BG∥EN,求∠E的度数;②如图3,若点K在射线BG上,且满足∠KNM=∠ENM,若∠NKB=∠EFB,∠E=∠FBD,直接写出∠E的度数.参考答案专题四:平行线中的常见模型模型一:“猪蹄”模型(也称“M”模型)模型一“猪蹄”模型(M模型)点P在EF左侧,在AB、 CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.典型例题例1:如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为(B)A.70° B.65° C.35° D.5°解析:作CF∥AB,∵AB∥DE,∴CF∥DE,∴AB∥DE∥CF,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.例2:如图,AD∥CE,∠ABC=95°,则∠2﹣∠1的度数是(C)A.105°B.95°C.85°D.75°解析:如图,作BF∥AD,∵AD∥CE,∴AD∥BF∥EC,∴∠1=∠3,∠4+∠2=180°,∠3+∠4=95°,∴∠1+∠4=95°,∠2+∠4=180°,∴∠2﹣∠1=85°.故选:C.例3:如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,求∠2的度数.解析:过点D作DG∥b,∵a∥b,且DE⊥b,∴DG∥a,∴∠1=∠CDG=25°,∠GDE=∠3=90°∴∠2=∠CDG+∠GDE=25°+90°=115°.☆模型拓展:M叠M型例4:如图,AB∥CD,∠E=35°,∠F=∠G=30°,则∠A+∠C的度数为35°.解析:如图所示,延长AE,CG,交于点H,过H作HP∥AB,∵AB∥CD,∴PH∥CD,∴∠A=∠AHP,∠C=∠CHP,∴∠A+∠C=∠AHC,∵∠F=∠CGF=30°,∴EF∥CH,∴∠AHC=∠AEF=35°,∴∠A+∠C=35°,故答案为:35°.例5:如图,AB∥CD,∠E=120°,∠F=90°,∠A+∠C的度数是( )A.30°B.35°C.40°D.45°解析:分别过E,F作GE∥AB,FH∥AB,∵AB∥CD,∴AB∥GE∥FH∥CD,∴∠1=∠A,∠2=∠C,∠GEF+∠HFE=180°,∵∠E=120°,∠F=90°,∴∠1+∠GEF+∠HFE+∠2=210°,∴∠1+∠2=210°﹣180°=30°,即∠A+∠C=30°,故选:A.例6:如图,AB∥CD,∠E+∠G=∠H,则∠A+∠B+∠C+∠D+∠F的度数为360°.解析:如图所示,延长AE,DG交于点Q,由题可得,∠A+∠D=∠Q,∠B+∠H+∠C=360°,又∵∠Q=∠AEF+∠DGF﹣∠F,∴∠A+∠D=∠AEF+∠DGF﹣∠F,即∠F=∠AEF+∠DGF﹣(∠A+∠D),又∵∠AEF+∠DGF=∠H,∴∠A+∠B+∠C+∠D+∠F=∠A+∠B+∠C+∠D+∠AEF+∠DGF﹣(∠A+∠D)=∠B+∠C+∠H=360°,故答案为:360°.例7:如图,直线l1∥l2,点∠α、∠β夹在两平行线之间.(1)若∠α=∠β,∠1=40°,求∠2的度数;(2)直接写出∠1、∠2、∠α、∠β之间的数量关系,不用说明理由.解析:(1)如图,延长AE交直线l2于点E,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.(2)∠1+∠2+∠β﹣○α=180°.理由:∵l1∥l2,∴∠3=∠1.∵∠BED=180°﹣∠α,∴∠3+∠2+∠β+180°﹣α=360°,即∠1+∠2+∠β﹣∠α=180°.☆模型拓展:M套M型例8:(1)如图1,已知AB∥CD,若∠EAF=∠EAB,∠ECF=∠ECD,求证:∠AFC=∠AEC;(2)如图2,若AB∥CD,∠EAF=∠EAB,∠ECF=∠ECD,求证:∠AFC=∠AEC;(3)若AB∥CD,∠EAF=∠EAB,∠ECF=∠ECD,则∠AFC与∠AEC的数量关系是(用含有n的代数式表示,不证明).解:(1)如图1,连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=2x°,∠ECD=2y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+2x°+∠ACE+2y°=180°,∴∠CAE+∠ACE=180°﹣(2x°+2y°),∠FAC+∠FCA=180°﹣(x°+y°),∴∠AEC=180°﹣(∠CAE+∠ACE)=180°﹣[180°﹣(2x°+2y°)]=2x°+2y°,=2(x°+y°),∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣[180°﹣(x°+y°)]=x°+y°,∴∠AFC=∠AEC;(2)如图2,连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=3x°,∠ECD=3y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+3x°+∠ACE+3y°=180°,∴∠CAE+∠ACE=180°﹣(3x°+3y°),∠FAC+∠FCA=180°﹣(2x°+2y°),∴∠AEC=180°﹣(∠CAE+∠ACE)=180°﹣[180°﹣(3x°+3y°)]=3x°+3y°=3(x°+y°),∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣[180°﹣(2x°+2y°)]=2x°+2y°=2(x°+y°),∴∠AFC=∠AEC;(3)若∠AFC=∠EAB,∠ECF=∠ECD,则∠AFC与∠AEC的数量关系是:∠AFC=∠AEC.故答案为:∠AFC=∠AEC.例9:如图①,已知AB∥CD,CE、BE的交点为E,现作如下操作:第1次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第2次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第3次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE1C=∠BEC;(3)从图①开始进行上述的n次操作,若∠BE n C=α°,求∠BEC的大小(直接写出结论).【解答】解:(1)如图①,过E作EF∥AB.∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2.∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;(2)如图2.∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC;(3)如图2.∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BEC,∴当∠E n=α度时,∠BEC=2nα°模型二:“铅笔”模型(也称“U”型模型)模型二:“铅笔”模型(“U”型)点P在EF右侧,在AB、 CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=360°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.典型例题例1:一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=135°,则∠ABC=135度.【解析】解:如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=135°,∠BAE=90°,∴∠1=45°,∠2=90°,∴∠ABC=∠1+∠2=135°.故答案为:135.例2:如图,直线l1∥l2,若∠1=35°,则∠2+∠3=215°.【解析】解:过点E作EF∥11,∵11∥12,EF∥11,∴EF∥11∥12,∴∠1=∠AEF=35°,∠FEC+∠3=180°,∴∠2+∠3=∠AEF+∠FEC+∠3=35°+180°=215°.故答案为:215°.例3:如图,已知AB∥CD,E为AB,CD之间一点,连接BE,DE.(1)猜想∠BED时,∠B,∠D的数量关系,并证明;(2)作∠ABE,∠CDE的角平分线BF,DF交于点F.①依题意补全图形;②直接用等式表示∠BFD与∠BED的数量关系.【解析】(1)∠B+∠BED+∠D=360°.证明:过点E作EG∥AB.∴∠B+∠BEG=180°.∵AB∥CD,EG∥AB,∴EG∥CD,∴∠DEG+∠D=180°,∴∠B+∠BEG+∠DEG+∠D=180°+180°.即∠B+∠BED+∠D=360°;(2)解:①如图所示:②由(1)得∠ABC+∠BED+∠CDE=360°,∵∠ABE,∠CDE的角平分线BF,DF交于点F,∴∠ABC=2∠FBE,∠CDE=2∠FDE,∴2∠FBE+∠BED+2∠CDE=360°,即∠FBE+∠BED+∠CDE=180°,∵∠BFD+∠FBE+∠BED+∠CDE=360°,∴∠BFD=180°-∠BED例4:如图,已知AB∥CD,∠ABE与∠CDE的平分线相交于点F.(1)如图1,若∠E=70°,求∠BFD的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,写出∠M和∠E之间的数量关系,并证明你的结论.【解析】解:(1)如图1,过点E作EN∥AB,∵EN∥AB,∴∠ABE+∠BEN=180°,∵AB∥CD,AB∥NE,∴NE∥CD,∴∠CDE+∠NED=180°,∴∠ABE+∠E+∠CDE=360°,∵∠E=70°,∴∠ABE+∠CDE=290°,∵∠ABE与∠CDE的平分线相交于点F,∴∠ABF+∠CDF=(∠ABE+∠CDE)=145°,过点F作FG∥AB,∵FG∥AB,∴∠ABF=∠BFG,∵AB∥CD,FG∥AB,∴FG∥CD,∴∠CDF=∠GFD,∴∠BFD=∠ABF+∠CDF=145°;(2)结论:∠E+6∠M=360°,证明:∵设∠ABM=x,∠CDM=y,则∠FBM=2x,∠EBF=3x,∠FDM=2y,∠EDF=3y,由(1)得:∠ABE+∠E+∠CDE=360°,∴6x+6y+∠E=360°,∵∠M+∠EBM+∠E+∠EDM=360°,∴6x+6y+∠E=∠M+5x+5y+∠E,∴∠M=x+y,∴∠E+6∠M=360°.例5:实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射的光线为n.(1)当m∥n时,若∠1=50°,则∠2=100°,∠3= 90°;(2)当m∥n时,若∠1=x°(0<x<90),则∠3= 90°;(3)根据(1)(2)结果,反过来猜想:当两平面镜a,b的夹角∠3为多少度时,m∥n.请说明理由(可以在图中添加适当的角度标记进行说明)【解析】解:(1)∵m∥n,∴∠4+∠2=180°,∵∠5=∠1=50°,∴∠4=80°,∴∠2=100°,∴∠6=∠7=40°,∴∠3=180°﹣∠5﹣∠6=90°,故答案为:100°;90°;(2)∵m∥n,∴∠4+∠2=180°,∵∠5=∠1=x°,∴∠4=180°﹣2x°,∴∠2=2x°,∴∠6=∠7=90°﹣x°,∴∠3=180°﹣∠5﹣∠6=180°﹣x°﹣90°+x°=90°,故答案为:90°;(3)根据(1)、(2)猜想:当两平面镜a、b的夹角∠3是90°时,总有m∥n,证明:∵∠3=90°,∴∠5+∠6=90°,∴∠1+∠7=90°,∴∠1+∠5+∠6+∠7=180°,又∵∠1+∠4+∠5+∠2+∠6+∠7=360°,∴∠4+∠2=180°,∴m∥n.例6:如图,AB∥CD,点E为两直线之间的一点.(1)如图1,若∠BAE=35°,∠DCE=20°,则∠AEC=55°;(2)如图2,试说明,∠BAE+∠AEC+∠ECD=360°;(3)①如图3,若∠BAE的平分线与∠DCE的平分线相交于点F,判断∠AEC与∠AFC 的数量关系,并说明理由;②如图4,若设∠E=m,∠BAF=∠FAE,∠DCF=∠FCE,请直接用含m、n的代数式表示∠F的度数.【解析】解:如图所示,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF,∴∠BAE=∠1,∠ECD=∠2,∴∠AEC=∠1+∠2=∠BAE+∠ECD=35°+20°=55°,故答案为55°.(2)如图所示,过点E作EG∥AB,∵AB∥CD∴AB∥CD∥EG,∴∠A+∠1=180°,∠C+∠2=180°,∴∠A+∠1+∠2+∠C=360°,即∠BAE+∠AEC+∠ECD=360°.(3)①2∠AFC+∠AEC=360°,理由如下:由(1)可得,∠AFC=∠BAF+∠DCF,∵AF平分∠BAE,CF平分∠DCE,∴∠BAE=2∠BAF,∠DCE=2∠DCF,∴∠BAE+∠DCE=2∠AFC,由(2)可知,∠BAE+∠AEC+∠DCE=360°,∴2∠AFC+∠AEC=360°.②由①知∠F+∠FAE+∠E+∠FCE=360°,∵∠BAF=∠FAE,∠DCF=∠FCE,∠BAF+∠DCF=∠F,∴∠F=(∠FAE+∠FCE),∴∠FAE+∠FCE=n∠F,∴∠F+∠E+n∠F=360°,∴(n+1)∠F=360°﹣∠E=360°﹣m,∴∠F=.模型三:“抬头”模型(也称“靴子”或称“臭脚”模型)模型三“抬头”模型(“靴子”模型)点P在EF右侧,在AB、 CD外部“靴子”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.典型例题例1:如图,AB//CD,∠P=40°,∠D=100°,则∠ABP的度数是140°.【解析】过点P作PM∥AB,∵AB∥CD,∴PM∥AB∥CD,∴∠MPB=∠ABP,∠D=∠DPM=100°,∴∠MPB=∠BPD+∠DPM=40°+100°=140°,∴∠ABP=∠MPB=140°.例2:已知,AB∥CD.(1)如图1,求证:∠A-∠C=∠E;(2)如图2,EF平分∠AEC,CF平分∠ECD,∠F=105°,求∠A的度数.【解析】(1)证明: 过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠FEA=∠EAB,∠FEC=∠C,∴∠AEC=∠FEA-∠FEC=∠EAB-∠C,即∠A-∠C=∠E.(2)解:过点E作EG∥FC,∵EF平分∠AEC,CF平分∠ECD,设∠AEF=∠CEF=,∠ECF=∠FCD=,∵EG∥FC,∴∠CEG=∠ECF=,∠FEG+∠F=180°.∵∠F=105°,∴∠FEG=180°-∠F=75°,∴∠CEG+∠CEF=75°,即+=75°,∴2x+2y=150°.由(1)知,∠A=∠AEC+∠ECD=2x+2y=150°.例3:已知直线∥,点A,B在直线上(B在A左侧),点C在直线b上,E点在直线b下方,连接 AE 交直线b于点D.(1)如图1,若∠BAD=110°,∠DCE=45°,求∠DEC的度数;(2)如图2,∠BAD 的邻补角的角平分线与∠DEC 的角平分线所在的直线交于点M,试探究∠AME与∠ECD之间的数量关系,并说明理由.例4:已知AB∥CD.(1)如图1,求证:∠EAB=∠C+∠E;(2)如图2,点F在∠AEC内且在AB、CD之间,EF平分∠AEC,CF平分∠ECD,请猜想∠F与∠EAB的数量关系并证明;(3)如图3,点M在AB上,点N在CD上,点E是AB上方一点,点G在AB、CD之间,连接EM、EN,GM的延长线MF平分∠AME,NE平分∠CNG,若2∠MEN+∠MGN=105°,求∠AME的度数.:【解析】(1)过点E作EF∥DC,∵BA∥DC,∴EF∥DC∥AB,∴∠AEF=∠BAE=110°,∠CEF=∠DCE=45°.∴∠DEC=∠AEF-∠CEF=110°-45°=65°.(2)过点M作MF∥BA,过点E作EG∥CD,设∠BAE=,∠ECD=,∵BA∥CD,∴MF∥AB∥CD∥EG.∴∠BAE=∠AEG=,∠DCE=∠CEG=,∴∠DEC=-.∵EM平分∠DEC,AM平分∠BAD的邻补角,∴∠MEC=,∠1==,∵MF∥AB,∴∠AMF=∠1=,∠MEG=∠CEG+∠MEC=,∵MF∥EG,∴∠FME=∠MEG=,∴∠AME=∠AMF+∠FME=,∴∠AME=.模型四:“骨折”模型(也称“X射线”模型)模型四“骨折”模型点P在EF左侧,在AB、 CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.例1:如图,AB∥CD,∠E=40°,∠A=110°,则∠C的度数为70°.解析:∵AB∥CD,∴∠A+∠AFD=180°,∵∠A=110°,∴∠AFD=70°,∴∠CFE=∠AFD=70°,∵∠E=40°,∠C+∠E+∠CFE=180°,∴∠C=180°﹣∠E﹣∠CFE=180°﹣40°﹣70°=70°,故答案为:70°.例2:如图,AB∥CD,∠ABE=125°,∠C=30°,则∠α=(D)A.70°B.75°C.80°D.85°【解析】解:如图,作EF∥AB,∵AB∥EF,AB∥CD,∴EF∥CD,∴∠B+∠BEF=180°,∠C=∠CEF,∵∠ABE=125°,∠C=30°,∴∠BEF=55°,∠CEF=30°,∴∠BEC=55°+30°=85°.故选:D.例3:已知:如图,AB∥CD.(1)若∠1=∠2,试判断∠E与∠F的大小关系,并说明你的理由.(2)猜想∠1、∠2、∠E、∠F之间存在怎样的数量关系?并说明理由.【解答】解:(1)∠E=∠F,理由如下:∵AB∥CD,∴∠ABC=∠BCD,∵∠1=∠2,∴∠EBC=∠FCB,∴BE∥CF,∴∠E=∠F;(2)∠1+∠F=∠BEF+∠2,理由如下:如图,延长BE交DC的延长线于点M,在四边形EMCF中,∠FEM+∠EMC+∠MCF+∠F=360°,∵∠FEM=180°﹣∠BEF,∠MCF=180°﹣∠2,∴∠180°﹣∠BEF+∠EMC+180°﹣∠2+∠F=360°,∵AB∥CD,∴∠1=∠EMC,∴∠180°﹣∠BEF+∠1+180°﹣∠2+∠F=360°,∴∠1+∠F=∠BEF+∠2例4:(1)(问题)如图1,若AB∥CD,∠AEP=40°,∠PFD=130°.求∠EPF的度数;(2)(问题迁移)如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.【解答】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP=40°.(两直线平行,内错角相等)∵AB∥CD,(已知)∴PM∥CD,(平行于同一条直线的两直线平行)∴∠2+∠PFD=180°.(两直线平行,同旁内角互补)∵∠PFD=130°,∴∠2=180°﹣130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:如图2,过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)如图,过点G作AB的平行线GH.∵GH∥AB,AB∥CD,∴GH∥AB∥CD,∴∠HGE=∠AEG,∠HGF=∠CFG,又∵∠PEA的平分线和∠PFC的平分线交于点G,∴∠HGE=∠AEG=,∠HGF=∠CFG=,由(1)可知,∠CFP=∠P+∠AEP,∴∠HGF=(∠P+∠AEP)=(α+∠AEP),∴∠EGF=∠HGF﹣∠HGE=(α+∠AEP)=+∠AEP﹣∠HGE=例5:已知AB∥MN.(1)如图1,求证:∠N+∠E=∠B;(2)若F为直线MN、AB之间的一点,∠E=∠EFB,BG平分∠ABF交MN于点G,EF 交MN于点C.①如图2,若∠N=57°,且BG∥EN,求∠E的度数;②如图3,若点K在射线BG上,且满足∠KNM=∠ENM,若∠NKB=∠EFB,∠E=∠FBD,直接写出∠E的度数.【解答】解:(1)如图,过E作EH∥MN,∴∠N=∠HEN,又∵MN∥AB,∴EH∥AB∥MN,∴∠B=∠HEB,即∠B=∠HEN+∠NEB=∠N+∠BEN;(2)①如图,过F作FP∥EN,交MN于H点,则BG∥EN∥FP,∵∠N=57°,∴∠CHF=∠CGB=∠ABG=57°,∵BG平分∠ABF,∴∠ABF=2∠ABG=114°,∵EN∥PF,∴∠E=∠EFP,∵∠E=∠EFB,∴114°+∠E=4∠E,∴∠E=38°;②如图,过点F作FP∥AD,设∠E=a=∠FBD,则∠PFB=α,∠EFP=3α,∴∠ENM=2a,∠KNM=,当K在BG上,∠NKB=∠EFB=4a,∴∠NGB==∠ABG=∠GBF,∴,∴a=22.5°;当K在BG延长线上时,∠NGB=,∠ABG=,∴,∴a=18°,综上所述,∠E=22.5°或18°.。

七年级数学上册-专题强化:平行线常考模型归纳 解析版

七年级数学上册-专题强化:平行线常考模型归纳 解析版

专题强化:平行线常考模型归纳【题型归纳】题型一:M 型(含锯齿型)A.30︒B.【答案】B 【分析】作c b ∥,根据平行线的判定和性质可得【详解】解:如图,作c ∵a b ∥,∴a c b ∥∥,∴41∠=∠,52∠=∠,∴451270∠+∠=∠+∠=∵1210︒∠-∠=,∴2180∠=︒,∴140∠=︒,故选:B.【点睛】本题考查了平行线的判定和性质,求出2.(2021下·重庆北碚·七年级西南大学附中校考期末)如图,侧),点G 在直线CD 上,的角平分线交与点Q ,且点②∠AEF +2∠PQG =270°;③若∠A.4B.3C.2D.1【答案】A【分析】①过点F作FH∥AB,利用平行线的性质以及已知即可证明;②利用角平分线的性质以及平行线的性质得到∠3=2∠2,∠CGF+2∠1+∠3=180°,结合①的结论即可证明;③由已知得到∠MGC=3∠CGF,结合①的结论即可证明;④由已知得到∠MGC=(n+1)∠CGF,结合①的结论即可证明.【详解】解:①过点F作FH∥AB,如图:∵AB∥CD,∴AB∥FH∥CD,∴∠AEF=∠EFH,∠CGF=∠GFH,∵EF⊥FG,即∠EFG=∠EFH+∠GFH=90°,∴∠AEF+∠CGF=90°,故①正确;②∵AB∥CD,PQ平分∠APG,GQ平分∠FGP,∴∠APQ=∠2,∠FGQ=∠1,④∵∠MGF=n∠CGF,故选:A.【点睛】本题主要考查了平行线的性质,角平分线的定义等知识点,作辅助线求得∠AEF +∠CGF =90°,是解此题的关键.3.(2023下·山东聊城·七年级校考阶段练习)如图,已知直线12l l ∥,3l 、4l 和1l 、2l 分别交于点A 、B 、C 、D ,点P 在直线3l 或4l 上且不与点A 、B 、C 、D 重合.记1AEP ∠=∠,2PFB ∠=∠,3E P F ∠=∠.(1)若点P 在图(1)位置时,求证:312Ð=Ð+Ð;(2)若点P 在图(2)位置时,写出1∠、2∠、3∠之间的关系并给予证明.【答案】(1)证明见解析(2)312360∠∠∠++=︒,证明见解析【分析】此题两个小题的解题思路是一致的,过P 作直线1l 、2l 的平行线,利用平行线的性质得到和1∠、2∠相等的角,然后结合这些等角和3∠的位置关系,来得出1∠、2∠、3∠的数量关系.【详解】(1)过P 作1PQ l ∥,∵12l l ∥,∴12PQ l l ∥∥,由两直线平行,内错角相等,可得:1QPE ∠=∠、2QPF ∠=∠;∵3QPE QPF ∠=∠+∠,∴312Ð=Ð+Ð.(2)关系:312360∠∠∠++=︒.过P 作1PQ l ∥,∵12l l ∥,∴12PQ l l ∥∥,同(1)可证得:3CEP DFP ∠=∠+∠;∵11802180CEP DFP ∠+∠=︒∠+∠=︒,,∴12360CEP DFP ∠+∠+∠+∠=︒,即312360∠∠∠++=︒.【点睛】本题主要考查平行线的性质,能够正确多出辅助线是解题关键.A.110︒B.115︒【答案】A 【分析】过N 点作NH AB ∥,则BEN ENG GNM MNF ∠+∠+∠+∠【详解】解:过N 点作NH AB ∥,则AB NH CD ∥∥,如图所示:180BEN ENH HNF NFG ∴∠+∠=∠+∠=︒,360BEN ENG GNM MNF NFG ∴∠+∠+∠+∠+=︒,160BEN ∠=︒ ,200ENG GNM MNF NFG ∴∠+∠+∠+∠=︒,NG 平分ENM ∠,ENG GNM ∴∠=∠,200GNM GNM MNF NFG ∴∠+∠+∠+∠=︒,NF NG ⊥ ,90GNM MNF GNF ∴∠+∠∠︒==,90200GNM NFG ∴∠+︒+∠︒=,110MNG NFG ∴∠+∠︒=.故选:A.【点睛】此题考查了平行线的性质、平行公理的应用、角平分线的性质,解题的关键是正确作出辅助线.5.(2021下·湖南株洲·七年级统考期末)①如图1,AB ∥CD ,则360A E C ∠+∠+∠=︒;②如图2,AB ∥CD ,则P A C ∠=∠-∠;③如图3,AB ∥CD ,则1E A ∠=∠+∠;④如图4,直线AB ∥CD ∥EF ,点O 在直线EF 上,则180αβγ∠-∠+∠=︒.以上结论正确的个数是()A.1个B.2个C.3个D.4个【答案】C 【分析】①过点E 作直线EF ∥AB ,由平行线的性质:两直线平行,同旁内角互补,即可得出结论;②如图2,先根据三角形外角的性质得出∠1=∠C +∠P ,再根据两直线平行,内错角相等即可作出判断;③如图3,过点E作直线EF∥AB,由平行线的性质可得出∠A+∠AEC﹣∠1=180°,即得∠AEC=180°+∠1﹣∠A;④如图4,根据平行线的性质得出∠α=∠BOF,∠γ+∠COF=180°,再利用角的关系解答即可.【详解】解:①如图1,过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠1+∠2+∠C=360°,∴∠A+∠AEC+∠C=360°,故①正确;②如图2,∵∠1是△CEP的外角,∴∠1=∠C+∠P,∵AB∥CD,∴∠A=∠1,即∠P=∠A﹣∠C,故②正确;③如图3,过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠3=180°,∠1=∠2,∴∠A+∠AEC﹣∠1=180°,即∠AEC=180°+∠1﹣∠A,故③错误;④如图4,∵AB∥EF,∴∠α=∠BOF ,∵CD ∥EF ,∴∠γ+∠COF =180°,∵∠BOF =∠COF +∠β,∴∠COF =∠α﹣∠β,∴∠γ+∠α﹣∠β=180°,故④正确;综上结论正确的个数为3,故选:C.【点睛】本题考查的是平行线的性质及三角形外角的性质,熟练掌握平行线的性质,根据题意作出辅助线是解答此题的关键.6.(2021下·广东东莞·七年级东莞市光明中学校考期中)(1)如图(1)AB CD ,猜想BPD ∠与B D ∠∠、的关系,说出理由.(2)观察图(2),已知AB CD ,猜想图中的BPD ∠与B D ∠∠、的关系,并说明理由.(3)观察图(3)和(4),已知AB CD ,猜想图中的BPD ∠与B D ∠∠、的关系,不需要说明理由.【答案】(1)360B BPD D ∠+∠+∠=︒,理由见解析;(2)BPD B D ∠=∠+∠,理由见解析;(3)图(3)BPD D B ∠=∠-∠,图(4)BPD B D∠=∠-∠【分析】(1)过点P 作EF AB ∥,得到180B BPE ∠+∠=︒,由AB CD ,EF AB ∥,得到EF CD ,得到180EPD D ∠+∠=︒,由此得到360B BPD D ∠+∠+∠=︒;(2)过点P 作PE AB ,由PE AB CD ∥∥,得到12B D ∠=∠∠=∠,,从而得到结论12BPD B D ∠=∠+∠=∠+∠;(3)由AB CD ,根据两直线平行,内错角相等与三角形外角的性质,即可求得BPD ∠与B D ∠∠、的关系.【详解】(1)解:猜想360B BPD D ∠+∠+∠=︒.理由:过点P 作EF AB ∥,∴180B BPE ∠+∠=︒,∵AB CD ,EF AB ∥,∴EF CD ,∴180EPD D ∠+∠=︒,∴360B BPE EPD D ∠+∠+∠+∠=︒,∴360B BPD D ∠+∠+∠=︒;(2)BPD B D ∠=∠+∠.理由:如图,过点P 作PE AB ,∵AB CD ,∴PE AB CD ∥∥,∴12B D ∠=∠∠=∠,,∴12BPD B D ∠=∠+∠=∠+∠;(3)如图(3):BPD D B ∠=∠-∠.理由:∵AB CD ,∴1D ∠=∠,∵1B P ∠=∠+∠,∴D B P ∠=∠+∠,即BPD D B ∠=∠-∠;如图(4):BPD B D ∠=∠-∠.理由:∵AB CD ,∠=∠,∵1D P∠=∠+∠,∴B D P∠=∠+∠,即BPD B D∠=∠-∠.【点睛】此题考查了平行线的性质,平行公理的推论,三角形的外角的性质定理,熟记平行线的性质是解题的关键.题型三:鸡翅型【答案】【感知探究】证明见解析;【类比迁移】F BMF DNF∠=∠-∠;【结论应用】20【分析】本题主要考查平行线的判定和性质,作辅助线是解题的关键.(1)过点E作EF AB∥,根据平行线的性质可求解;(2)如图②,过F作FH AB∥,根据平行线的性质即可得到结论;(3)如图③,过C作CG AB∥,根据平行线的性质即可得到结论.【详解】(1)证明:如图①,过点E作EF AB∥,∠=∠,又∵AB CD∥,∴EF CD∥,NEF DNE∴∠=∠,∴∠=∠+∠,MEN MEF NEF即MEN BME DNE∠=∠+∠;(2)解:BMF MFN FND∠=∠+∠.∥,证明:如图②,过F作FK ABBMF MFK,∵AB CD∴FK CD∥,FND KFN∴∠=∠,∴∠=∠-∠=∠-∠,MFN MFK KFN BMF FND 即:BMF MFN FND∠=∠+∠.故答案为:BMF MFN FND∠=∠+∠;(3)如图③,过C作CG AB∥,∴∠=︒-∠=︒,GCA BAC18060∵AB DE∥,∴CG DE∥,∴∠=∠=︒,80GCD CDE∴∠=︒,ACD20故答案为:20.8.(2021下·广东河源·七年级河源市第二中学校考期中)已知直线12l l ∥,A 是l1上的一点,B 是l2上的一点,直线l3和直线l1,l2交于C 和D ,直线CD 上有一点P .(1)如果P 点在C ,D 之间运动时,问PAC ∠,APB ∠,PBD ∠有怎样的数量关系?请说明理由.(2)若点P 在C ,D 两点的外侧运动时(P 点与C ,D 不重合),试探索PAC ∠,APB ∠,PBD ∠之间的关系又是如何?(请直接写出答案,不需要证明)【答案】(1)PAC PBD APB∠+∠=∠(2)当点P 在直线1l 上方时,∠-∠=∠PBD PAC APB ;当点P 在直线2l 下方时,∠-∠=∠PAC PBD APB .【分析】(1)过点P 作1PE l ∥,由“平行于同一条直线的两直线平行”可得出12PE l l ∥∥,再由“两直线平行,内错角相等”得出PAC APE ∠=∠、PBD BPE ∠=∠,再根据角与角的关系即可得出结论;(2)按点P 的两种情况分类讨论:①当点P 在直线1l 上方时;②当点P 在直线2l 下方时,同理(1)可得PAC APE ∠=∠、PBD BPE ∠=∠,再根据角与角的关系即可得出结论.【详解】(1)解:PAC PBD APB ∠+∠=∠.过点P 作1PE l ∥,如图1所示.1PE l ∥,12l l ∥,∴12PE l l ∥∥,PAC APE ∴∠=∠,PBD BPE ∠=∠,APB APE BPE ∠=∠+∠ ,PAC PBD APB ∴∠+∠=∠.(2)解:结论:当点P 在直线1l 上方时,∠-∠=∠PBD PAC APB ;当点P 在直线2l 下方时,∠-∠=∠PAC PBD APB .①当点P 在直线1l 上方时,如图2所示.过点P 作1PE l ∥.1PE l ∥,12l l ∥,∴12PE l l ∥∥,PAC APE ∴∠=∠,PBD BPE ∠=∠,APB BPE APE ∠=∠-∠ ,PBD PAC APB ∴∠-∠=∠.②当点P 在直线2l 下方时,如图3所示.过点P 作1PE l ∥.1PE l ∥,12l l ∥,∴12PE l l ∥∥,PAC APE ∴∠=∠,PBD BPE ∠=∠,APB APE BPE ∠=∠-∠ ,PAC PBD APB ∴∠-∠=∠.两直线平行,内错角相等(1)求证:180B C A ∠+∠-∠=︒:(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究(3)如图③,在(2)的前提下,且有AC QB ∥,直线AQ BC 、=DAC ACB CBE ∠∠∠::.【答案】(1)见解析(2)2=180AQB C ∠+∠︒,理由见解析(3)122::【分析】(1)过点C 作CF AD ∥,则CF BE ∥,根据平行线的性质可得出据此可得;(2)过点Q 作QM AD ∥,则QM BE ∥,根据平行线的性质、角平分线的定义可得出1()2AQB CBE CAD ∠=∠-∠,结合(1)的结论可得出2AQB ∠(3)由(2)的结论可得出12CAD CBE ∠=∠①,由QP PB ⊥求出CAD CBE ∠∠、的度数,再结合(1)的结论可得出ACB ∠可求出结论.【详解】(1)在图①中,过点C 作CF AD ∥,则CF BE ∥.∵CF AD BE ∥∥,∴ACF A BCF ∠=∠∠,∴ACB B A ∠+∠-∠=∠(2)在图2中,过点Q ∵QM AD QM BE ∥,∥∴AQM NAD BQM ∠=∠∠,∵AQ 平分CAD ∠,BQ ∴1,2NAD CAD EBQ ∠=∠∠∴AQB BQM AQM ∠=∠-∠∵180(C CBE ︒∠=-∠∴2180AQB C ∠+∠=(3)∵AC QB ∥,∴12AQB CAP ∠=∠=∴180ACB ACP ∠=︒-∠∵2180AQB ACB ∠+∠=∴1.2CAD CBE ∠=∠.又∵QP PB ⊥,∴90CAP ACP ∠+∠=︒,即180CAD CBE ∠+∠=︒,∴60120CAD CBE ∠=︒∠=︒,,∴180120()ACB CBE CAD ∠=︒-∠-∠=︒,∴60120120122DAC ACB CBE ∠∠∠=︒︒︒=::::::,故答案为:122::.【点睛】本题主要考查平行线的的判定与性质,解题的关键是熟练掌握平行线的性质、添加辅助线构建平行线.题型四:骨折型【答案】40︒/40度【分析】本题主要考查了平行线的判定和性质.过点即可得到结论.【详解】解:如图,过点C 80ABC ∠=︒ ,80BCF ABC ∴∠=∠=︒,又AB DE ∥ ,DE CF ∴∥,180DCF CDE ∴∠+∠=︒,40DCF ∴∠=︒,80BCD BCF DCF ∴∠=∠-∠=︒-(1)如图1,已知50A ∠=︒,150D ∠=︒,求APD ∠的度数;(2)如图2,判断∠PAB 、CDP ∠、APD ∠之间的数量关系,请写出证明过程.(3)如图3,在(2)的条件下,AP PD ⊥,DN 平分PDC ∠,若12PAN PAB APD ∠+∠=∠,求【答案】(1)80︒(2)180CDP PAB APD ∠+∠-∠=︒,证明见解析(3)45︒【分析】(1)过点P 作EF AB ∥,根据平行线的性质可得50APE A ∠=∠=︒,180EPD ∠=︒-可求出APD ∠的度数;(2)过点P 作EF AB ∥,则AB EF CD ∥∥,根据平行线的性质可得CDP DPF ∠=∠,FPA ∠又FPA DPF APD ∠=∠-∠,即可得出180CDP PAB APD ∠+∠-∠=︒;(3)PD 交AN 于点O ,由AP PD ⊥,得出90APO ∠=︒,由12PAN PAB APD ∠+∠=∠得出1902PAN PAB ∠+∠=︒,由90POA PAN ∠+∠=︒,得出12POA PAB ∠=∠,由对顶角相等得出∠由角平分线的性质得出12ODN PDC ∠=∠,即1180()2AND PAB PDC ∠=︒-∠+∠,由(2)得:CDP DPF ∴∠=∠,FPA ∠+∠FPA DPF APD ∠=∠-∠ ,180DPF APD PAB ∴∠-∠+∠=180CDP PAB APD ∴∠+∠-∠=︒,故答案为:CDP PAB ∠+∠-∠(3)如图3,PD 交AN 于点AP PD ⊥ ,90APO ∴∠=︒,12PAN PAB APD ∠+∠=∠ ,【答案】(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如图2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.【专题强化】(5)(6)当点E 在CD 的下方时,同理可得∠AEC =α-β或β-α.综上所述,∠AEC 的度数可能为β-α,α+β,α-β,360°-α-β,即①②③④.故选:D .【点睛】本题主要考查平行线的性质的运用,解题时注意两直线平行,同位角相等;两直线平行,内错角相等以及分类讨论.14.(2016上·甘肃张掖·八年级统考期末)如图,直线12l l ∥,125A ∠=︒,85B ∠=︒,则12∠+∠=()A.30︒B.35︒C.36︒D.40︒【答案】A 【分析】作直线32l l ∥,42l l ∥,根据平行线的性质可得13∠=∠,26∠=∠,45180∠+∠=︒,进而即可求得12∠+∠.【详解】解:如图,作直线32l l ∥,42l l ∥,∵12l l ∥,∴1234l l l l ∥∥∥,∴13∠=∠,26∠=∠,45180∠+∠=︒,∵125A ∠=︒,85B ∠=︒,∴345612585210∠+∠+∠+∠=︒+︒=︒,∴3621018030∠+∠=︒-︒=︒,∴123630∠+∠=∠+∠=︒,故选:A.【点睛】本题考查了平行线的判定和性质,掌握平行线的性质是解题的关键.15.(2021·江苏南通·南通田家炳中学校考二模)如图,已知//AB CD ,140A ∠=︒,120E ∠=︒,则C ∠的度数是()A.80°B.120°C.100°D.140°【答案】C 【分析】过E 作直线MN //AB ,根据两直线平行,同旁内角互补即可求出∠1,进而可求出∠2,然后根据平行于同一条直线的两直线平行可得MN //CD ,根据平行线性质从而求出∠C .【详解】解:过E 作直线MN //AB ,如下图所示,∵MN //AB ,∴∠A +∠1=180°(两直线平行,同旁内角互补),∴∠1=180°﹣∠A =180°﹣140°=40°,∵12120AEC ∠=∠+∠=︒,∴211204080AEC ∠=∠-∠=︒-︒=︒∵MN //AB ,AB //CD ,∴MN //CD ,∴∠C +∠2=180°(两直线平行,同旁内角互补),∴∠C =180°﹣∠2=180°﹣80°=100°,故选:C.【点睛】此题考查的是平行线的判定及性质,掌握构造平行线的方法是解决此题的关键.16.(2021上·山东青岛·八年级统考期末)如图,//AB CD ,点E 在AC 上,110A ∠=︒,15D ∠=︒,则下列结论正确的个数是()(1)AE EC =;(2)85AED ∠=︒;(3)A CED D ∠=∠+∠;(4)45BED ∠=︒A.1个B.2个C.3个D.4个【答案】B 【分析】利用平行线的性质和三角形的性质依次判断即可求解.【详解】解:∵AB ∥CD ,∴∠A +∠C =180°,又∵∠A =110°,∴∠C =70°,∴∠AED =∠C +∠D =85°,故(2)正确,∵∠C +∠D +∠CED =180°,∴∠D +∠CED =110°,∴∠A =∠CED +∠D ,故(3)正确,∵点E 在AC 上的任意一点,∴AE 无法判断等于CE ,∠BED 无法判断等于45°,故(1)、(4)错误,故选:B .【点睛】本题考查了平行线的性质,三角形的外角的性质,掌握平行线的性质是本题的关键.17.(2020下·重庆·七年级重庆南开中学校考期末)如图,直线//m n ,在Rt ABC 中,90B Ð=°,点A 落在直线m 上,BC 与直线n 交于点D ,若2130∠=︒,则1∠的度数为().A.30°B.40°C.50°D.65°【答案】B【分析】由题意过点B 作直线//l m ,利用平行线的判定定理和性质定理进行分析即可得出答案.【详解】解:如图,过点B 作直线//l m ,∵直线m//n,//l m ,∴//l n ,∴∠2+∠3=180°,∵∠2=130°,∴∠3=50°,∵∠B=90°,∴∠4=90°-50°=40°,∵//l m ,∴∠1=∠4=40°.故选:B.【点睛】本题主要考查平行线的性质定理和判定定理,熟练掌握两直线平行,平面内其外一条直线平行于其中一条直线则平行于另一条直线是解答此题的关键.18.(2020下·重庆南岸·七年级统考期末)如图,AB //EF,∠D=90°,则α,β,γ的大小关系是()A.βαγ=+B.90βαγ=+-︒C.90βγα=+︒-D.90βαγ=+︒-【答案】D 【分析】通过作辅助线,过点C 和点D 作CG //AB,DH //AB,可得CG //DH //AB,根据AB //EF,可得AB //EF //CG //DH,再根据平行线的性质即可得γ+β-α=90°,进而可得结论.【详解】解:如图,过点C 和点D 作CG //AB,DH //AB,∵CG //AB,DH //AB,∴CG //DH //AB,∵AB //EF,∴AB //EF //CG //DH,∵CG //AB,∴∠BCG=α,∴∠GCD=∠BCD-∠BCG=β-α,∵CG //DH,∴∠CDH=∠GCD=β-α,∵HD //EF,∴∠HDE=γ,∵∠EDC=∠HDE+∠CDH=90°,∴γ+β-α=90°,∴β=α+90°-γ.故选:D.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.19.(2020下·浙江绍兴·七年级统考期末)如图,已知AB//CD,则α∠,∠β,γ∠之间的等量关系为()A.180αβγ∠+∠-∠=︒B.180βγα︒∠+∠-∠=C.360αβγ︒∠+∠+∠=D.180αβγ∠+∠+∠=︒【答案】C 【分析】过点E 作EF∥AB,则EF∥CD,然后通过平行线的性质求解即可.【详解】解:过点E 作EF∥AB,则EF∥CD,如图,∵AB∥EF∥CD,∴∠γ+∠FED=180°,∵∠ABE+∠FEB=180°,∠ABE=∠α,∠FED+∠FEB=∠β,∴∠γ+∠FED+∠ABE+∠FEB=360°,∴∠α+∠β+∠γ=360°,故选:C.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解答此题的关键.20.(2019·山东泰安·统考中考真题)如图,直线12l l ,130∠=︒,则23∠+∠=()A.150°B.180°C.210°D.240°【答案】C 【分析】根据题意作直线l 平行于直线l 1和l 2,再根据平行线的性质求解即可.【详解】解:作直线l 平行于直线l 1和l 2.12////l l l ,143035180︒︒∴∠=∠=∠+∠=,.245∠=∠+∠ ,2+3=4+5+3=30180210︒︒︒∴∠∠∠∠∠+=.故选C.【点睛】本题主要考查平行线的性质,掌握两直线平行同旁内角互补,两直线平行内错角相等是解题关键.21.(2016·浙江杭州·七年级期中)如图所示,若AB∥EF,用含α、β、γ的式子表示x ,应为()A.αβγ++B.βγα+-C.180αγβ︒--+D.180αβγ︒++-【答案】C 【分析】过C 作CD∥AB,过M 作MN∥EF,推出AB∥CD∥MN∥EF,根据平行线的性质得出α+∠BCD=180°,∠DCM=∠CMN,∠NMF=γ,求出∠BCD=180°-α,∠DCM=∠CMN=β-γ,即可得出答案.【详解】过C 作CD∥AB,过M 作MN∥EF,∵AB∥EF,∴AB∥CD∥MN∥EF,∴α+∠BCD=180°,∠DCM=∠CMN,∠NMF=γ,∴∠BCD=180°-α,∠DCM=∠CMN=β-γ,∴x =∠BCD+∠DCM=180αγβ︒--+,故选:C.【点睛】本题考查了平行线的性质的应用,主要考查了学生的推理能力.二、填空题【答案】80︒/80度【分析】过点F作FM CD∥,所以∥,因为AB CDÐ,再根据平行线的性质即可求得∠,进而可求出EFAEFM【详解】解:如图,过点F作FM CD∥,∵AB CD∥,∴AB CD FM∥∥,∴180∠DEF EFM∠+∠=︒,MFA【答案】60︒【分析】过点B 作BD EF ∥进而可得12∠+∠ABD =∠【详解】解:如图,过点 Rt ABC △中,30A ∠=︒,∴9060ABC A ∠=︒-∠=︒.BD EF ∥,∴1ABD ∠=∠.BD EF ∥,MN EF ∥,∴MN BD ∥,∴2CBD ∠=∠,∴12∠+∠ABD CBD =∠+∠=故按为:60︒.【点睛】本题主要考查平行线性质,平行公理的推论,三角板中的角度计算等知识点,解题的关键是正确【答案】1402n ︒+︒,再根据两直线平行,内错角相等,∥ AB CD ,∴BCD ABC n ∠=∠=︒,BAD ADC ∠=∠又∵BE 平分ABC ∠,DE 平分ADC ∠,∴1122ABE ABC n ∠=∠=︒,11804022EDC ADC ∠=∠=⨯︒=︒,∵AB EF CD ∥∥,∴12BEF ABE n ∠=∠=︒,40FED EDC ∠=∠=︒,∴1402BED FED BEF n ∠=∠+∠=︒+︒,故答案为:1402n ︒+︒.l l∥, 直线12∵AB ∥CD ,AB ∥PM∵AB ∥PM ∥CD ,∴∠1+∠APM =180°,∠MPC +∠3=180°,∴∠1+∠APC +∠3=360°;(2)如图,过点P 、Q 作PM 、QN 平行于AB ,∵AB ∥CD ,∵AB ∥PM ∥QN ∥CD ,∴∠1+∠APM =180°,∠MPQ +∠PQN =180°,∠NQC +∠4=180°;∴∠1+∠APQ +∠PQC +∠4=540°;根据上述规律,显然作(n -2)条辅助线,运用(n -1)次两条直线平行,同旁内角互补.即可得到∠1+∠2+∠3+…+∠n =180°(n -1).故答案为:()1801n -︒【点睛】此题考查了平行线的性质.注意掌握辅助线的作法是解此题的关键.三、解答题27.(2022上·黑龙江哈尔滨·七年级统考期末)已知,DE 平分ADB ∠交射线BC 于点E ,BDE BED ∠=∠.(1)如图1,求证:AD BC ∥;(2)如图2,点F 是射线DA 上一点,过点F 作FG BD ∥交射线BC 于点G ,点N 是FG 上一点,连接NE ,求证:DEN ADE ENG ∠=∠+∠;(3)如图3,在(2)的条件下,连接DN ,点P 为BD 延长线上一点,DM 平分BDE ∠交BE 于点M ,若DN 平分PDM ∠,DE EN ⊥,DBC DNE FDN ∠-∠=∠,求EDN ∠的度数.【答案】(1)见解析(2)见解析(3)45︒【分析】(1)利用角平分线的定义可得ADE BDE =∠∠,然后再利用等量代换可得ADE BED ∠=∠,从而利用平行线的判定,即可解答;(2)过点E 作EH BD ∥,可知EH FG ∥,利用平行线的性质可得=DEH BDE ∠∠,HEN ENG ∠=∠,由BDE ADE =∠∠,可知=ADE DEH ∠∠,由=DEN DEH HEN ∠∠+∠,可证得结论;(3)设=2BDM x ∠,利用角平分线的定义可得==2BDM MDE x ∠∠,从而可得==2=4ADE BDE BDM x ∠∠∠,进而可得=2=8ADB BDE x ∠∠,然后利用平行线的性质可得=1808B x ∠︒-,再根据垂直定义可得90DEN ∠=︒,最后利用(2)的结论可得=904ENG x ∠︒-,再利用角平分线的定义可得=90MDN x ∠︒-,从而可得=903EDN x ∠︒-,进而可得=3DNE x ∠,790FDN x ∠=-︒,再根据已知790FDN x ∠=-︒,列出关于x 的方程,进行计算即可解答.【详解】(1)证明:∵DE 平分ADB ∠,∴ADE BDE =∠∠,∵BDE BED ∠=∠,∴ADE BED ∠=∠,∴AD BE ;(2)证明:过点E 作EH BD ∥,∴=DEH BDE ∠∠,∵BDE ADE =∠∠,∴=ADE DEH ∠∠,∵BD FG ,∴EH FG ∥,∴HEN ENG ∠=∠,∵=DEN DEH HEN ∠∠+∠,∴DEN ADE ENG ∠=∠+∠;(3)解:设=2BDM x ∠,∵DM 平分BDE ∠,∴==2BDM MDE x ∠∠,∴==2=4ADE BDE BDM x ∠∠∠∴=2=8ADB BDE x ∠∠,∵AD BC ∥,∴=180=1808B ADB x ∠︒-∠︒-,∵DE EN ⊥,∴90DEN ∠=︒,由(2)得:DEN ADE ENG ∠=∠+∠∴==90ENG DEN ADE ∠∠-∠︒-∵DN 平分PDM ∠,∴(11==180MDN PDM ∠∠︒-∠∴18083=790x x x ︒---︒,解得:15x =︒,∴=903=45EDN x ∠︒-︒,∴EDN ∠的度数为45︒.【点睛】本题考查了平行线的判定与性质及角平分线的定义,垂直定义,熟练掌握平行线的判定及性质是解题的关键.28.(2023下·江苏·七年级泰州市姜堰区第四中学校考周测)如图,AB CD ∥,12110∠+∠=︒,求G ∠的度数.【答案】110︒【分析】过点G 作GM AB ∥,根据AB CD ,GM AB CD ∥∥,进而根据平行线的性质即可求EGF ∠的度数.【详解】解:过点G 作GM AB ∥,∵AB CD ,∴GM AB CD ∥∥,∴1EGM ∠∠=,2FGM ∠∠=,∴12110EGF EGM FGM ∠∠∠∠∠=+=+=︒,【点睛】本题考查了平行线的判定与性质,解决本题的关键是作辅助线及灵活应用平行线的判定与性质解决问题.29.(2023下·江苏·七年级专题练习)已知AB CD ∥,连接A ,C 两点.(1)如图1,CAB ∠与ACD ∠的平分线交于点E ,则AEC ∠等于(2)如图2,点M 在射线AB 反向延长线上,点N 在射线CD 4570AMN ACN ∠=︒∠=︒,,求MEC ∠的度数;(3)如图3,图4,M ,N 分别为射线AB ,射线CD 上的点,()AMN ACN αβαβ∠=∠=≠,,请直接写出图中MEC ∠的度数(用含α,β的式子表示)【答案】(1)90(2)57.5︒(3)1118022αβ︒-+或1118022βα︒-+【分析】(1)根据平行线的性质得到180BAC ACD ∠+∠=︒,即可求出答案;(2)过点E 作EF AB ∥,得到EF CD ∥,根据平行线的性质得到平分线的定义求出1122.522BME BMN ECD ACD ∠=∠=︒∠=∠,(3)由平行线的性质:两直线平行同旁内角互补,两直线平行内错角相等,即可求解.【详解】(1)解:如图1,∵AB CD ∥,∴180BAC ACD ∠+∠=︒,∵,AE CE 分别平分BAC ACD ∠∠,,∴1122CAE BAC ACE ACD ∠=∠∠=∠,,∵AB CD ∥,∴EF CD ∥,∴BME MEF FEC ∠=∠∠,∵,ME CE 分别平分BMN ∠,∴122.52BME BMN ∠=∠=︒∴MEC MEF CEF ∠=∠+∠(3)①如图3,过点E 作EF ∵AB CD ∥,∴EF CD ∥,∴180AME MEF ∠+∠=︒,∵1122AME AMN α∠=∠=,∴11802MEF α∠=︒-,∵1122ECD ACD β∠=∠=,∴12FEC ECD β∠=∠=,∵AB CD ∥,∴EF CD ∥,∴1122AME MEF α∠=∠=,∠∵1122ECD ACD β∠=∠=,∴11802FEC β∠=︒-,∴180MEC MEF CEF ∠=∠+∠=【点睛】此题考查了平行线的性质及角平分线的定义,解题的关键是正确掌握平行线的性质:两直线平行同旁内角互补,两直线平行内错角相等.30.(2022上·河南平顶山·八年级统考期末)出BED ∠的度数.(2)如图2,AB CD ,点E F ∠之间的关系并说明理由.(3)如图3,AB 与CD 相交于点95BFD ∠=︒,直接写出BED ∠【答案】(1)66︒;(2)2BED F ∠=∠,理由见解析;(3)130︒【分析】(1)过点E 作EM AB ∥,可得ABE MEB ∠=∠,CDE MED ∠=∠,可求解;(2)过点E 作EG AB ∥,可求出2(23)2(14)BED ∠=∠+∠=∠+∠,过点F 作FH AB ∥,可求出14BFD ∠=∠+∠,由此即可求解;(3)延长DE 交BF 于点P ,可得BED EBP BPD EBP BFD PDF ∠=∠+∠=∠+∠+∠,BED EBG BPD EDG BGD EBG ∠=∠+∠=∠+∠+∠,BF 平分ABE ∠,DF 平分CDE ∠,可得22BED EBP PDF BGD ∠=∠+∠+∠,由此即可求解.【详解】解:(1)如图,过点E 作EM AB ∥,∵AB CD ,∴EM AB CD ∥∥,∴ABE MEB ∠=∠,CDE MED ∠=∠,∵=45ABE ∠︒,21CDE ∠=︒,∴45MEB ∠=︒,21MED ∠=︒,∴452166BED MEB MED ∠=∠+∠=︒+︒=︒.(2)2BED F ∠=∠,理由如下:过点E 作EG AB ∥,∵AB CD ,∴EG AB CD ∥∥,∴512∠=∠+∠,634∠=∠+∠,∵BF 平分ABE ∠,DF 平分CDE ∠,∴12∠=∠,3=4∠∠,∴2(23)2(14)BED ∠=∠+∠=∠+∠,同理,过点F 作FH AB ∥,∴FH AB CD ∥∥,∴1BFH ∠=∠,4DFH ∠=∠,∵BFD BFH DFH ∠=∠+∠,∴14BFD ∠=∠+∠,∴22(14)BFD ∠=∠+∠,∴2BED BFD ∠=∠,即2BED F ∠=∠.(3)如图,延长DE 交BF 于点P ,∴BED EBP BPD EBP BFD PDF ∠=∠+∠=∠+∠+∠,BED EBG BPD EDG BGD EBG ∠=∠+∠=∠+∠+∠,∵BF 平分ABE ∠,DF 平分CDE ∠,∴2EBG EBP ∠=∠,2EDG PDF ∠=∠,∴22BED EBP PDF BGD ∠=∠+∠+∠,∴22EBP BFD PDF EBP PDF BGD ∠+∠+∠=∠+∠+∠,∴952()60EBP PDF EBP PDF ∠+∠+︒=∠+∠+︒,∴35EBP PDF ∠+∠=︒,∴953595130BED EBP PDF ∠=∠+∠+︒=︒+︒=︒.【点睛】本题主要考查平行线的性质,理解平行线的性质,三角形外角的性质是解题的关键.31.(2022下·广东东莞·七年级东莞市光明中学校考期中)阅读下面内容,并解答问题.已知:如图1,AB CD ∥,直线EF 分别交AB ,CD 于点E ,F .BEF ∠的平分线与DFE ∠的平分线交于点G .(1)求证:EG FG⊥;(2)填空,并从下列①、②两题中任选一题说明理由.我选择题.①在图1的基础上,分别作BEG∠的平分线与DFG∠的平分线交于点M 为.②如图3,AB CD∥,直线EF分别交AB,CD于点E,F.点O在直线 ,AB CD//∴∠+∠=︒BEF DFE180平分BEFEG∠,FG(1)如图1,连接GM ,HM .求证:∠M =∠AGM (2)如图2,在∠GHC 的角平分线上取两点M 、Q ,使得∠关系,并说明理由.【答案】(1)证明见详解(2)180GQH M ∠=︒-∠;理由见详解【分析】(1)过点M 作MN AB ∥,由AB CD ∥,可知MN AB CD ∥∥.由此可知:AGM GMN ∠=∠,CHM HMN ∠=∠,故=AGM CHM GMN HMN M ∠+∠=∠+∠∠;(2)由(1)可知=AGM CHM M ∠+∠∠.再由CHM GHM ∠=∠,∠AGM =∠HGQ ,可知:M HGQ GHM ∠=∠+∠,利用三角形内角和是180°,可得180GQH M ∠=︒-∠.【详解】(1)解:如图:过点M 作MN AB ∥,∴MN AB CD ∥∥,∴AGM GMN ∠=∠,CHM HMN ∠=∠,∵M GMN HMN ∠=∠+∠,∴=M AGM CHM ∠∠+∠.(2)解:180GQH M ∠=︒-∠,理由如下:如图:过点M 作MN AB ∥,由(1)知=M AGM CHM ∠∠+∠,∵HM 平分GHC ∠,∴CHM GHM ∠=∠,∵∠AGM =∠HGQ ,∴M HGQ GHM ∠=∠+∠,∵180HGQ GHM GQH ∠+∠+∠=︒,∴180GQH M ∠=︒-∠.【点睛】本题考查了利用平行线的性质求角之间的数量关系,正确的作出辅助线是解决本题的关键,同时这也是比较常见的几何模型“猪蹄模型”的应用.33.(2022下·江苏常州·七年级统考期中)问题情境:如图①,直线AB CD∥,点E,F分别在直线AB,CD上.(1)猜想:若1130∠=︒,2150∠=︒,试猜想P∠=______°;(2)探究:在图①中探究1∠,2∠之间的数量关系,并证明你的结论;∠,P(3)拓展:将图①变为图②,若12325∠=︒,求PGF∠+∠=︒,75EPG∠的度数.【答案】(1)80︒(2)36012∠=︒-∠-∠;证明见详解P(3)140︒【分析】(1)过点P作MN AB∥,利用平行的性质就可以求角度,解决此问;(2)利用平行线的性质求位置角的数量关系,就可以解决此问;(3)分别过点P、点G作MN AB∥,然后利用平行线的性质求位置角的数量关系即可.∥、KR AB【详解】(1)解:如图过点P作MN AB∥,∵AB CD∥,∴AB MN CD∥∥.∴1180∠+∠=︒,EPN∠+∠=︒.FPN2180∵1130∠=︒,2150∠=︒,∴12360∠+∠+∠+∠=︒EPN FPN∴36013015080∠+=︒-︒-︒=︒.EPN FPN∵P EPN FPN∠=∠+∠,∴∠P=80°.故答案为:80︒;(2)解:36012∠=︒-∠-∠,理由如下:P如图过点P作MN AB∥,∵AB CD∥,∴AB MN CD∥∥.∴1180EPN∠+∠=︒,∠+∠=︒.FPN2180∴12360∠+∠+∠+∠=︒EPN FPN∵EPN FPN P∠+∠=∠,∠=︒-∠-∠.36012P(3)如图分别过点P、点G作MN AB∥∥、KR AB∵AB CD∥,∴AB MN KR CD∥∥∥.∴1180∠+∠=︒,EPNNPG PGR∠+∠=︒,180∠+∠=︒.RGF2180∴12540∠+∠+∠+∠++∠=︒EPN NPG PGR RGF∵75∠=∠+∠=︒,EPG EPN NPG∠+∠=∠,PGR RGF PGF∠+∠=︒,12325思路点拨:小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可分别求出APE ∠、CPE ∠的度数,从而可求出APC ∠的度数;小丽的思路是:如图3,连接AC ,通过平行线性质以及三角形内角和的知识可求出APC ∠小芳的思路是:如图4,延长AP 交DC 的延长线于E ,通过平行线性质以及三角形外角的相关知识可求出APC ∠的度数.问题解决:请从小明、小丽、小芳的思路中任选一种思路进行推理计算,你求得的APC ∠的度数为问题迁移:(1)如图5,AD BC ∥,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP ∠BCP β∠=∠.CPD ∠、α∠、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合)写出CPD ∠、α∠、∠β间的数量关系.【答案】110;(1)CPD αβ∠=∠+∠,理由见解析;(2)CPD βα∠=∠-∠或CPD a ∠=∠解析【分析】小明的思路是:过P 作PE AB ,构造同旁内角,利用平行线性质,可得APC ∠=(1)过P 作PE AD ∥交CD 于E ,推出AD PE BC ∥∥,根据平行线的性质得出a DPE ∠=∠即可得出答案;(2)画出图形(分两种情况:①点P 在BA 的延长线上,②点P 在AB 的延长线上),根据平行线的性质得出DPE α∠=∠,CPE β∠=∠,即可得出答案.【详解】解:小明的思路:如图2,过P 作PE AB ,∵AB CD ∥,∴PE AB CD ∥∥,∴18050APE A ︒∠=-∠=︒,18060CPE C ︒∠=-∠=︒,∴5060110APC ∠=︒+︒=︒,故答案为:110;(1)CPD αβ∠=∠+∠,理由如下:如图5,过P 作PE AD ∥交CD 于E ,∵AD BC ∥,∴AD PE BC ∥∥,∴a DPE ∠=∠,CPE β∠=∠,∴CPD DPE CPE a β∠=∠+∠=∠+∠;(2)当P 在BA 延长线时,CPD βα∠=∠-∠;理由:如图6,过P 作PE AD ∥交CD 于E ,∵AD BC ∥,∴AD PE BC ∥∥,∴DPE α∠=∠,CPE β∠=∠,∴CPD CPE DPE βα∠=∠-∠=∠-∠;当P 在BO 之间时,CPD a ∠=∠-∠理由:如图7,过P 作PE AD ∥交∵AD BC ∥,∴AD PE BC ∥∥,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE α∠=∠-∠=∠-∠【点睛】本题考查了三角形的内角和定理,平行线的判定和性质,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.。

人教版数学七年级下册:第五章 相交线与平行线——专题练习(附答案)

人教版数学七年级下册:第五章 相交线与平行线——专题练习(附答案)

小专题(一)平行线中的“拐点”问题模型1 M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E 作EF∥AB,于是BE,DE就可以作为第三条直线了.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2 铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NAn,则∠A1+∠A2+∠A3+…+∠An=度.小专题(二) 利用平行线的性质求角的度数类型1 直接利用平行线的性质与判定求角度1.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为( ) A.52° B.54° C.64° D.69°2.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF 的度数是( )A.20° B.25° C.30° D.35°3.如图,AB∥CD,CB∥DE,∠B=50°,则∠D=.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.类型2 借助学具的特征求角度5.如图,将直尺与30°角的三角尺叠放在一起.若∠1=40°,则∠2的大小是( )A.40° B.60° C.70° D.80°6.如图,一块直角三角板的两锐角的顶点刚好落在平行线l1,l2上,已知∠C是直角,则∠1+∠2的度数等于( )A.75° B.90° C.105° D.120°类型3 折叠问题中求角度7.将一个长方形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是.类型4 抽象出平行线模型求角度(建模思想)9.如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,已知∠ADC=∠ODE.则∠DEB的度数是度.10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是.小专题(三) 平行线的性质与判定的综合运用——教材P37T13的变式与应用教材母题(教材P37T13):完成下面的证明.(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF ∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=.∵DF∥CA,∴∠A=.∴∠FDE=∠A.(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD,又∠COA=∠BOD( ),∴∠C=.∴AC∥BD(内错角相等,两直线平行).(1)判定两直线平行的方法有五种:①平行线的定义;②平行公理的推论;③同位角相等,两直线平行;④内错角相等,两直线平行;⑤同旁内角互补,两直线平行.(2)判定两直线平行时,定义一般不常用,其他四种方法要灵活运用,推理时要注意书写格式.(3)由两条直线平行得到同位角相等、内错角相等或同旁内角互补,解题时应结合图形先确认所成的角是不是两平行线被第三条直线所截得的同位角或内错角或同旁内角,同时要学会简单的几何说理,做到每一步有理有据.1.如图,已知AD⊥BC,EF⊥BC,垂足分别为D,F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:因为AD⊥BC,EF⊥BC(已知),①所以∠ADB=∠EFB= (垂直的定义).②所以 (同位角相等,两直线平行).③所以∠1+∠2= (两直线平行,同旁内角互补).④又因为∠2+∠3=180°( ),⑤所以∠1=∠3( ).⑥所以AB∥DG( ).⑦所以∠GDC=∠B( ).2.如图,点G在射线BC上,射线DE与AB,AG分别交于点H,M.若DF∥AB,∠B=75°,∠D=105°,求证:∠AME=∠AGC.3.如图,AB∥CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD ∥BC.4.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的平分线.你能判断DF 与AB的位置关系吗?请说明理由.5.如图,AB⊥BD于点B,点E是BD上的点,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.求证:CD⊥BD.6.如图,把一张长方形ABCD的纸片沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,求∠1,∠2的度数.7.如图,已知BC∥GE,∠AFG=∠1=50°.(1)求证:AF∥DE;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACQ的度数.参考答案:小专题(一)平行线中的“拐点”问题模型1 M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E 作EF∥AB,于是BE,DE就可以作为第三条直线了.【解答】∠BED=∠B+∠D.理由:过点E作EF∥AB,则EF∥CD.∴∠B=∠BEF,∠D=∠DEF.∴∠BED=∠BEF+∠DEF=∠B+∠D.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.解:(1)∠B=∠BED+∠D.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D.(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠B+∠BEF=180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.拓展平行线间有多个拐点2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?解:(1)∠BEF+∠FGD=∠B+∠EFG+∠D.理由:过点E,F,G分别作EM∥AB,FN∥AB,GH∥AB,由AB∥CD,得AB∥EM∥FN∥GH∥CD.∴∠BEM=∠B,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D.∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D.(2)在图2中,有∠E1+∠E2+∠E3+…+∠En=∠B+∠F1+∠F2+…+∠Fn-1+∠D.如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2 铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?【解答】∠B+∠BED+∠D=360°.理由:过点E作EF∥AB.∵AB∥CD,∴AB∥CD∥EF.∴∠B+∠BEF=180°,∠D+∠DEF=180°. ∴∠B+∠BEF+∠D+∠DEF=360°,即∠B+∠BED+∠D=360°.拓展平行线间有多个拐点3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=180度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=360度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=540度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=720度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NAn,则∠A1+∠A2+∠A3+…+∠An=180(n-1)度.解:每增加一个角,度数增加180°.小专题(二) 利用平行线的性质求角的度数类型1 直接利用平行线的性质与判定求角度1.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为( C ) A.52° B.54° C.64° D.69°2.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF 的度数是( D )A.20° B.25° C.30°D.35°3.如图,AB∥CD,CB∥DE,∠B=50°,则∠D=130°.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AB∥DG(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=80°,∴∠AGD=100°.类型2 借助学具的特征求角度5.如图,将直尺与30°角的三角尺叠放在一起.若∠1=40°,则∠2的大小是( D )A.40° B.60° C.70° D.80°6.如图,一块直角三角板的两锐角的顶点刚好落在平行线l1,l2上,已知∠C是直角,则∠1+∠2的度数等于( B )A.75° B.90° C.105° D.120°类型3 折叠问题中求角度7.将一个长方形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=128°.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是65°.类型4 抽象出平行线模型求角度(建模思想)9.如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,已知∠ADC=∠ODE.则∠DEB的度数是76度.10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是90°.小专题(三) 平行线的性质与判定的综合运用——教材P37T13的变式与应用教材母题(教材P37T13):完成下面的证明.(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF ∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=∠BFD(两直线平行,内错角相等).∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等).∴∠FDE=∠A.(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD,又∠COA=∠BOD(对顶角相等),∴∠C=∠D.∴AC∥BD(内错角相等,两直线平行).(1)判定两直线平行的方法有五种:①平行线的定义;②平行公理的推论;③同位角相等,两直线平行;④内错角相等,两直线平行;⑤同旁内角互补,两直线平行.(2)判定两直线平行时,定义一般不常用,其他四种方法要灵活运用,推理时要注意书写格式.(3)由两条直线平行得到同位角相等、内错角相等或同旁内角互补,解题时应结合图形先确认所成的角是不是两平行线被第三条直线所截得的同位角或内错角或同旁内角,同时要学会简单的几何说理,做到每一步有理有据.1.如图,已知AD⊥BC,EF⊥BC,垂足分别为D,F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:因为AD⊥BC,EF⊥BC(已知),①所以∠ADB=∠EFB=90°(垂直的定义).②所以AD∥EF(同位角相等,两直线平行).③所以∠1+∠2=180°(两直线平行,同旁内角互补).④又因为∠2+∠3=180°(已知),⑤所以∠1=∠3(同角的补角相等).⑥所以AB∥DG(内错角相等,两直线平行).⑦所以∠GDC=∠B(两直线平行,同位角相等).2.如图,点G在射线BC上,射线DE与AB,AG分别交于点H,M.若DF∥AB,∠B=75°,∠D=105°,求证:∠AME=∠AGC.证明:∵DF∥AB(已知),∴∠D=∠BHM(两直线平行,同位角相等).又∵∠B=75°,∠D=105°(已知),∴∠B+∠BHM=75°+105°=180°.∴DE∥BC(同旁内角互补,两直线平行).∴∠AME=∠AGC(两直线平行,同位角相等).3.如图,AB∥CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD ∥BC.证明:∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义).∵AB∥CD(已知),∴∠1=∠CFE(两直线平行,同位角相等).又∵∠1=∠2(已证),∠CFE=∠E(已知),∴∠2=∠E(等量代换).∴AD∥BC(内错角相等,两直线平行).4.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的平分线.你能判断DF 与AB的位置关系吗?请说明理由.解:DF∥AB.理由:∵BE是∠ABC的平分线,∴∠1=∠2(角平分线的定义).∵∠E=∠1(已知),∴∠E=∠2(等量代换).∴AE∥BC(内错角相等,两直线平行).∴∠A+∠ABC=180°(两直线平行,同旁内角互补).∵∠3+∠ABC=180°(已知),∴∠A=∠3(等量代换).∴DF∥AB(同位角相等,两直线平行).5.如图,AB⊥BD于点B,点E是BD上的点,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.求证:CD⊥BD.证明:∵AE平分∠BAC,CE平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的性质).∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2).∵∠1+∠2=90°(已知),∴∠BAC+∠ACD=180°.∴AB∥CD(同旁内角互补,两直线平行).∴∠B+∠D=180°(两直线平行,同旁内角互补).∴∠D=180°-∠B(等式的性质).∵AB⊥BD(已知),∴∠B=90°(垂直的定义).∴∠D=90°,即CD⊥BD.6.如图,把一张长方形ABCD的纸片沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,求∠1,∠2的度数.解:∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°(两直线平行,内错角相等).由折叠,知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠2=110°.∴∠1=180°-∠2=70°(两直线平行,同旁内角互补).7.如图,已知BC∥GE,∠AFG=∠1=50°.(1)求证:AF∥DE;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACQ的度数.解:(1)证明:∵BC∥GE,∴∠E=∠1=50°.∵∠AFG=∠1=50°,∴∠E=∠AFG=50°.∴AF∥DE.(2)过点A作AP∥GE,∵BC∥GE,∴AP∥GE∥BC.∴∠FAP=∠AFG=50°,∠PAQ=∠Q=15°.∴∠FAQ=∠FAP+∠PAQ=65°.∵AQ平分∠FAC,∴∠CAQ=∠FAQ=65°.∴∠CAP=80°.∴∠ACQ=180°-∠CAP=100°.。

专题1.11 《平行线》几何模型1(知识讲解)七年级数学下册基础知识专项讲练(浙教版)

专题1.11 《平行线》几何模型1(知识讲解)七年级数学下册基础知识专项讲练(浙教版)

专题1.11 《平行线》几何模型1(知识讲解)几何模型1:M 型模型(也称“猪蹄模型”)图 一//=MA NC A B ⇒∠∠+∠条件:ABC ////PQ =,==MA NC A C C A C∴∠∠∠∠∴∠∠+∠证明:过点B 作PQ//MA.,ABQ BQ ,ABC几何模型2:铅笔头模型图二0//==360MA NC A B ⇒∠+∠∠条件:ABC000////P ////PQ ,180,180360MA NC BMA NC A C C A C∴∠∠=∠∠=∴∠+∠+∠=证明:过点B 作BP//MA.则,ABP+BP+,ABC几何模型3:鸡翅模型图三//-=MA NC A B ⇒∠∠∠条件:C////PQ ////PQ ,,,MA NC MA NC A C C B CBQ A C B∴∠∠∠∠∴∠=∠∠∴∠-∠=∠证明:过点B 作PQ//MA.则,ABQ=BQ=,ABQ-几何模型4:折鸡翅模型图四//MA NC A B ⇒∠=∠+∠条件:C ////PQ ////PQ ,,,MA NC MA NC A C C ABC CBQ A ACB C∴∠∠∠∠∴∠=∠∠∴∠==∠+∠证明:过点B 作PQ//MA.则,ABQ=BQ=,ABQ-几何模型5:多个M 型模型12121//......n n MA NB P PPAQ Q Q B -⇒∠+∠++∠=∠+∠+∠++∠条件: 证明思路参考几何模型1几何模型6:多个铅笔头模型12121//......n n MA NB P P P A Q Q Q B -⇒∠+∠++∠=∠+∠+∠++∠条件: 证明思路参考几何模型2类型一、M 型模型1(2020·宁波市惠贞书院七年级期中)如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式______.【答案】90x y z +-=︒【分析】过C 作//CN AB ,过D 作//DM AB ,根据平行线的性质可知//////AB CN DM EF ,然后根据平行线的性质即可求解;解:如图,过C 作//CN AB ,过D 作//DM AB ,∴//////AB CN DM EF ,∴1x =∠,23∠∠=,4z ∠=,∴90BCD ∠=︒,∴1290∠+∠=︒,∴390x +∠=︒,∴3490x z +∠+∠=︒+,∴90x y z +=︒+,∴90x y z +-=︒.故答案为:90x y z +-=︒.【点拨】本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;举一反三:【变式1】(2020·四川成都市·天府四中七年级期中)如图,//,,3527'EE MN CA CB EAC ⊥∠=︒,则MBC ∠=____________________.【答案】5433'【分析】过C 点做EF 的平行线,利用平行线的性质,即可证明.解:过C 点做EF 的平行线,GH//,EF MN////,EF GH MN ∴3527'EAC ACH ∴∠=∠=,又,CA CB ⊥90,ACB ∴∠=︒5433',HCB ACB ACH ∴∠=∠-∠=︒又//,GH MN5433'HCB CBM ∴∠=∠=.故答案为:5433'.【点拨】本题考查了通过平行线的性质求解角度问题,解题关键在于过中间的点作已知直线的平行线.【变式2】(2019·辽宁大连市·七年级期末)阅读材料:如图1,点A 是直线MN 上一点,MN 上方的四边形ABCD 中,140ABC ∠=︒,延长BC ,2DCE MAD ADC ∠=∠+∠,探究DCE ∠与MAB ∠的数量关系,并证明.小白的想法是:“作ECF ECD ∠=∠(如图2),通过推理可以得到CF MN ,从而得出结论”.请按照小白的想法.....完成解答:拓展延伸:保留原题条件不变,CG 平分ECD ∠,反向延长CG ,交MAB ∠的平分线于点H (如图3),设MAB α∠=,请直接写出H ∠的度数(用含α的式子表示).【答案】阅读材料:40∠=︒+∠ECD MAB ,见解析;拓展延伸:120CHA α=∠︒-. 【分析】(1)作ECF ECD ∠=∠,DG MN ,BH MN ,由平行线性质可得180MAD ADG ∠+∠=︒,结合已知2DCE MAD ADC ∠=∠+∠,可证180CDG DCF ∠+∠=︒,进而得到DG CF ,从而CF BH ,140BCF MAB ABC ∠+∠=∠=︒,将180180BCF ECF ECD ∠=︒-∠=︒-∠代入可得40∠=︒+∠ECD MAB .(2)过H 点作HP∴MN ,可得∴CHA=∴PHA+∴PHC ,结合(1)的结论和CG 平分∴ECD 可得∴PHC =∴FCH =120°-3MAB 2∠,即可得120CHA α=∠︒-.解:【阅读材料】作ECF ECD ∠=∠,DG MN ,BH MN (如图1).∵DG MN ,∴180MAD ADG ∠+∠=︒.∴()180CDG MAD ADC ∠+∠+∠=︒.∵2DCE MAD ADC ∠=∠+∠,∴2180CDG DCE ∠+∠=︒.∴180CDG DCF ∠+∠=︒.∴DG CF .∵DG MN ,∴MN CF .∵BH MN ,∴CF BH .∴BCF CBH ∠=∠,MAB ABH ∠=∠.∴140BCF MAB ABC ∠+∠=∠=︒.∵180180BCF ECF ECD ∠=︒-∠=︒-∠,∴40∠=︒+∠ECD MAB .【拓展延伸】结论:120CHA α=∠︒-.理由:如图,作ECF ECD ∠=∠,过H 点作HP∴MN ,∴∴PHA=∴MAH=1BAM 2∠,由(1)得FC∴MN ,∴FC∴HP ,∴∴PHC=∴FCH ,∴40∠=︒+∠ECD MAB ,CG 平分∴ECD , ∴∴ECG=20°+1MAB 2∠,∴∴FCH=180ECG ECF ︒-∠-∠=180°-(40MAB ︒+∠)-(20°+1MAB 2∠)=120°-3MAB 2∠ ∴∴CHA=∴PHA+∴PHC=1MAB 2∠∠+(120°-3MAB 2∠)=120°-MAB ∠即:120CHA α=∠︒-.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用. 类型二、铅笔头型模型2 (2020·山东聊城市·七年级期末)直线AB 、CD 被直线EF 所截,AB∴CD ,点P 是平面内一动点.(1)若点P 在直线CD 上,如图∴,∴α=50°,则∴2= °.(2)若点P 在直线AB 、CD 之间,如图∴,试猜想∴α、∴1、∴2之间的等量关系并给出证明;(3)若点P在直线CD的下方,如图∴,(2)中∴α、∴1、∴2之间的关系还成立吗?请作出判断并说明理由.【答案】(1)50;(2)∴α=∴1+∴2,证明见解析;(3)不成立.理由见解析.【分析】(1)由题意直接根据平行线的性质可直接求解;(2)由题意过P作PG∴AB,则PG∴AB∴CD,利用平行线的性质即可求解;(3)根据题意过P作PH∴AB,则PH∴AB∴CD,利用平行线的性质进行分析即可求解.解:(1)∵AB∥CD,∠α=50°∴∠2=∠α=50°,故答案为:50;(2)∠α=∠1+∠2.证明:过P作PG∥AB,∵AB∥CD,∴PG∥AB∥CD,∴∠2=∠EPG,∠1=∠FPG,∵∠α=∠EPF=∠EPG+∠FPG,∴∠α=∠1+∠2;(3)不成立.理由:过P 作PH ∥AB ,∵AB ∥CD ,∴PH ∥AB ∥CD ,∴∠2=∠EPH ,∠1=∠FPH ,∵∠α=∠EPF =∠EPH ﹣∠FPH ,∴∠α=∠2﹣∠1,故不成立.【点拨】本题主要考查平行线的性质,注意掌握并灵活运用平行线的性质是解题的关键. 举一反三:【变式1】(2020·河北邢台市·八年级月考)如图1,四边形MNBD 为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(BAE AEC ECD ∠∠∠、、),则BAE AEC ECD ∠+∠+∠=__________°.(2)如图3,将长方形纸片剪三刀,剪出四个角(BAE AEF EFC FCD ∠∠∠∠、、、),则BAE AEF EFC FCD ∠+∠+∠+∠=__________°.(3)如图4,将长方形纸片剪四刀,剪出五个角(BAE AEF EFG FGC GCD ∠∠∠∠∠、、、、),则BAE AEF EFG FGC GCD ∠+∠+∠+∠+∠=___________°.(4)根据前面探索出的规律,将本题按照上述剪法剪n 刀,剪出()1n +个角,那么这()1n +个角的和是____________°.【答案】(1)360;(2)540;(3)720;(4)180n.【分析】(1)过点E作EH∴AB,再根据两直线平行,同旁内角互补即可得到三个角的和等于180°的2倍;(2)分别过E、F分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(3)分别过E、F、G分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(4)根据前三问个的剪法,剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.证明:(1)过E作EH∥AB(如图②).∵原四边形是长方形,∴AB∥CD,又∵EH∥AB,∴CD∥EH(平行于同一条直线的两条直线互相平行).∵EH∥AB,∴∠A+∠1=180°(两直线平行,同旁内角互补).∵CD∥EH,∴∠2+∠C=180°(两直线平行,同旁内角互补).∴∠A+∠1+∠2+∠C=360°,又∵∠1+∠2=∠AEC,∴∠BAE+∠AEC+∠ECD=360°;(2)分别过E、F分别作AB的平行线,如图③所示,用上面的方法可得∠BAE+∠AEF+∠EFC+∠FCD=540°;(3)分别过E 、F 、G 分别作AB 的平行线,如图④所示,用上面的方法可得∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=720°;(4)由此可得一般规律:剪n 刀,剪出n+1个角,那么这n+1个角的和是180n 度. 故答案为:(1)360;(2)540;(3)720;(4)180n .【点拨】题主要考查了多边形的内角和,作平行线并利用两直线平行,同旁内角互补是解本题的关键,总结规律求解是本题的难点.举一反三:【变式2】(2020·湖北随州市·七年级期末)已知12l l //,点A ,C 分别在直线1l ,2l 上,点B 在直线1l 与2l 之间,90BCN BAM ∠<∠≤︒.(1)如图1,求证:ABC BAM BCN ∠=∠+∠.阅读并补齐下列推理过程过点B 作//BG NC ,因为12l l //,所以//AM _____(______________)所以ABG BAM ∠=∠,CBG BCN ∠=∠(_______________________)所以ABC ABG CBG BAM BCN ∠=∠+∠=∠+∠.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,在学习中要注意体会.(2)如图2,点D ,E 在直线1l 上,DBC BAM ∠=∠,BE 平分ABC ∠,求证:DBE DEB ∠=∠.(3)在(2)的条件下,过点B 作BF 平分CBE ∠,请直接写出使//BF AM 时,BAM ∠与BCN ∠之间应具备的关系.【答案】(1)BG ,平行于同一条直线的两条直线平行,两条直线平行内错角相等;(2)见解析;(3)3BAM BCN ∠=∠【分析】(1)添加平行线,根据平行于同一条直线的两条直线平行,再利用平行线的性质进行角的等量代换;(2)与(1)同理,通过添加平行线,根据平行于同一条直线的两条直线平行,再利用平行线的性质、角平分线的定义进行角的等量代换;(3)在(2)的条件下,根据已有的数量关系,加上平行线得到的内错角相等进行等量代换即可.解:(1)BG ,平行于同一条直线的两条直线平行,两条直线平行内错角相等;(2)过点B 作BG //NC ,12//l l ,AM //BG ∴DEB EBG ∴∠=∠,CBG BCN ∠=∠,由(1)知,ABC BAM BCN ∠=∠+∠,又DBC BAM ∠=∠,ABC DBC BCN ∴∠=∠+∠,ABC ABD DBC ∠=∠+∠,ABD BCN ∴∠=∠,∴ABD CBG ∠=∠, BE 平分ABC ∠,ABE CBE ∴∠=∠,DBE EBG ∴∠=∠,DEB DBE ∴∠=∠(3)BAM 3BCN ∠=∠,理由如下:∴DBC =∴DBE +∴EBF +∴FBC ,∴BF∴AM ,∴∴EBF =∴DEB ,∴BF 平分∴CBE ,∴∴CBF =∴EFB ,而由(2)知:∴DBE =∴DEB ,∴∴DBC =3∴FBC ,∴CN∴AM ,∴CN∴BF ,∴∴FBC=∴BCN,∴DBC=3∴BCN,而∴BAM=∴DBC,∴∴BAM=3∴BCN【点拨】本题考查平行线的推论和性质,熟练掌握平行线的性质,并灵活进行等量代换是关键.。

平行线几何模型(M模型)(知识讲解)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

平行线几何模型(M模型)(知识讲解)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题5.22平行线几何模型(M模型)(知识讲解)几何模型1:M型模型(也称“猪蹄模型”)图一//=MA NC A B⇒∠∠+∠条件:ABC////PQ=,==MA NCA C CA C∴∠∠∠∠∴∠∠+∠证明:过点B作PQ//MA.,ABQ BQ,ABC几何模型2:鸡翅模型图三//-=MA NC A B⇒∠∠∠条件:C////PQ////PQ,,,MA NCMA NCA C CB CBQA C B∴∠∠∠∠∴∠=∠∠∴∠-∠=∠证明:过点B作PQ//MA.则,ABQ=BQ=,ABQ-几何模型3:折鸡翅模型图四//MA NC A B⇒∠=∠+∠条件:C ////PQ////PQ ,,,MA NC MA NC A C C ABC CBQ A ACB C∴∠∠∠∠∴∠=∠∠∴∠==∠+∠ 证明:过点B作PQ//MA.则,ABQ=BQ =,ABQ-几何模型4:多个M 型模型12121//......n n MA NB P P P A Q Q Q B-⇒∠+∠++∠=∠+∠+∠++∠条件:【典型例题】类型一、平行线几何模型➽➼猪蹄模型➻➸求解✬✬证明1.请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型“猪蹄模型”.即已知:如图1,AB CD ∥,E 为AB 、CD 之间一点,连接AE ,CE 得到AEC ∠.求证:AEC A C∠=∠+∠小明笔记上写出的证明过程如下:证明:过点E 作EF AB∥∵1A∠=∠∵AB CD ∥,EF AB∥∴EF CD∥∴2C∠=∠∴12AEC ∠=∠+∠∴AEC A C∠=∠+∠请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图,若AB CD ∥,60E ∠=o ,求B C F ∠+∠+∠;(2)如图,AB CD ∥,BE 平分ABG ∠,CF 平分DCG ∠,27G H ∠=∠+ ,求H ∠.【答案】(1)240 ;(2)51【分析】(1)作EM AB ∥,FN CD ∥,如图,根据平行线的性质得EM AB FN CD ∥∥∥,所以1B ∠=∠,23∠∠=,4180C ∠+∠= ,然后利用等量代换计算240B F C ∠+∠+∠= ;(2)分别过G 、H 作AB 的平行线MN 和RS ,根据平行线的性质和角平分线的性质可用ABG ∠和DCG ∠分别表示出H ∠和G ∠,从而可找到H ∠和G ∠的关系,结合条件可求得51H ∠= .解:(1)作EM AB ∥,FN CD ∥,如图,且AB CD ∥180∴180227BHC BHC -∠=∠+ ,∴51BHC ∠= .【点拨】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.举一反三:【变式】阅读下面内容,并解答问题.已知:如图1,AB CD ,直线EF 分别交AB ,CD 于点E ,F .BEF ∠的平分线与DFE ∠的平分线交于点G .(1)求证:EG FG ⊥;(2)填空,并从下列①、②两题中任选一题说明理由.我选择题.①在图1的基础上,分别作BEG ∠的平分线与DFG ∠的平分线交于点M ,得到图2,则EMF ∠的度数为.②如图3,AB CD ,直线EF 分别交AB ,CD 于点E ,F .点O 在直线AB ,CD 之间,且在直线EF 右侧,BEO ∠的平分线与DFO ∠的平分线交于点P ,则EOF ∠与EPF ∠满足的数量关系为.【答案】(1)见解析;(2)①45︒;②结论:2EOF EPF ∠=∠【分析】(1)利用平行线的性质解决问题即可;(2)①利用基本结论EMF BEM MFD ∠=∠+∠求解即可;②利用基本结论EOF BEO DFO ∠=∠+∠,EPF BEP DFP ∠=∠+∠,求解即可.(1)证明:如图,过G 作GH AB ,AB CD ,AB GH CD ∴ ,BEG EGH DFG FGH ∠∠∠∠∴==,,180BEF DFE ∴∠+∠=EG 平分BEF ∠,FG 12GEB BEF ∴∠=∠,12GEB GFD ∴∠+∠=∠在EFG ∆中,GEF ∠+∠EGF GEB GFD ∴∠=∠+∠EG FG ∴⊥;)解:①如图2中,由题意,EM 平分BEG ∠,MF 1(2BEM MFD ∴∠+∠=∠EMF BEM MFD ∴∠=∠+∠故答案为:45︒;结论:2EOF EPF ∠=∠理由:如图3中,由题意,PE 平分BEO ∠,PF 2BEO BEP ∴∠=∠,DFO ∠类型二、平行线几何模型➽➼鸡翅模型➻➸求解✬✬证明2.已知直线12l l ∥,3l 和1l ,2l 分别交于C ,D 点,点A ,B 分别在线1l ,2l 上,且位于3l 的左侧,点P 在直线3l 上,且不和点C ,D 重合.(1)如图1,有一动点P 在线段CD 之间运动时,求证:12APB ∠=∠+∠;(2)如图2,当动点P 在C 点之上运动时,猜想APB ∠、1∠、2∠有何数量关系,并说明理由.【答案】(1)证明见解析;(2)21APB ∠=∠+∠,理由见解析.【分析】()1过点P 作1//PE l ,根据12l l //可知2//PE l ,故可得出1APE ∠=∠,2.BPE ∠=∠再由APB APE BPE ∠=∠+∠即可得出结论;()2过P 作//PE AC ,依据12l l //,可得//PE BD ,进而得到2BPE ∠=∠,1APE ∠=∠,再根据BPE APE APB ∠=∠+∠,即可得出21APB ∠=∠+∠.(1)证明:如图1,过点P 作1//PE l ,12//l l ,2//PE l ∴,1APE ∴∠=∠,2BPE ∠=∠.又APB APE BPE ∠=∠+∠ ,12APB ∴∠=∠+∠;(2)解:21APB ∠=∠+∠.理由如下:如图2,过P 作//PE AC ,12//l l ,//PE BD ∴,2BPE ∴∠=∠,1APE ∠=∠,BPE APE APB ∠=∠+∠ ,21APB ∴∠=∠+∠.【点拨】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.举一反三:【变式】【原题】已知直线AB ∥CD ,点P 为平行线AB ,CD 之间的一点,如图1,若∠ABP =50°,∠CDP =60°,BE 平分∠ABP ,DE 平分∠CDP .(1)则∠P =______,∠E =______.(2)【探究】如图2,当点P 在直线AB 的上方时,若∠ABP =α,∠CDP =β,∠ABP 和∠CDP 的平分线交于点1E ,∠ABE 1与1CDE ∠的角平分线交于点2E ,∠ABE 2与∠CDE 2的角平分线交于点3E ,…以此类推,求∠E 2的度数,并猜想∠E n 的度数.(3)【变式】如图3,∠ABP 的角平分线的反向延长线和∠CDP 的补角的角平分线交于点E ,试直接写出∠P 与∠E 的数量关系.类型三、平行线几何模型➽➼多个M型模型➻➸求解✬✬证明3.探究:(1)如图①,已知AB CD,图中∠1,∠2,∠3之间有什么关系?(2)如图②,已知AB CD,图中∠1,∠2,∠3,∠4之间有什么关系?(3)如图③,已知AB CD,请直接写出图中∠1,∠2,∠3,∠4,∠5之间的关系;【答案】(1)∠1+∠3=∠2;(2)∠1+∠3=∠2+∠4;(3)∠1+∠3+∠5=∠2+∠4.【分析】(1)过点E作EM∥AB,根据平行线的性质及角的和差求解即可;(2)过点F作NF∥AB,结合(1)并根据平行线的性质及角的和差求解即可;(3)过点G作GM∥AB,结合(2)并根据平行线的性质及角的和差求解即可.(1)解:如图①,过点E作EM∥AB,∵AB∥CD,∴AB∥CD∥EM,∴∠1=∠NEM,∠3=∠MEF,∴∠1+∠3=∠NEM+∠MEF,即∠1+∠3=∠2;(2)如图②,过点F作NF∥AB,∵AB∥CD,∴AB ∥CD ∥FN ,∴∠4=∠NFH ,由(1)知,∠1+∠EFN =∠2,∴∠1+∠EFN +∠NFH =∠2+∠4,即∠1+∠3=∠2+∠4;(3)如图③,过点G 作GM ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥GM ,∴∠5=∠MGN ,由(2)得,∠1+∠3=∠2+∠FGM ,∴∠1+∠3+∠5=∠2+∠FGM +∠MGN ,即∠1+∠3+∠5=∠2+∠4.【点拨】此题考查了平行线的性质,熟记两直线平行,内错角相等是解题的关键.举一反三:【变式】【发现】如图,已知AB ∥CD ,直线AB ,CD 被EF 所截.若EM ,FN 分别平分∠AEF 和∠DFE ,判断EM 与FN 之间的位置关系,并证明你的结论;【变式】如图,已知180AEF EFC ∠+∠=︒,∠M =∠N ,求证∠1=∠2;【拓展】如图,AB ∥CD ,∠1=∠2,求证∠M =∠N .∵AB∥CD,∴∠1=∠EPD.∵∠1=∠2,【点拨】本题考查平行线的性质和判定,熟练掌握平行线的性质和判定是解题的关键.类型四、平行线几何模型➽➼综合模型➻➸求解✬✬证明4.根据下列叙述填依据.(1)已知如图1,AB CD ∥,求∠B +∠BFD +∠D 的度数.解:过点F 作FE AB∥所以∠B +∠BFE =180°()因为AB CD ∥、FE AB ∥(已知)所以()所以∠D +∠DFE =180°()所以∠B +∠BFE +∠D =∠B +∠BFE +∠EFD +∠D =360°(2)根据以上解答进行探索.如图(2)(3)AB EF 、∠D 与∠B 、∠F 有何数量关系(请选其中一个简要证明)备用图:(3)如图(4)AB EF ,∠C =90°,∠α与∠β、∠γ有何数量关系(直接写出结果,不需要说明理由)【答案】(1)两直线平行,同旁内角互补;FE CD ∥,平行于同一直线的两直线平行;两直线平行,同旁内角互补;(2)见解析;(3)90αβγ∠+∠-∠=︒【分析】(1)过点F 作FE AB ∥,得到∠B +∠BFE =180°,再根据AB CD 、FE AB ∥得到FE CD ∥,∠D +∠DFE =180°,最后利用角度的和差即可得出答案;(2)类比问题(1)的解题方法即可得解;(3)类比问题(1)的解题方法即可得解.(1)解:过点F 作FE AB ∥,如图,∴∠B +∠BFE =180°(两直线平行,同旁内角相等),∵AB CD ∥、FE AB ∥(已知)∴FE CD ∥(平行于同一直线的两直线平行),∴∠D +∠DFE =180°(两直线平行,同旁内角互补),∴∠B +∠BFE +∠D =∠B +∠BFE +∠EFD +∠D =360°;故答案为:两直线平行,同旁内角互补;FE CD ∥,平行于同一直线的两直线平行;两直线平行,同旁内角互补;(2)解:选图(2),∠D 与∠B 、∠F 的数量关系为:∠BDF +∠B =∠F ;理由如下:过点D 作DC//AB ,∴∠B =∠BDC ,∵AB EF ∥,DC AB ∥,∴DC EF ∥,∴∠CDF =∠F ,∴∠BDF +∠BDC =∠F ,即∠BDF +∠B =∠F ;选图(3),∠D 与∠B 、∠F 的数量关系:∠BDF +∠B =∠F过点D 作DC AB ∥,∴∠B =∠BDC ,∵AB EF ∥,DC AB ∥,∴DC EF ∥,∴∠CDF =∠F ,∴∠BDF +∠BDC =∠F ,即∠BDF +∠B =∠F∠BDF +∠B =∠F ;(3)解:90αβγ∠+∠-∠=︒如图(4)所示,过点C 作MC AB ∥,过D 作DN EF ∥,∴BCM α∠=∠,NDE g Ð=Ð,∵AB CM ∥,EF AB ∥,DN EF∥∴AB EF CM DN ∥∥∥,∴CDN MCD Ð=Ð,∵90MCD BCM Ð+Ð=°,CDN NDE b Ð=Ð+Ð,∴90αβγ∠+∠-∠=︒.【点拨】本题考查根据平行线的性质探究角的关系和平行线公理推论的运用,熟练掌握平行线的性质和平行线公理推论的运用是解题的关键.举一反三:【变式】已知:AB ∥EF ,在平面内任意选取一点C .利用平行线的性质,探究∠B 、∠F、∠C满足的数量关系.(1)将探究∠B、∠C、∠F之间的数量关系填写下表:(2)请选择其中一个图形进行说明理由.图(2)∠F-∠B=∠C图(3)∠B-∠F=∠C图(4)∠B+∠F+∠C=360°图(5)∠B-∠F=∠C图(6)∠F-∠B=∠C(2)解:图(1)∠C与∠B、∠F之间的数量关系是:∠B+∠F=∠C.理由:过点C作CG∥AB,∴∠BCG=∠B,∵AB∥EF,∴CG∥EF,∴∠GCF=∠F,∴∠BCG+∠GCF=∠B+∠F,∴∠B+∠F=∠BCF;图(2)∠C与∠B、∠F之间的数量关系是:∠F-∠B=∠C.理由:过点C作CG∥AB,∴∠BCG=∠B,∵AB∥EF,∴CG∥EF,∴∠GCF=∠F,∴∠GCF-∠BCG=∠F-∠B,∴∠F-∠B=∠BCF;图(3)∠C与∠B、∠F之间的数量关系是:∠B-∠F=∠C.理由:过点C作CG∥AB,∴∠BCG=∠B,∵AB∥EF,∴CG∥EF,∴∠GCF=∠F,∴∠BCG-∠GCF=∠B-∠F,∴∠B-∠F=∠BCF;图(4)∠C与∠B、∠F之间的数量关系是:∠B+∠F+∠C=360°.理由:过点C作CG∥AB,∴∠BCG+∠B=180°,∵AB∥EF,∴CG∥EF,∴∠GCF+∠F=180°,∴∠BCG+∠B+∠GCF+∠F=180°+180°,∴∠B+∠F+∠BCF=360°;图(5)∠C与∠B、∠F之间的数量关系是:∠B-∠F=∠C.理由:过点C作CG∥AB,∴∠BCG=∠B,∵AB∥EF,∴CG∥EF,∴∠GCF=∠F,∴∠BCG-∠GCF=∠B-∠F,∴∠B-∠F=∠BCF;图(6)∠C与∠B、∠F之间的数量关系是:∠F-∠B=∠C.理由:过点C作CG∥AB,∴∠BCG=∠B,∵AB∥EF,∴CG∥EF,∴∠GCF=∠F,∴∠GCF-∠BCG=∠F-∠B,∴∠F-∠B=∠BCF;【点拨】本题考查平行线的判定和性质,解题的关键是学会添加常用辅助线,构造平行线解决问题.。

人教版七年级数学下册练习第3讲 平行线的构造模型及综合(含答案)

人教版七年级数学下册练习第3讲 平行线的构造模型及综合(含答案)

人教版七年级数学下册练习第3讲平行线的构造模型及综合命题:例:如图,有下列三个条件:①DE∥BC:②∠1=∠2;③∠B=∠C.(1)若从这三个条件中任选两个作为题设,另一个作为结论,组成一个命题,一共能组成几个命题,请你都写出来;(2)请你就其中的一个真命题给出推理过程。

平移:1.小明和小华在手工制作课上用铁丝制作楼梯模型如图1 所示,那么他们用的铁丝( )A、一样多B、小明的多C、小华的多D、不能确定2.如图,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么第4个图案中有白色六边形地面砖______块,第n个图案中有白色地面砖__________ 块.3.如图,将Rt△ABC沿AB方向平移得到Rt△DEF,已知BE=6,EF=8,CG=3,求阴影部分的面积。

探究:夹在平行线间的折线问题,平行线的构造:“铅笔”型,“M”型,过拐点作已知直线的平行线。

例1.已知:如图,AC∥BD,折线AMB夹在两条平行线间.判断∠M,∠A,∠B的关系;(1)(2)例2.如图所示,已知AB∥CD,分别探讨下面的四个图形中∠APC与∠PAB﹑∠PCD的关系,请你从所得关系中任意选取一个加以说明。

(1) (2)练习:1.如图1所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为.2.如图2所示是汽车灯的剖面图,从位于O 点灯发出光照射到凹面镜上反射出的光线BA,CD 都是水平线,若∠ABO=α,∠DCO=60∘,则∠BOC 的度数为( )A.180∘−αB. 120∘−αC. 60°+αD. 60∘−α3.如图3,AB ∥CD ,∠B=115°,∠C=45°,则∠BEC 的度数为__________°.图1 图2 图3例3:如图3-1,已知:AB ∥CD ,点E ,F 分别在AB ,CD 上,且OE ⊥OF . (1)求证:∠1+∠2=90°;(2)如图3-2,分别在OE ,CD 上取点G ,H ,使FO 平分∠CFG ,EO 平分∠AEH ,求证:FG ∥EH .例4:如图4,a ∥b ,∠2=∠3,∠1=40°,则∠4的度数是 度.EDCBA 4321ba图4H GABCDOE F 12图3-2图3-121F E ODC BA例5:如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°,求证:AB∥EF:练习:1.如图AB∥CD,∠B=∠C,求证:BE∥CF。

七年级数学下册平行线四大模型专项训练(40道)(举一反三)(人教版)

七年级数学下册平行线四大模型专项训练(40道)(举一反三)(人教版)

专题5.3 平行线四大模型专项训练(40道)【人教版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,涵盖了平行线四大模型的综合问题的所有类型!【模型1 “铅笔”模型】1.(2022·湖南·永州市剑桥学校七年级阶段练习)如图所示,l1∥l2,∥1=105°,∥2=140°,则∥3的度数为()A.55°B.60°C.65°D.70°【答案】C【分析】首先过点A作AB∥l1,由l1∥l2,即可得AB∥l1∥l2,然后根据两直线平行,同旁内角互补,即可求得∥4与∥5的度数,又由平角的定义,即可求得∥3的度数.【详解】解:过点A作AB∥l1,∥l1∥l2,∥AB∥l1∥l2,∥∥1+∥4=180°,∥2+∥5=180°,∥∥1=105°,∥2=140 °,∥∥4=75°,∥5=40°,∥∥4+∥5+∥3=180°,∥∥3=65°.故选:C.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质. 2.(2022·贵州六盘水·七年级期中)如图所示,若AB∥EF,用含α、β、γ的式子表示x,应为()A.α+β+γB.β+γ−αC.180°−α−γ+βD.180°+α+β−γ【点睛】本题考查了平行线的性质的应用,主要考查了学生的推理能力.3.(2022·甘肃·北京师范大学庆阳实验学校七年级期中)如图,如果AB∥CD,那么∥B+∥F +∥E+∥D=___°.【答案】540∥AB∥CD,EM∥CD,FN∥CD,F,∠E=80°,求∠BFD的度数.【答案】∠BFD=140°.【分析】先设∠ABE=2x,∠CDE=2y,由题意的∠ABF=∠FBE=x,∠EDF=∠CDF=y,题意得到x+y=140°;由侧M图ABFDC知,∠BFD=∠ABF+∠CDF=x+y=140°.【详解】设∠ABE=2x,∠CDE=2y,∵∠ABE与∠CDE的角平分线相交于点F,∴∠ABF=∠FBE=x,∠EDF=∠CDF=y,由笔尖图ABEDC知,∠ABE+∠E+∠CDE=360°,即2x+80°+2y=360°,x+y=140°,由侧M图ABFDC知,∠BFD=∠ABF+∠CDF=x+y=140°.【点睛】本题考查平行线的性质和角平分线,解题的关键是设∠ABE=2x,∠CDE=2y,并由题意得到x,y的关系式.5.(2022·全国·七年级专题练习)已知如图所示,AB//CD,∠ABE=3∠DCE,∠DCE=28°,求∠E的度数.【答案】56°.【分析】由平行线的性质可知∠ABF=∠DFE,由三角形邻补角可得∠E=∠ABE−∠DCE,带入题干信息即可得出答案.【详解】由平行线的性质可知∠ABF=∠DFE,由三角形邻补角以及鸟嘴图DCEFBA知∠E=∠ABE−∠DCE=3×28°−28°=56°.【点睛】本题考查平行线的性质,知道同位角相等时解题的关键.6.(2022·全国·七年级)(1)问题情景:如图1,AB//CD,∥P AB=130°,∥PCD=120°,求∥APC 的度数.小明想到一种方法,但是没有解答完:如图2,过P作PE//AB,∥∥APE+∥P AB=180°,∥∥APE=180°-∥P AB=180°-130°=50°∥AB//CD,∥PE//CD.……请你帮助小明完成剩余的解答.(2)问题迁移:请你依据小明的解题思路,解答下面的问题:如图3,AD//BC,当点P在A、B两点之间时,∥ADP=∥α,∥BCP=∥β,则∥CPD,∥α,∥β之间有何数量关系?请说明理由.∥AD∥BC∥∥CPD=∥DPE+∥CPE=∥α+∥β.【点睛】本题考查了平行线的性质和判定的应用,主要考察学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.7.(2022·全国·七年级专题练习)如图1,四边形MNBD为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(∠BAE、∠AEC、∠ECD),则∠BAE+∠AEC+∠ECD=__________°.(2)如图3,将长方形纸片剪三刀,剪出四个角(∠BAE、∠AEF、∠EFC、∠FCD),则∠BAE+∠AEF+∠EFC+∠FCD=__________°.(3)如图4,将长方形纸片剪四刀,剪出五个角(∠BAE、∠AEF、∠EFG、∠FGC、∠GCD),则∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=___________°.(4)根据前面探索出的规律,将本题按照上述剪法剪n刀,剪出(n+1)个角,那么这(n+1)个角的和是____________°.【答案】(1)360;(2)540;(3)720;(4)180n.【分析】(1)过点E作EH∥AB,再根据两直线平行,同旁内角互补即可得到三个角的和等于180°的2倍;(2)分别过E、F分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(3)分别过E、F、G分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(4)根据前三问个的剪法,剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.【详解】(1)过E作EH∥AB(如图②).∥原四边形是长方形,∥AB∥CD,又∥EH∥AB,∥CD∥EH(平行于同一条直线的两条直线互相平行).∥EH∥AB,∥∥A+∥1=180°(两直线平行,同旁内角互补).∥CD∥EH,∥∥2+∥C=180°(两直线平行,同旁内角互补).又∥∥1+∥2=∥AEC,∥∥BAE+∥AEC+∥ECD=360°;(2)分别过E、F分别作AB的平行线,如图③所示,用上面的方法可得∥BAE+∥AEF+∥EFC+∥FCD=540°;(3)分别过E、F、G分别作AB的平行线,如图④所示,用上面的方法可得∥BAE+∥AEF+∥EFG+∥FGC+∥GCD=720°;(4)由此可得一般规律:剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.故答案为:(1)360;(2)540;(3)720;(4)180n.【点睛】本题主要考查了多边形的内角和,作平行线并利用两直线平行,同旁内角互补是解本题的关键,总结规律求解是本题的难点.8.(2022·安徽合肥·七年级期末)问题情景:如图1,AB∥CD,∥P AB=140°,∥PCD=135°,求∥APC的度数.(1)丽丽同学看过图形后立即口答出:∥APC=85°,请补全她的推理依据.如图2,过点P作PE∥AB,因为AB∥CD,所以PE∥CD.()所以∥A+∥APE=180°,∥C+∥CPE=180°.()因为∥P AB=140°,∥PCD=135°,所以∥APE=40°,∥CPE=45°,∥APC=∥APE+∥CPE=85°.问题迁移:(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∥ADP=∥α,∥BCP=∥β,求∥CPD与∥α、∥β之间有什么数量关系?请说明理由.(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请直接写出∥CPD与∥α、∥β之间的数量关系.【答案】(1)平行于同一条直线的两条直线平行(或平行公理推论),两直线平行,同旁内角互补;(2)∠CPD=∠α+∠β,理由见解析;(3)∠CPD=∠β−∠α或∠CPD=∠α−∠β【分析】(1)根据平行线的判定与性质填写即可;(2)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∥α=∥DPE,∥β=∥CPE,即可得出答案;(3)画出图形(分两种情况①点P在BA的延长线上,②点P在AB的延长线上),根据平行线的性质得出∥α=∥DPE,∥β=∥CPE,即可得出答案.【详解】解:(1)如图2,过点P作PE∥AB,因为AB∥CD,所以PE∥CD.(平行于同一条直线的两条直线平行)所以∥A+∥APE=180°,∥C+∥CPE=180°.(两直线平行同旁内角互补)因为∥P AB=140°,∥PCD=135°,所以∥APE=40°,∥CPE=45°,∥APC=∥APE+∥CPE=85°.故答案为:平行于同一条直线的两条直线平行;两直线平行,同旁内角互补;(2)∥CPD=∥α+∥β,理由如下:如图3所示,过P作PE∥AD交CD于E,∥AD∥BC,∥AD∥PE∥BC,∥∥α=∥DPE,∥β=∥CPE,∥∥CPD=∥DPE+∥CPE=∥α+∥β;(3)当P在BA延长线时,如图4所示:过P作PE∥AD交CD于E,同(2)可知:∥α=∥DPE,∥β=∥CPE,∥∥CPD=∥β-∥α;当P在AB延长线时,如图5所示:同(2)可知:∥α=∥DPE,∥β=∥CPE,∥∥CPD=∥α-∥β.综上所述,∥CPD与∥α、∥β之间的数量关系为:∥CPD=∥β-∥α或∥CPD=∥α-∥β.【点睛】本题考查了平行线的性质和判定定理,正确作出辅助线是解答此题的关键.【模型2 “猪蹄”模型】9.(2022·全国·七年级)如图所示,直角三角板的60°角压在一组平行线上,AB∥CD,∠ABE= 40°,则∠EDC=______度.【答案】20【分析】如图(见详解),过点E作EF∥AB,先证明AB∥EF∥CD,再由平行线的性质定理得到∠ABE=∠BEF=40°,∠EDC=∠DEF,结合已知条件∠BED=60°即可得到.【详解】解:由题意可得:∠BED=60°.如图,过点E作EF∥AB,又∥AB∥CD,∥AB∥EF∥CD,∥∠ABE=∠BEF=40°,∠EDC=∠DEF,∥∠BED=60°,∥∠DEF+∠BEF=60°,∥∠DEF=20°,即:∠EDC=20°.故答案为:20.【点睛】本题重点考查了平行线的性质定理的运用.从“基本图形”的角度看,本题可以看作是“M”型的简单运用.解法不唯一,也可延长B E交CD于点G,结合三角形的外角定理来解决;或连结BD,结合三角形内角和定理来解决.10.(2022·河南平顶山·八年级期末)如图:(1)如图1,AB∥CD,∠ABE=45°,∠CDE=21°,直接写出∠BED的度数.(2)如图2,AB∥CD,点E为直线AB,CD间的一点,BF平分∠ABE,DF平分∠CDE,写出∠BED 与∠F之间的关系并说明理由.(3)如图3,AB与CD相交于点G,点E为∠BGD内一点,BF平分∠ABE,DF平分∠CDE,若∠BGD= 60°,∠BFD=95°,直接写出∠BED的度数.【答案】(1)∥BED=66°;(2)∥BED=2∥F,见解析;(3)∥BED的度数为130°.【分析】(1)首先作EF∥AB,根据直线AB∥CD,可得EF∥CD,所以∥ABE=∥1=45°,∥CDE=∥2=21°,据此推得∥BED=∥1+∥2=66°;(2)首先作EG∥AB,延长DE交BF于点H,利用三角形的外角性质以及角平分线的定义即可得到∥BED=2∥F;(3)延长DF交AB于点H,延长GE到I,利用三角形的外角性质以及角平分线的定义即可得到∥BED的度数为130°.(1)解:(1)如图,作EF∥AB,,∥直线AB∥CD,∥EF∥CD,∥∥ABE=∥1=45°,∥CDE=∥2=21°,∥∥BED=∥1+∥2=66°;(2)解:∥BED=2∥F,理由是:过点E作EG∥AB,延长DE交BF于点H,∥AB∥CD,∥AB∥CD∥EG,∥∥5=∥1+∥2,∥6=∥3+∥4,又∥BF平分∥ABE,DF平分∥CDE,∥∥2=∥1,∥3=∥4,则∥5=2∥2,∥6=2∥3,∥∥BED=2(∥2+∥3),又∥F+∥3=∥BHD,∥BHD+∥2=∥BED,∥∥3+∥2+∥F=∥BED,综上∥BED=∥F+12∥BED,即∥BED=2∥F;(3)解:延长DF交AB于点H,延长GE到I,∥∥BGD=60°,∥∥3=∥1+∥BGD=∥1+60°,∥BFD=∥2+∥3=∥2+∥1+60°=95°,∥∥2+∥1=35°,即2(∥2+∥1) =70°,∥BF平分∥ABE,DF平分∥CDE,∥∥ABE=2∥2,∥CDE=2∥1,∥∥BEI=∥ABE +∥BGE=2∥2+∥BGE,∥DEI=∥CDE+∥DGE=2∥1+∥DGE,∥∥BED=∥BEI+∥DEI=2(∥2+∥1)+( ∥BGE+∥DGE)=70°+60°=130°,∥∥BED的度数为130°.【点睛】本题考查了平行线的判定和性质,三角形的外角性质等知识,掌握平行线的判定和性质,正确添加辅助线是解题关键.11.(2022·江苏常州·七年级期中)问题情境:如图①,直线AB∥CD,点E,F分别在直线AB,CD上.(1)猜想:若∠1=130°,∠2=150°,试猜想∠P=______°;(2)探究:在图①中探究∠1,∠2,∠P之间的数量关系,并证明你的结论;(3)拓展:将图①变为图②,若∠1+∠2=325°,∠EPG=75°,求∠PGF的度数.∥AB∥CD,∥AB∥MN∥CD.∥∠1+∠EPN=180°,∠2+∠FPN=180°.∥∠1=130°,∠2=150°,∥∠1+∠2+∠EPN+∠FPN=360°∥∠EPN+FPN=360°−130°−150°=80°.∥∠P=∠EPN+∠FPN,∥∥P=80°.故答案为:80°;(2)解:∠P=360°−∠1−∠2,理由如下:如图过点P作MN∥AB,∥AB∥CD,∥AB∥MN∥CD.∥∠1+∠EPN=180°,∠2+∠FPN=180°.∥∠1+∠2+∠EPN+∠FPN=360°∥∠EPN+∠FPN=∠P,∠P=360°−∠1−∠2.(3)如图分别过点P、点G作MN∥AB、KR∥AB∥AB∥CD,∥AB∥MN∥KR∥CD.∥∠1+∠EPN=180°,∠NPG+∠PGR=180°,∠RGF+∠2=180°.∥∠1+∠EPN+∠NPG+∠PGR+RGF+∠2=540°∥∠EPG=∠EPN+∠NPG=75°,∠PGR+∠RGF=∠PGF,∠1+∠2=325°,∥∠PGF+∠1+∠2+∠EPG=540°∥∠PGF=540°−325°−75°=140°故答案为:140°.【点睛】本题考查了平行线的性质定理,准确的作出辅助线和正确的计算是解决本题的关键.12.(2022·山东聊城·七年级阶段练习)已知直线AB//CD,EF是截线,点M在直线AB、CD之间.(1)如图1,连接GM,HM.求证:∥M=∥AGM+∥CHM;(2)如图2,在∥GHC的角平分线上取两点M、Q,使得∥AGM=∥HGQ.试判断∥M与∥GQH 之间的数量关系,并说明理由.解:如图:过点M作MN∥AB,∥MN∥AB∥CD,∥∠AGM=∠GMN,∠CHM=∠HMN,∥∠M=∠GMN+∠HMN,∥∠M=∠AGM+∠CHM.(2)解:∠GQH=180°−∠M,理由如下:如图:过点M作MN∥AB,由(1)知∠M=∠AGM+∠CHM,∥HM平分∠GHC,∥∠CHM=∠GHM,∥∥AGM=∥HGQ,∥∠M=∠HGQ+∠GHM,∥∠HGQ+∠GHM+∠GQH=180°,∥∠GQH=180°−∠M.【点睛】本题考查了利用平行线的性质求角之间的数量关系,正确的作出辅助线是解决本题的关键,同时这也是比较常见的几何模型“猪蹄模型”的应用.13.(2022·广东韶关·七年级期中)如图1,点A、B分别在直线GH、MN上,∠GAC=∠NBD,∠C=∠D.(1)求证:GH//MN;(提示:可延长AC交MN于点P进行证明)(2)如图2,AE平分∠GAC,DE平分∠BDC,若∠AED=∠GAC,求∠GAC与∠ACD之间的数量关系;∠GAC,若(3)在(2)的条件下,如图3,BF平分∠DBM,点K在射线BF上,∠KAG=13∠AKB=∠ACD,直接写出∠GAC的度数.【答案】(1)见解析;(2)∠ACD =3∠GAC ,见解析;(3)(54019)°或(54023)°. 【分析】(1)根据平行线的判定与性质求证即可; (2)根据三角形的内角和为180°和平角定义得到∠AQD =∠E +∠EAQ ,结合平行线的性质得到∠BDQ =∠E +∠EAQ ,再根据角平分线的定义证得∠CDB =2∠E +∠GAC ,结合已知即可得出结论;(3)分当K 在直线GH 下方和当K 在直线GH 上方两种情况,根据平行线性质、三角形外角性质、角平分线定义求解即可.【详解】解:(1)如图1,延长AC 交MN 于点P ,∥∠ACD =∠C ,∥AP//BD ,∥∠NBD =∠NPA ,∥∠GAC =∠NBD ,∥∠GAC =∠NPA ,∥GH//MN ;(2)延长AC 交MN 于点P ,交DE 于点Q ,∥∠E +∠EAQ +∠AQE =180°,∠AQE +∠AQD =180°,∥∠AQD =∠E +∠EAQ ,∥AP//BD ,∥∠AQD =∠BDQ ,∥∠BDQ =∠E +∠EAQ ,∥AE 平分∠GAC ,DE 平分∠BDC ,∥∠GAC =2∠EAQ ,∠CDB =2∠BDQ ,∥∠CDB =2∠E +∠GAC ,∥∠AED =∠GAC ,∠ACD =∠CDB ,∥GH//MN,540°540°14.(2022·全国·九年级专题练习)如图所示,已知AB//CD,BE平分∠ABC,DE平分∠ADC,(∠A+∠C)求证:∠E=12∥AB∥CD,(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∥BED.求证:∥BED=∥B+∥D;(2)如图,连接AD,BC,BF平分∥ABC,DF平分∥ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∥ABC=50°,∥ADC=60°,求∥BFD的度数.②如图3,当点B在点A的右侧时,设∥ABC=α,∥ADC=β,请你求出∥BFD的度数.(用含有α,β的式子表示)【答案】(1)见解析;(2)55°;(3)180°−12α+12β【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F作FE//AB,当点B在点A的左侧时,根据∠ABC=50°,∠ADC=60°,根据平行线的性质及角平分线的定义即可求∠BFD的度数;②如图3,过点F作EF//AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,根据平行线的性质及角平分线的定义即可求出∠BFD的度数.【详解】解:(1)如图1,过点E作EF//AB,则有∠BEF=∠B,∵AB//CD,∴EF//CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;(2)①如图2,过点F作FE//AB,有∠BFE=∠FBA.∵AB//CD,∴EF//CD.∴∠EFD=∠FDC.∴∠BFE+∠EFD=∠FBA+∠FDC.即∠BFD=∠FBA+∠FDC,有∠BFE+∠FBA=180°.(1)判定∥BAE,∥CDE与∥AED之间的数量关系,并证明你的结论;(2)如图2,若∥BAE,∥CDE的角平分线交于点F,直接写出∥AFD与∥AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∥AGD的余角等于2∥E的补角,求∥BAE的大小.【答案】(1)∠BAE+∠CDE=∠AED;【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.17.(2022·广东·高州市第一中学附属实验中学七年级阶段练习)如图1,已知AB∥CD,∥B =30°,∥D=120°;(1)若∥E=60°,则∥F=;(2)请探索∥E与∥F之间满足的数量关系?说明理由;(3)如图2,已知EP平分∥BEF,FG平分∥EFD,反向延长FG交EP于点P,求∥P的度数.【答案】(1)90°(2)∠F=∠E+30°,理由见解析(3)15°【分析】(1)如图1,分别过点E,F作EM//AB,FN//AB,根据平行线的性质得到∠B=∠BEM=30°,∠MEF=∠EFN,∠D+∠DFN=180°,代入数据即可得到结论;(2)如图1,根据平行线的性质得到∠B=∠BEM=30°,∠MEF=∠EFN,由AB//CD,AB//FN,得到CD//FN,根据平行线的性质得到∠D+∠DFN=180°,于是得到结论;(3)如图2,过点F作FH//EP,设∠BEF=2x°,则∠EFD=(2x+30)°,根据角平分线的定义得到∠PEF=12∠BEF=x°,∠EFG=12∠EFD=(x+15)°,根据平行线的性质得到∠PEF=∠EFH=x°,∠P=∠HFG,于是得到结论.(1)解:如图1,分别过点E,F作EM//AB,FN//AB,∴EM//AB//FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB//CD,AB//FN,∴CD//FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°∴∠EFD=∠BEF+30°=90°;故答案为:90°;(2)解:如图1,分别过点E,F作EM//AB,FN//AB,∴EM//AB//FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB//CD,AB//FN,∴CD//FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°,∴∠EFD=∠BEF+30°;(3)解:如图2,过点F作FH//EP,由(2)知,∠EFD=∠BEF+30°,设∠BEF=2x°,则∠EFD=(2x+30)°,∵EP平分∠BEF,GF平分∠EFD,∴∠PEF=12∠BEF=x°,∠EFG=12∠EFD=(x+15)°,∵FH//EP,∴∠PEF=∠EFH=x°,∠P=∠HFG,∵∠HFG=∠EFG−∠EFH=15°,∴∠P=15°.【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质定理是解题的关键.18.(2022·河南·商丘市第十六中学七年级期中)已知AB∥CD,线段EF分别与AB,CD相交于点E,F.(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知∥A=35°,∥C=62°,求∥APC的度数;解:过点P作直线PH∥AB,所以∥A=∥APH,依据是;因为AB∥CD,PH∥AB,所以PH∥CD,依据是;所以∥C=(),所以∥APC=()+()=∥A+∥C=97°.(2)当点P,Q在线段EF上移动时(不包括E,F两点):①如图2,∥APQ+∥PQC=∥A+∥C+180°成立吗?请说明理由;②如图3,∥APM=2∥MPQ,∥CQM=2∥MQP,∥M+∥MPQ+∥PQM=180°,请直接写出∥M,∥A与∥C的数量关系.【答案】(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∥CPH;∥APH,∥CPH;(2)①∥APQ+∥PQC=∥A+∥C+180°成立,理由见解答过程;②3∥PMQ+∥A+∥C=360°.【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据∥APM=2∥MPQ,∥CQM=2∥MQP,∥PMQ+∥MPQ+∥PQM =180°,即可证明∥PMQ,∥A与∥C的数量关系.【详解】解:过点P作直线PH∥AB,所以∥A=∥APH,依据是两直线平行,内错角相等;因为AB∥CD,PH∥AB,所以PH∥CD,依据是平行于同一条直线的两条直线平行;所以∥C=(∥CPH),所以∥APC=(∥APH)+(∥CPH)=∥A+∥C=97°.故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∥CPH;∥APH,∥CPH;(2)①如图2,∥APQ+∥PQC=∥A+∥C+180°成立,理由如下:过点P作直线PH∥AB,QG∥AB,∥AB∥CD,∥AB∥CD∥PH∥QG,∥∥A=∥APH,∥C=∥CQG,∥HPQ+∥GQP=180°,∥∥APQ+∥PQC=∥APH+∥HPQ+∥GQP+∥CQG=∥A+∥C+180°.∥∥APQ+∥PQC=∥A+∥C+180°成立;②如图3,过点P作直线PH∥AB,QG∥AB,MN∥AB,∥AB∥CD,∥AB∥CD∥PH∥QG∥MN,∥∥A=∥APH,∥C=∥CQG,∥HPQ+∥GQP=180°,∥HPM=∥PMN,∥GQM=∥QMN,∥∥PMQ=∥HPM+∥GQM,∥∥APM=2∥MPQ,∥CQM=2∥MQP,∥PMQ+∥MPQ+∥PQM=180°,∥∥APM+∥CQM=∥A+∥C+∥PMQ=2∥MPQ+2∥MQP=2(180°﹣∥PMQ),∥3∥PMQ+∥A+∥C=360°.【点睛】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.19.(2022·湖北武汉·七年级期末)如图1,点A在直线MN上,点B在直线ST上,点C在MN,ST之间,且满足∠MAC+∠ACB+∠SBC=360°.(1)证明:MN//ST;(2)如图2,若∠ACB=60°,AD//CB,点E在线段BC上,连接AE,且∠DAE=2∠CBT,试判断∠CAE与∠CAN的数量关系,并说明理由;(3)如图3,若∠ACB=180°(n为大于等于2的整数),点E在线段BC上,连接AE,若∠MAE=nn∠CBT,则∠CAE:∠CAN=______.【答案】(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB,根据已知证明∥MAB+∥SBA=180°,即可得证;(2)作CF∥ST,设∥CBT=α,表示出∥CAN,∥ACF,∥BCF,根据AD∥BC,得到∥DAC=120°,求出∥CAE即可得到结论;(3)作CF∥ST,设∥CBT=β,得到∥CBT=∥BCF=β,分别表示出∥CAN和∥CAE,即可得到比值.【详解】解:(1)如图,连接AB,,∵∠MAC+∠ACB+∠SBC=360°,∠ACB+∠ABC+∠BAC=180°,∴∠MAB+∠SBA=180°,∴MN//ST(2)∠CAE=2∠CAN,理由:作CF//ST,则MN//CF//ST,如图,设∠CBT=α,则∠DAE=2α.∠BCF=∠CBT=α,∠CAN=∠ACF=60°−α,∵AD//BC,∠DAC=180°−∠ACB=120°,∴∠CAE=120°−∠DAE=120°−2α=2(60°−α)=2∠CAN.即∠CAE=2∠CAN.(3)作CF//ST,则MN//CF//ST,如图,设∠CBT=β,则∠MAE=nβ.∵CF//ST,∴∠CBT=∠BCF=β,∠ACF=∠CAN=180°n −β=180°−nβn,∠CAE=180°−∠MAE−∠CAN=180°−nβ−180°n +β=n−1n(180°−nβ),∠CAE:∠CAN=n−1n :1n=n−1,故答案为n−1.【点睛】本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式.20.(2022·重庆江北·七年级期末)如图1,AB//CD,点E、F分别在AB、CD上,点O在直线AB、CD之间,且∠EOF=100°.(1)求∠BEO+∠OFD的值;(2)如图2,直线MN分别交∠BEO、∠OFC的角平分线于点M、N,直接写出∠EMN−∠FNM 的值;(3)如图3,EG在∠AEO内,∠AEG=m∠OEG;FH在∠DFO内,∠DFH=m∠OFH,直线MN 分别交EG、FH分别于点M、N,且∠FMN−∠ENM=50°,直接写出m的值.∥AB∥CD,∥EM平分∥BEO,FN平分∥CFO,设∠BEM=∠OEM=x,∠CFN=∠OFN=y,∥∠BEO+∠DFO=260°∥∠BEO+∠DFO=2x+180°−2y=260°,∥x-y=40°,∥MK∥AB,NH∥CD,AB∥CD,∥AB∥MK∥NH∥CD,∥∠EMK=∠BEM=x,∠HNF=∠CFN=y,∠KMN=∠HNM,∥∠EMN+∠FNM=∠EMK+∠KMN−(∠HNM+∠HNF)=x+∠KMN−∠HNM−y=x-y=40°,故∠EMN−∠FNM的值为40°;(3)如图,设直线FK与EG交于点H,FK与AB交于点K,∥AB∥CD,∥∠AKF=∠KFD,∥∠AKF=∠EHK+∠HEK=∠EHK+∠AEG,∥∠KFD=∠EHK+∠AEG,∥∠EHK=∠NMF−∠ENM=50°,∥∠KFD=50°+∠AEG,即∠KFD−∠AEG=50°,∥∠AEG=n∠OEG,FK在∥DFO内,∠DFK=n∠OFK.∥∠CFO=180°−∠DFK−∠OFK=180°−∠KFD−1n∠KFD,∠AEO=∠AEG+∠OEG=∠AEG+1n∠AEG,∥∠BEO+∠DFO=260°,∥∠AEO+∠CFO=100°,∥∠AEG+1n ∠AEG+180°−∠KFD−1n∠KFD=100°,即(1+1n)(∠KFD−∠AEG)=80°,∥(1+1n)×50°=80°,解得n=53.经检验,符合题意,故答案为:53.【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键.21.(2022·黑龙江哈尔滨·七年级期末)已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∥AGH=∥FED,FE∥HE,垂足为E.(1)如图1,求证:HG∥HE;(2)如图2,GM平分∥HGB,EM平分∥HED,GM,EM交于点M,求证:∥GHE=2∥GME;(3)如图3,在(2)的条件下,FK平分∥AFE交CD于点K,若∥KFE:∥MGH=13:5,求∥HED的度数.【答案】(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.【详解】证明:(1)∥AB∥CD,∥∥AFE=∥FED,∥∥AGH=∥FED,∥∥AFE=∥AGH,∥EF∥GH,∥∥FEH+∥H=180°,∥FE∥HE,∥∥FEH=90°,∥∥H=180°﹣∥FEH=90°,∥HG∥HE;(2)过点M作MQ∥AB,∥AB∥CD,∥MQ∥CD,过点H作HP∥AB,∥AB∥CD,∥HP∥CD,∥GM平分∥HGB,∥∥BGM=∥HGM=1∥BGH,2∥EM平分∥HED,∥∥HEM=∥DEM=1∥HED,2∥MQ∥AB,∥∥BGM=∥GMQ,∥MQ∥CD,∥∥QME=∥MED,∥∥GME=∥GMQ+∥QME=∥BGM+∥MED,∥HP∥AB,∥∥BGH=∥GHP=2∥BGM,∥HP∥CD,∥∥PHE=∥HED=2∥MED,∥∥GHE=∥GHP+∥PHE=2∥BGM+2∥MED=2(∥BGM+∥MED),∥∥GHE=∥2GME;(3)过点M作MQ∥AB,过点H作HP∥AB,由∥KFE:∥MGH=13:5,设∥KFE=13x,∥MGH=5x,由(2)可知:∥BGH=2∥MGH=10x,∥∥AFE+∥BFE=180°,∥∥AFE=180°﹣10x,∥FK平分∥AFE,∥AFE,∥∥AFK=∥KFE=12(180°−10x)=13x,即12解得:x=5°,∥∥BGH=10x=50°,∥HP∥AB,HP∥CD,∥∥BGH=∥GHP=50°,∥PHE=∥HED,∥∥GHE=90°,∥∥PHE=∥GHE﹣∥GHP=90°﹣50°=40°,∥∥HED=40°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.22.(2022·广西柳州·七年级期中)已知直线a∥b,直线EF分别与直线a,b相交于点E,F,点A,B分别在直线a,b上,且在直线EF的左侧,点P是直线EF上一动点(不与点E,F 重合),设∥P AE=∥1,∥APB=∥2,∥PBF=∥3.(1)如图1,当点P在线段EF上运动时,试说明∥1+∥3=∥2;(2)当点P在线段EF外运动时有两种情况.①如图2写出∥1,∥2,∥3之间的关系并给出证明;②如图3所示,猜想∥1,∥2,∥3之间的关系(不要求证明).【答案】(1)证明见详解(2)①∠3=∠1+∠2;证明见详解;②∠1=∠2+∠3;证明见详解【分析】(1)如图4过点P作PC∥a,利用平行线的传递性可知PC∥a∥b,根据平行线的性质可知∠1=∠APC,∠3=∠BPC,根据等量代换就可以得出∠2=∠1+∠3;(2)①如图5过点P作PC∥a,利用平行线的传递性可知PC∥a∥b,根据平行线的性质可知∠3=∠BPC,∠1=∠APC,根据等量代换就可以得出∠3=∠1+∠2;②如图6过点P作PC∥a,利用平行线的传递性可知PC∥a∥b,根据平行线的性质可知∠1=∠APC,∠3=∠BPC,根据等量代换就可以得出∠1=∠2+∠3.(1)解:如图4所示:过点P作PC∥a,∥a∥b∥PC∥a∥b∥∠1=∠APC,∠3=∠BPC,∥∠2=∠APC+∠BPC,∥∠2=∠1+∠3;(2)解:①如图5过点P作PC∥a,∥a∥b∥PC∥a∥b∥∠3=∠BPC,∠1=∠APC,∥∠BPC=∠2+∠APC,∥∠3=∠1+∠2;②如图6过点P作PC∥a,∥a∥b∥PC∥a∥b∥∠1=∠APC,∠3=∠BPC,∥∠APC=∠2+∠BPC,∥∠1=∠2+∠3.【点睛】本题利用“猪蹄模型”及其变式考查了利用平行线的性质求角之间的数量关系,准确的作出辅助线和找到对应的内错角是解决本题的关键.【模型3 “臭脚”模型】23.(2022·全国·八年级课时练习)(1)已知:如图(a),直线DE∥AB.求证:∠ABC+∠CDE=∠BCD;(2)如图(b),如果点C在AB与ED之外,其他条件不变,那么会有什么结果?你还能就本题作出什么新的猜想?【答案】(1)见解析;(2)当点C在AB与ED之外时,∠ABC−∠CDE=∠BCD,见解析【分析】(1)由题意首先过点C作CF∥AB,由直线AB∥ED,可得AB∥CF∥DE,然后由两直线平行,内错角相等,即可证得∥ABC+∥CDE=∥BCD;(2)根据题意首先由两直线平行,内错角相等,可得∥ABC=∥BFD,然后根据三角形外角的性质即可证得∥ABC-∥CDE=∥BCD.【详解】解:(1)证明:过点C作CF∥AB,∥AB∥ED,∥AB∥ED∥CF,∥∥BCF=∥ABC,∥DCF=∥EDC,∥∥ABC+∥CDE=∥BCD;(2)结论:∥ABC-∥CDE=∥BCD,证明:如图:∥AB∥ED,∥∥ABC=∥BFD,在∥DFC中,∥BFD=∥BCD+∥CDE,∥∥ABC=∥BCD+∥CDE,∥∥ABC-∥CDE=∥BCD.若点C在直线AB与DE之间,猜想∠ABC+∠BCD+∠CDE=360°,∥AB∥ED∥CF,∥∠ABC+∠BCF=180°,∠CDE+∠DCF=180°,∥∠ABC+∠BCD+∠CDE=∠ABC+∠BCF+∠DCF+∠CDE=360°.【点睛】本题考查的是平行线的性质及三角形外角的性质,熟练掌握平行线的性质是解答本题的关键,注意掌握辅助线的作法.24.(2022·全国·七年级)已知,AE//BD,∠A=∠D.(1)如图1,求证:AB//CD;(2)如图2,作∠BAE的平分线交CD于点F,点G为AB上一点,连接FG,若∠CFG的平分线交线段AG于点H,连接AC,若∠ACE=∠BAC+∠BGM,过点H作HM⊥FH交FG的延长线于点M,且3∠E−5∠AFH=18°,求∠EAF+∠GMH的度数.【答案】(1)见解析;(2)72°【分析】(1)根据平行线的性质得出∠A+∠B=180°,再根据等量代换可得∠B+∠D=180°,最后根据平行线的判定即可得证;(2)过点E作EP//CD,延长DC至Q,过点M作MN//AB,根据平行线的性质及等量代换可得出∠ECQ=∠BGM=∠DFG,再根据平角的含义得出∠ECF=∠CFG,然后根据平行线的性质及角平分线的定义可推出∠BHF=∠CFH,∠CFA=∠FAB;设∠FAB=α,∠CFH=β,根据角的和差可得出∠AEC=2∠AFH,结合已知条件3∠AEC−5∠AFH=180°可求得∠AFH=18°,最后根据垂线的含义及平行线的性质,即可得出答案.【详解】(1)证明:∵AE//BD∴∠A+∠B=180°∵∠A=∠D∴∠B+∠D=180°∴AB//CD;(2)过点E作EP//CD,延长DC至Q,过点M作MN//AB∵AB//CD∴∠QCA=∠CAB,∠BGM=∠DFG,∠CFH=∠BHF,∠CFA=FAG∵∠ACE=∠BAC+∠BGM∴∠ECQ+∠QCA=∠BAC+∠BGM∴∠ECQ=∠BGM=∠DFG∵∠ECQ+ECD=180°,∠DFG+CFG=180°∴∠ECF=∠CFG∵AB//CD∴AB//EP∴∠PEA=∠EAB,∠PEC=∠ECF∵∠AEC=∠PEC−∠PEA∴∠AEC=∠ECF−∠EAB∴∠ECF=∠AEC+∠EAB∵AF平分∠BAE∴∠EAF=∠FAB=12∠EAB∵FH平分∠CFG∴∠CFH=∠HFG=12∠CFG∵CD//AB∴∠BHF=∠CFH,∠CFA=∠FAB设∠FAB=α,∠CFH=β∵∠AFH=∠CFH−∠CFA=∠CFH−∠FAB∴∠AFH=β−α,∠BHF=∠CFH=β∴∠ECF+2∠AFH=∠AEC+∠EAB+2∠AFH=∠AEC+2β∴∠ECF+2∠AFH=∠E+2∠BHF∴∠AEC=2∠AFH∵3∠AEC−5∠AFH=180°∴∠AFH=18°∵FH⊥HM∴∠FHM=90°∴∠GHM=90°−β∵∠CFM+∠NMF=180°∴∠HMB=∠HMN=90°−β∵∠EAF=∠FAB∴∠EAF=∠CFA=∠CFH−∠AFH=β−18°∴∠EAF+∠GMH=β−18°+90°−β=72°∴∠EAF+∠GMH=72°.【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.25.(2022·广东·东莞市光明中学七年级期中)(1)如图(1)AB∥CD,猜想∥BPD与∥B、∥D 的关系,说出理由.(2)观察图(2),已知AB∥CD,猜想图中的∥BPD与∥B、∥D的关系,并说明理由.(3)观察图(3)和(4),已知AB∥CD,猜想图中的∥BPD与∥B、∥D的关系,不需要说明理由.【答案】(1)∥B+∥BPD+∥D=360°,理由见解析;(2)∥BPD=∥B+∥D,理由见解析;(3)∥BPD=∥D-∥B或∥BPD=∥B-∥D,理由见解析【分析】(1)过点P作EF∥AB,根据两直线平行,同旁内角互补即可求解;(2)首先过点P作PE∥AB,由AB∥CD,可得PE∥AB∥CD,根据两直线平行,内错角相等,即可得∥1=∥B,∥2=∥D,则可求得∥BPD=∥B+∥D.(3)由AB∥CD,根据两直线平行,内错角相等与三角形外角的性质,即可求得∥BPD与∥B、∥D的关系.【详解】解:(1)如图(1)过点P作EF∥AB,∥∥B+∥BPE=180°,∥AB∥CD,EF∥AB,∥EF∥CD,∥∥EPD+∥D=180°,∥∥B+∥BPE+∥EPD+∥D=360°,∥∥B+∥BPD+∥D=360°.(2)∥BPD=∥B+∥D.理由:如图2,过点P作PE∥AB,∥AB∥CD,∥PE∥AB∥CD,∥∥1=∥B,∥2=∥D,∥∥BPD=∥1+∥2=∥B+∥D.(3)如图(3),∥BPD=∥D-∥B.理由:∥AB∥CD,∥∥1=∥D,∥∥1=∥B+∥BPD,∥∥D=∥B+∥BPD,即∥BPD=∥D-∥B;如图(4),∥BPD=∥B-∥D.理由:∥AB∥CD,∥∥1=∥B,∥∥1=∥D+∥BPD,∥∥B=∥D+∥BPD,即∥BPD=∥B-∥D.【点睛】此题考查了平行线的性质与三角形外角的性质.此题难度不大,解题的关键是注意掌握平行线的性质,注意辅助线的作法.26.(2022·浙江台州·七年级期末)如图,已知AD⊥AB于点A,AE∥CD交BC于点E,且EF⊥AB 于点F.求证:∠C=∠1+∠2.证明:∥AD⊥AB于点A,EF⊥AB于点F,(已知)∥∠DAB=∠EFB=90°.(垂直的定义)∥AD∥EF,()∥__________=∠1()∥AE∥CD,(已知)∥∠C=________.(两直线平行,同位角相等)∥∠AEB=∠AEF+∠2,∥∠C=∠1+∠2.(等量代换)【答案】见解析【分析】首先根据同位角相等,两直线平行AD//EF,再根两直线平行,内错角相等得到∠AEF=∠1.最后根据两直线平行,同位角相等得到∠C=∠AEB,再进行等量代换即可.【详解】证明:∥AD⊥AB于点A,EF⊥AB于点F,∥∠DAB=∠EFB=90°.∥AD//EF,(同位角相等,两直线平行)∥∠AEF=∠1.(两直线平行,内错角相等)∥AE//CD,∥∠C=∠AEB.∥∠AEB=∠AEF+∠2,∥∠C=∠1+∠2.【点睛】本题考查了平行线的判定和性质的综合应用,掌握相关知识是解题的关键.27.(2022·广东珠海·七年级期中)已知AM//CN,点B为平面内一点,AB⊥BC于B.(1)如图1,点B在两条平行线外,则∠A与∠C之间的数量关系为______;(2)点B在两条平行线之间,过点B作BD⊥AM于点D.①如图2,说明∠ABD=∠C成立的理由;②如图3,BF平分∠DBC交DM于点F,BE平分∠ABD交DM于点E.若∠FCB+∠NCF= 180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∥A+∥C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∥ABF=∥GBF,再设∥DBE=α,∥ABF=β,根据∥CBF+∥BFC+∥BCF=180°,可得2α+β+3α+3α+β=180°,根据AB∥BC,可得β+β+2α=90°,最后解方程组即可得到∥ABE=15°,进而得出∥EBC=∥ABE+∥ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∥AM∥CN,∥∥C=∥AOB,∥AB∥BC,∥∥A+∥AOB=90°,(2)①如图2,过点B作BG∥DM,∥BD∥AM,∥DB∥BG,∥∥DBG=90°,∥∥ABD+∥ABG=90°,∥AB∥BC,∥∥CBG+∥ABG=90°,∥∥ABD=∥CBG,∥AM∥CN,BG∥DM,∴BG//CN,∥∥C=∥CBG,∥ABD=∥C;②如图3,过点B作BG∥DM,∥BF平分∥DBC,BE平分∥ABD,∥∥DBF=∥CBF,∥DBE=∥ABE,由(2)知∥ABD=∥CBG,设∥DBE=α,∥ABF=β,则∥ABE=α,∥ABD=2α=∥CBG,∥GBF=∥AFB=β,∥BFC=3∥DBE=3α,∥∥AFC=3α+β,∥∥AFC+∥NCF=180°,∥FCB+∥NCF=180°,∥∥FCB=∥AFC=3α+β,∥BCF中,由∥CBF+∥BFC+∥BCF=180°得:2α+β+3α+3α+β=180°,∥AB∥BC,∥β+β+2α=90°,∥α=15°,∥∥ABE=15°,∥∥EBC=∥ABE+∥ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.28.(2022·湖南·新田县云梯学校七年级阶段练习)①如图1,AB∥CD,则∠A+∠E+∠C= 360°;②如图2,AB∥CD,则∠P=∠A−∠C;③如图3,AB∥CD,则∠E=∠A+∠1;④如图4,直线AB∥CD∥EF,点O在直线EF上,则∠α−∠β+∠γ=180°.以上结论正确的个数是()A.1个B.2个C.3个D.4个【答案】B【分析】①过点E作直线EF∥AB,由平行线的性质:两直线平行,同旁内角互补,即可得出结论;②如图2,先根据三角形外角的性质得出∥1=∥C+∥P,再根据两直线平行,内错角相等即可作出判断;③如图3,过点E作直线EF∥AB,由平行线的性质可得出∥A+∥AEC﹣∥1=180°,即得∥AEC=180°+∥1﹣∥A;④如图4,根据平行线的性质得出∥α=∥BOF,∥γ+∥COF=180°,再利用角的关系解答即可.【详解】解:①如图1,过点E作直线EF∥AB,∥AB∥CD,∥AB∥CD∥EF,∥∥A+∥1=180°,∥2+∥C=180°,∥∥A+∥B+∥AEC=360°,故①错误;②如图2,∥∥1是∥CEP的外角,∥∥1=∥C+∥P,∥AB∥CD,∥∥A=∥1,即∥P=∥A﹣∥C,故②正确;③如图3,过点E作直线EF∥AB,∥AB∥CD,∥AB∥CD∥EF,∥∥A+∥3=180°,∥1=∥2,∥∥A+∥AEC﹣∥1=180°,即∥AEC=180°+∥1﹣∥A,故③错误;④如图4,∥AB∥EF,∥∥α=∥BOF,∥CD∥EF,∥∥γ+∥COF=180°,∥∥BOF=∥COF+∥β,∥∥COF=∥α﹣∥β,∥∥γ+∥α﹣∥β=180°,故④正确;综上结论正确的个数为2,故选:B.【点睛】本题考查的是平行线的性质及三角形外角的性质,熟练掌握平行线的性质,根据题意作出辅助线是解答此题的关键.【模型4 “铅笔”模型】29.(2022·福建·浦城县教师进修学校八年级期中)如图,直线MA∥NB,∥A=70°,∥B=40°,则∥P=___________度.【答案】30【答案】180°【分析】延长EA交CD于点F,则有∥2+∥EFC=∥3,然后根据AB//CD可得∥1=∥EFD,最后根据领补角及等量代换可求解.【详解】解:延长EA交CD于点F,如图所示:∵AB//CD,∴∥1=∥EFD,∵∥2+∥EFC=∥3,∴∠EFC=∠3−∠2,∵∠EFC+∠EFD=180°,∴∠1+∠3−∠2=180°;故答案为180°.【点睛】本题主要考查三角形外角的性质及平行线的性质,熟练掌握三角形外角的性质及平行线的性质是解题的关键.31.(2022·湖北·浠水县兰溪镇兰溪初级中学七年级期中)如图,已知AB//DE,∥ABC=80°,∥CDE=140°,则∥BCD=_____.【答案】40°【分析】延长ED交BC于M,根据两直线平行,内错角相等证明∥BMD=∥ABC,再求解∠CMD,再利用三角形的外角的性质可得答案.【详解】解:延长ED交BC于M,∥AB//DE,∥∥BMD=∥ABC=80°,∥∠CMD=180°−∠BMD=100°;又∥∥CDE=∥CMD+∥C,∥∠BCD=∠CDE−∠CMD=140°−100°=40°.。

七年级(下)数学重难点专题训练:平行线中拐点问题模型汇总(40道经典题)

七年级(下)数学重难点专题训练:平行线中拐点问题模型汇总(40道经典题)

七年级下数学重难点专题训练:平行线拐点问题模型汇总模型一:“M”型(猪蹄模型)例:1.(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.【分析】(1)过点E作EF∥AB,依据平行线的性质,即可得到∠3+∠4=∠1+∠2,进而得出∠BED=∠1+∠2;(2)分别过点E、G作EF∥AB,GH∥AB,依据平行线的性质,即可得到∠1+∠5+∠6=∠3+∠4+∠2,进而得到∠1+∠EGH=∠2+∠BEG;(3)分别过平行线间的折点作AB的平行线,依据平行线的性质,即可得到∠1、∠3、∠5与∠2、∠4、∠6之间的关系.【解答】解:(1)证明:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠3=∠1,∠4=∠2,∴∠3+∠4=∠1+∠2,即∠BED=∠1+∠2;(2)∠1+∠EGH=∠2+∠BEG,理由如下:如图,分别过点E、G作EF∥AB,GH∥AB,∵AB∥CD,∴AB∥EF∥GH∥CD,∴∠1=∠3,∠4=∠5,∠6=∠2,∴∠1+∠5+∠6=∠3+∠4+∠2,即∠1+∠EGH=∠2+∠BEG;(3)由题可得,向左的角度数之和与向右的角度数之和相等,∴∠1、∠3、∠5与∠2、∠4、∠6之间的关系为:∠1+∠3+∠5=∠2+∠4+∠6.通关训练:2.如图,已知AB∥CD,∠B=30°,∠D=120°.(1)若∠E=60°,则∠F=.(2)请探索∠E与∠F之间满足何数量关系?并说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P 的度数.3.如图,AB∥CD,点A,E,B,C不在同一条直线上.(1)如图1,求证:∠E+∠C﹣∠A=180°(2)如图2.直线F A,CP交于点P,且∠BAF=∠BAE,∠DCP=∠DCE.①试探究∠E与∠P的数量关系:②如图3,延长CE交P A于点Q,若AE∥PC,∠BAQ=α(0°<α<22.5°),则∠PQC的度数为(用含α的式子表示)4.如图,已知AB∥CD,现将直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当直角三角形PMN所放位置如图①所示时,∠PFD与∠AEM存在怎样的数量关系?请说明理由.(2)当直角三角形PMN所放位置如图②所示时,请直接写出∠PFD与∠AEM之间存在的数量关系.(3)在(2)的条件下,若MN与CD交于点O,且∠AEM=40°,∠DON=20°,则∠N的度数为.5.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ 的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.6.请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型﹣﹣﹣“猪蹄模型”.即已知:如图1,AB∥CD,E为AB、CD之间一点,连接AE,CE得到∠AEC.求证:∠AEC=∠A+∠C.小明笔记上写出的证明过程如下:证明:过点E作EF∥AB,∴∠1=∠A.∵AB∥CD,EF∥AB,∴EF∥CD.∴∠2=∠C.∵∠AEC=∠1+∠2,∴∠AEC=∠A+∠C.请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图2,若AB∥CD,∠E=60°,则∠B+∠C+∠F=.(2)如图3,AB∥CD,BE平分∠ABG,CF平分∠DCG,∠G=∠H+27°,E、B、H 共线,F、C、H共线,则∠H=.7.如图1,已知AB∥CD,BP、DP分别平分∠ABD、∠BDC.(1)∠BPD=°;(2)如图2,将BD改为折线BED,BP、DP分别平分∠ABE、∠EDC,其余条件不变,若∠BED=140°,求∠BPD的度数;(3)如图3,若∠BEF=152°,∠EFD=136°,BP、DP分别平分∠ABE、∠CDF,其余条件不变,那么∠BPD=°.8.已知AB∥CD,点E在AB与CD之间.(1)图1中,试说明:∠BED=∠ABE+∠CDE;(2)图2中,∠ABE的平分线与∠CDE的平分线相交于点F,请利用(1)的结论说明:∠BED=2∠BFD.(3)图3中,∠ABE的平分线与∠CDE的平分线相交于点F,请直接写出∠BED与∠BFD之间的数量关系.9.已知:点E、点G分别在直线AB、直线CD上,点F在两直线外,连接EF、FG (1)如图1,AB∥CD,求证:∠AEF+∠FGC=∠EFG;(2)若直线AB与直线CD不平行,连接EG,且EG同时平分∠BEF和∠FGD如图2,请探索∠AEF、∠FGC、∠EFG之间的数量关系?并说明理由.10.如图,已知AB∥CD.(1)发现问题:若∠ABF=∠ABE,∠CDF=∠CDE,则∠F与∠E的等量关系为.(2)探究问题:若∠ABF=∠ABE,∠CDF=∠CDE.猜想:∠F与∠E的等量关系,并证明你的结论.(3)归纳问题:若∠ABF=∠ABE,∠CDF=∠CDE.直接写出∠F与∠E的等量关系.11.【引入】如图1,已知∠ABC+∠ECB=180°,∠P=∠Q,求证:∠1=∠2.【变式】如图2,AB∥CD,∠1=∠2,求证:∠F=∠M模型二:铅笔模型例:12.模型与应用.【模型】(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.【应用】(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1O与∠CM n M n﹣1的角平分线M n O 交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n ﹣1的度数.(用含m、n的代数式表示)【分析】(1)过点E作EF∥CD,根据平行线的判定得出EF∥AB,根据平行线的性质得出即可;(2)过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,根据平行线的判定得出EQ∥FW∥GR∥HY∥AB∥CD,根据平行线的性质得出即可;(3)过点O作SR∥AB,根据平行线的性质得出即可;【解答】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°,∴∠1+∠2+∠MEN=360°;【应用】(2)过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,∵CD∥AB,∴EQ∥FW∥GR∥HY∥AB∥CD,∴∠1+∠MEQ=180°,∠QEF+∠EFW=180°,∠WFG+∠FGR=180°,∠RGH+∠GHY=180°,∠YHN+∠6=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=5×180°=900°,同理∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n﹣1),故答案为:900°,180°(n﹣1);(3)解:过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n﹣1=2∠CM n O,∴∠AM1M2+∠CM n M n﹣1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n﹣1+∠CM n M n﹣1=180°(n﹣1),∠2+∠3+∠4+∠5+∠6+…+∠n﹣1=(180n﹣180﹣2m)°.通关训练:13.如图1,MA1∥NA2,则∠A1+∠A2=度.如图2,MA1∥NA3,则∠A1+∠A2+∠A3=度.如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=度.如图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=度.从上述结论中你发现了什么规律?如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=度.14.如图,AB∥CD,点F在CE上,∠EAF=∠BAF,若∠AEC=105°,∠DCE=115°,求∠AFC的度数.15.直线AB∥CD,E为直线AB、CD之间的一点,完成以下问题:(1)如图1,若∠B=15°,∠BED=90°,则∠D=;(2)如图2,若∠B=α,∠D=β,求出∠BED的度数(用a、β表示);(3)如图3,若∠B=α,∠C=β,则a、β与∠BEC之间有什么等量关系?请猜想证明.16.问题情境:如图1,AB∥CD,∠P AB=135°,∠PCD=125°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可求得∠APC的度数.请写出具体求解过程.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.17.如图,BN∥CD,点A是直线BN上一点,P是直线AB与直线CD之间一点,连接AP,PC.(1)求证:∠BAP+∠C=∠P;(2)过点C作CM平分∠PCD,过点C作CE⊥CM交∠NAP的角平分线于点E,过点P作PF∥AE交CM于点F,探索∠CFP和∠APC的数量关系,并说明理由;(3)在(2)的条件下,若2∠AEC﹣∠CPF=240°,Q是直线CD上一点,请直接写出∠PFQ和∠FQD的数量关系.模型三:钩型(臭脚模型和骨折模型)例:18.(1)如图1,AB∥CD,CF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE 的度数;(2)如图2,已知AB∥CD,∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数;(3)如图3,若P是(2)中的射线BE上一点,G是CD上任一点,PQ平分∠BPG,PQ∥GN,GM平分∠DGP,若∠B=30°,求∠MGN的度数.【分析】根据平行线的判定与性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义解答即可.【解答】解:(1)过E作EM∥AB∵AB∥CD∴CD∥EM∥AB∴∠ABE=∠BEM∠DCE=∠CEM∵CF平分∠DCE∴∠DCE=2∠DCF∵∠DCF=30°∴∠DCE=60°∴∠CEM=60°又∵∠CEB=20°∴∠BEM=∠CEM﹣∠CEB=40°∴∠ABE=40°,(2)过E作EM∥AB,过F作FN∥AB∵∠EBF=2∠ABF∴设∠ABF=x,∠EBF=2x,则∠ABE=3x ∵CF平分∠DCE∴设∠DCF=∠ECF=y,则∠DCE=2y∵AB∥CD∴EM∥AB∥CD∴∠DCE=∠CEM=2y∠BEM=∠ABE=3x∴∠CEB=∠CEM﹣∠BEM=2y﹣3x同理∠CFB=y﹣x∵2∠CFB+(180°﹣∠CEB)=190°∴2(y﹣x)+180°﹣(2y﹣3x)=190°∴x=10°∴∠ABE=3x=30°,(3)过P作PL∥AB∵GM平分∠DGP∴设∠DGM=∠PGM=y,则∠DGP=2y ∵PQ平分∠BPG∴设∠BPQ=∠GPQ=x,则∠BPG=2x∵PQ∥QN∴∠PGN=∠GPQ=x∵AB∥CD∴PL∥AB∥CD∴∠GPL=∠DGP=2y∠BPL=∠ABP=30°∵∠BPL=∠GPL﹣∠BPG∴30°=2y﹣2x∴y﹣x=15°∵∠MGN=∠PGM﹣∠PGN=y﹣x∴∠MGN=15°.通关训练:19.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.20.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间.如图是某同学“抖空竹”时的一个瞬间,王聪把它抽象成如图的数学问题:已知AB∥CD,∠EAB=80°,∠ECD=110°,求∠E的度数.21.如图,BE∥CF,∠A=30°,∠C=80°,求∠B的度数.22.(1)(问题)如图1,若AB∥CD,∠AEP=40°,∠PFD=130°.求∠EPF的度数;(2)(问题迁移)如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.23.已知AB∥CD,点E在AB上,点G在CD上,点F在直线AB、CD之间,分别连接EF、FG,∠BEF+∠DGF=2∠EFG.(1)如图1,求∠EFG的度数;(2)如图2,若∠BEF的角平分线与FG的延长线交于点M,求证:∠AEF﹣2∠FME =60°;(3)如图3,已知点P在FG的延长线上,点K在CD上,点N在∠PGC内,分别连接NG,NK.若NK∥EF,∠PGN=2∠NGC,请直接写出∠AEF﹣∠GNK的值.24.同一平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD内部,请写出∠BPD、∠B、∠D之间的数量关系(不必说明理由);(2)如图2,将直线AB绕点B逆时针方向转一定角度交直线CD于点Q,利用(1)中的结论求∠BPD、∠B、∠D、∠BQD之间有何数量关系?并证明你的结论;(3)如图3,设BF交AC于点M,AE交DF于点N.已知∠AMB=140°,∠ANF=105°,利用(2)中的结论直接写出∠B+∠E+∠F的度数和∠A比∠F大多少度.25.综合探究:已知,AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG =40°,求∠MGN+∠MPN的度数.26.已知直线AB∥CD.(1)如图1,请直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,若∠F =10°,求∠E的度数;(3)如图3,∠BME的角平分线所在的直线与∠CNE的角平分线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论.27.如图,已知直线AB∥CD.(1)在图1中,点M在直线AB上,点N在直线CD上,∠BME、∠E、∠END的数量关系是;(不需证明)(2)如图2,若GN平分∠CNE,FE平分∠AMG,且∠G+∠E=60°,求∠AMG的度数;(3)如图3,直线BM平分∠ABE,直线DN平分∠CDE相交于点F,求∠F:∠E的值;(4)若∠ABM=∠MBE,∠CDN=∠NDE,则=.(用含有n的代数式表示)28.如图1所示,AB∥CD,E为直线CD下方一点,BF平分∠ABE.(1)求证:∠ABE+∠C﹣∠E=180°.(2)如图2,EG平分∠BEC,过点B作BH∥GE,求∠FBH与∠C之间的数量关系.(3)如图3,CN平分∠ECD,若BF的反向延长线和CN的反向延长线交于点M,且∠E+∠M=130°,请直接写出∠E的度数.29.如图,平面内的直线有相交和平行两种位置关系(1)如图①,已知AB∥CD,求证:∠BPD=∠B+∠D;(提示;可过点P作PO∥AB)(2)如图②,已知AB∥CD,求证:∠B=∠P+∠D.30.如图,AB∥CD,分别探讨下面四个图形中∠APC与∠A,∠C的关系,请你从所得的关系中任意选取一个加以说明.图(1)结论:;图(2)结论:;图(3)结论:;图(4)结论:.你准备证明的是图,请在下面写出证明过程.31.如图1,将两根笔直的细木条MN,EF用图钉固定并平行摆放,将一根橡皮筋拉直后用图钉分别周定在MN,EF上,橡皮筋的两端点分别记为点A,点B.(1)图1中,点P在AB上,若∠1=110°,则∠2=°;(2)P为橡皮筋上一点,用皮筋的弹性拉动橡皮筋,使A,B,P三点不在同一直线,后用图固定点P.①如图2,若点P在两根细木条所在直线之间,且∠1+∠2=90°,试判断线段AP与BP所在直线的位置关系,并说明理由;②如图3,若点P在两根细木条所在直线的同侧,且∠1+∠2=90°,∠1=31°,试求∠APB的度数;(3)如图4,P1,P2两点在两根细木条所在直线之间,拉动橡皮筋并固定,若∠1+∠2=90°,则∠AP1P2+∠BP1P2=°.32.阅读下面材料:小明遇到这样一个问题:如图1,AC∥BD,点E为直线AC上方一点,连接CE、DE,猜想∠C、∠D、∠E的数量关系,并证明.小明发现,可以过点E作MN∥AC来解决问题,如图2,请你完成解答;用学过的知识或参考小明的方法,解决下面的问题:如图3,AB∥CD,P是平面内一点,连接AP、CP,使AP∥BD,∠APC=100°,BM、CM分别平分∠ABD、∠DCP交于点M,求∠M的度数.33.如图,已知直线MB∥ND,A、C分别为MB、ND上的点,E为直线MB、ND外的一点,连接AE、EC.(1)E在直线MB的上方(如图1),求证:∠AEC+∠ECD=∠EAB;(2)若∠MAE与∠NCE两角的角平分线交于F点,请在图2中将图形补充完整,并直接写出∠AEC与∠AFC之间的数量关系;(3)若∠EAB的角平分线的反向延长线与∠NCE的角平分线交于G点(如图3),且∠AGC比∠AEC的倍多50°,求∠AEC的度数.34.已知直线AB∥CD,E为直线AB、CD外的一点,连接AE、EC.(1)E在直线AB的上方(如图1),求证:∠AEC+∠EAB=∠ECD;(2)∠BAF=2∠EAF,∠DCF=2∠ECF(如图2),求证:∠AEC=∠AFC;(3)若E在直线AB、CD之间,在(2)条件下(如图3),且∠AFC比∠AEC的倍少40°,则∠AEC的度数为(不用写出解答过程).35.如图:已知AB∥DE,若∠ABC=60°,∠CDE=140°,求∠BCD的度数.36.如图,已知AB∥CD,点E在直线AB,CD之间.(1)求证:∠AEC=∠BAE+∠ECD;(2)若AH平分∠BAE,将线段CE沿CD平移至FG.①如图2,若∠AEC=90°,HF平分∠DFG,求∠AHF的度数;②如图3,若HF平分∠CFG,试判断∠AHF与∠AEC的数量关系并说明理由.37.如图,平面内有两条直线同AB、CD,且AB∥CD,P为一动点.(1)当点P移动到如图(1)的位置时,这时∠APC与∠A,∠C有怎样的关系?并说明理由;(2)当点P移动到如图(2)的位置时,这时∠APC与∠A,∠C又有怎样的关系?说明你的理由;(3)当点P移动到如图(3)的位置时,直接写出∠APC与∠A,∠C的关系式;(4)当点P移动到如图(4)的位置时,直接写出∠APC与∠A,∠C的关系式.38.如图所示,已知AB∥CD,分别探讨下面四个图形中,∠APC,∠P AB与∠PCD的关系.39.已知AB∥CD,点P为平面内一点,连接AP、CP.(1)探究:如图(1)∠P AB=145°,∠PCD=135°,则∠APC的度数是;如图(2)∠P AB=45°,∠PCD=60°,则∠APC的度数是.(2)在图2中试探究∠APC,∠P AB,∠PCD之间的数量关系,并说明理由.(3)拓展探究:当点P在直线AB,CD外,如图(3)、(4)所示的位置时,请分别直接写出∠APC,∠P AB,∠PCD之间的数量关系.40.探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?七年级下数学重难点专题训练:平行线拐点问题模型汇总1.(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.【分析】(1)过点E作EF∥AB,依据平行线的性质,即可得到∠3+∠4=∠1+∠2,进而得出∠BED=∠1+∠2;(2)分别过点E、G作EF∥AB,GH∥AB,依据平行线的性质,即可得到∠1+∠5+∠6=∠3+∠4+∠2,进而得到∠1+∠EGH=∠2+∠BEG;(3)分别过平行线间的折点作AB的平行线,依据平行线的性质,即可得到∠1、∠3、∠5与∠2、∠4、∠6之间的关系.【解答】解:(1)证明:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠3=∠1,∠4=∠2,∴∠3+∠4=∠1+∠2,即∠BED=∠1+∠2;(2)∠1+∠EGH=∠2+∠BEG,理由如下:如图,分别过点E、G作EF∥AB,GH∥AB,∵AB∥CD,∴AB∥EF∥GH∥CD,∴∠1=∠3,∠4=∠5,∠6=∠2,∴∠1+∠5+∠6=∠3+∠4+∠2,即∠1+∠EGH=∠2+∠BEG;(3)由题可得,向左的角度数之和与向右的角度数之和相等,∴∠1、∠3、∠5与∠2、∠4、∠6之间的关系为:∠1+∠3+∠5=∠2+∠4+∠6.2.如图,已知AB∥CD,∠B=30°,∠D=120°.(1)若∠E=60°,则∠F=90°.(2)请探索∠E与∠F之间满足何数量关系?并说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P 的度数.【分析】(1)分别过点E,F作EM∥AB,FN∥AB,根据平行线的性质得到∠B=∠BEM =30°,∠MEF=∠EFN,∠D+∠DFN=180°,代入数据即可得到结论;(2)根据平行线的性质得到∠B=∠BEM=30°,∠MEF=∠EFN,由AB∥CD,AB∥FN,得到CD∥FN,根据平行线的性质得到∠D+∠DFN=180°,于是得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,则∠EFD=(2x+30)°,根据角平分线的定义得到∠PEF=∠BEF=x°,∠EFG=∠EFD=(x+15)°,根据平行线的性质得到∠PEF=∠EFH=x°,∠P=∠HFG,于是得到结论.【解答】解:(1)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°∴∠EFD=∠BEF+30°=90°;故答案为:90°;(2)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°,∴∠EFD=∠BEF+30°;(3)如图2,过点F作FH∥EP,由(2)知,∠EFD=∠BEF+30°,设∠BEF=2x°,则∠EFD=(2x+30)°,∵EP平分∠BEF,GF平分∠EFD,∴∠PEF=∠BEF=x°,∠EFG=∠EFD=(x+15)°,∵FH∥EP,∴∠PEF=∠EFH=x°,∠P=∠HFG,∵∠HFG=∠EFG﹣∠EFH=15°,∴∠P=15°.3.如图,AB∥CD,点A,E,B,C不在同一条直线上.(1)如图1,求证:∠E+∠C﹣∠A=180°(2)如图2.直线F A,CP交于点P,且∠BAF=∠BAE,∠DCP=∠DCE.①试探究∠E与∠P的数量关系:②如图3,延长CE交P A于点Q,若AE∥PC,∠BAQ=α(0°<α<22.5°),则∠PQC的度数为180°﹣8α(用含α的式子表示)【分析】(1)如图1,过E作EF∥AB,根据平行线的性质即可得到结论;(2)①设∠BAF=x,∠BAE=3x,∠DCP=y,∠DCE=3y,由(1)知,∠E=180°﹣∠C+∠A=180°﹣3(y﹣x),如图2,过P作PG∥CD,根据平行线的性质即可得到结论;②如图3,过P作PG∥CD,根据平行线的性质即可得到结论.【解答】解:(1)如图1,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠AEF=∠A,∠C+∠FEC=180°,∴∠E=∠AEF+∠FEC=∠A+180°﹣∠C,即∠E+∠C﹣∠A=180°;(2)①∵∠BAF=∠BAE,∠DCP=∠DCE,∴设∠BAF=x,∠BAE=3x,∠DCP=y,∠DCE=3y,由(1)知,∠E=180°﹣∠C+∠A=180°﹣3(y﹣x),如图2,过P作PG∥CD,∵AB∥CD,∴AB∥PG,∴∠GP A=∠BAF=x,∠GPC=∠PCD=y,∴∠APC=y﹣x,即∠E=180°﹣3∠P;②如图3,过P作PG∥CD,∵∠BAQ=α,∴∠QAE=2α,∵AE∥PC,∴∠QAE=∠APC=2α,由①知,∠AEC=180°﹣3∠APC=180°﹣6α,∴∠PQC=∠AEC﹣∠QAE=180°﹣6α﹣2α=180°﹣8α,故答案为:180°﹣8α.4.如图,已知AB∥CD,现将直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当直角三角形PMN所放位置如图①所示时,∠PFD与∠AEM存在怎样的数量关系?请说明理由.(2)当直角三角形PMN所放位置如图②所示时,请直接写出∠PFD与∠AEM之间存在的数量关系.(3)在(2)的条件下,若MN与CD交于点O,且∠AEM=40°,∠DON=20°,则∠N的度数为30°.【分析】(1)作PH∥AB,根据平行线的性质得到∠AEM=∠HPM,∠PFD=∠HPN,根据∠MPN=90°解答;(2)根据平行线的性质得到∠PFD+∠BHN=180°,根据∠P=90°解答;(3)根据对顶角相等,直角三角形的性质,平行线的性质以及三角形外角的性质计算即可求解.【解答】解:(1)如图①,作PH∥AB,则∠AEM=∠HPM,∵AB∥CD,PH∥AB,∴PH∥CD,∴∠PFD=∠HPN,∵∠MPN=90°,∴∠PFD+∠AEM=90°,故答案为:∠PFD+∠AEM=90°;(2)猜想:∠PFD﹣∠AEM=90°;理由如下:∵AB∥CD,∴∠PFD+∠BHN=180°,∵∠BHN=∠PHE,∴∠PFD+∠PHE=180°,∵∠P=90°,∴∠PHE+∠PEB=90°,∵∠PEB=∠AEM,∴∠PHE+∠AEM=90°,∴∠PFD﹣∠AEM=90°;(3)∵∠P=90°,∠PEB=∠AEM=40°,∴∠PHE=90°﹣∠PEB=90°﹣40°=50°,∵AB∥CD,∴∠HFO=∠PHE=50°,∵∠DON=20°,∴∠N=∠HFO﹣∠DON=30°.故答案为:30°.5.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:∠BME=∠MEN﹣∠END;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:∠BMF=∠MFN+∠FND;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ 的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF﹣∠FND=180°,可求解∠BMF=60°,进而可求解;(3)根据培训心得性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.【解答】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.6.请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型﹣﹣﹣“猪蹄模型”.即已知:如图1,AB∥CD,E为AB、CD之间一点,连接AE,CE得到∠AEC.求证:∠AEC=∠A+∠C.小明笔记上写出的证明过程如下:证明:过点E作EF∥AB,∴∠1=∠A.∵AB∥CD,EF∥AB,∴EF∥CD.∴∠2=∠C.∵∠AEC=∠1+∠2,∴∠AEC=∠A+∠C.请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图2,若AB∥CD,∠E=60°,则∠B+∠C+∠F=240°.(2)如图3,AB∥CD,BE平分∠ABG,CF平分∠DCG,∠G=∠H+27°,E、B、H 共线,F、C、H共线,则∠H=51°.【分析】(1)由EM∥AB,FN∥EM,FN∥CD分别得∠1=∠B,∠2=∠3,∠4+∠C=180°,由角的和差计算∠B+∠C+∠F的度数为240°;(2)由角平分线得∴∠ABG=2∠1,∠DCG=2∠4,根据直线EF∥AB,EF∥CD得2∠1+∠7=180°,2∠4+∠8=180°,等式的性质得2(∠1+∠4)=∠BGC+180°;直线MN∥AB,MN∥CD得∠1=∠5,∠4=∠6,等量代换2(∠5+∠6)=∠BGC+180°,又因∠BGC=∠BHC+27°求得∠BHC的度数为51°.【解答】解:(1)过点E、F分别作EM∥AB,FN∥AB,如图2所示:∵EM∥AB,∴∠1=∠B,又∵FN∥AB,∴FN∥EM,∴∠2=∠3,又∵AB∥CD,∴FN∥CD,∴∠4+∠C=180°,又∵∠BEF=∠1+∠2,∠EFC=∠3+∠4,∠BEF=60°∴∠B+∠EFC+∠C=∠1+∠3+∠4+∠C=(∠1+∠2)+(∠4+∠C)=60°+180°=240°;(2)过点G、H作EF∥AB,MN∥AB,如图3所示:∵BE平分∠ABG,CF平分∠DCG,∴∠ABG=2∠1,∠DCG=2∠4,又∵EF∥AB,∴2∠1+∠7=180°,又∵AB∥CD,∴EF∥CD,∴2∠4+∠8=180°,∴∠7+∠8=360°﹣2(∠1+∠4),又∵∠7+∠8+∠BGC=180°,∴2(∠1+∠4)=∠BGC+180°,又∵MN∥AB,∴∠1=∠5,又∵AB∥CD,∴MN∥CD,∴∠4=∠6,∴2(∠5+∠6)=∠BGC+180°,又∵∠5+∠6+∠BHC=180°,∴∠BGC+2∠BHC=180°,又∠BGC=∠BHC+27°,∴3∠BHC+27°=180°,∴∠BHC=51°;故答案为:240°,51°.7.如图1,已知AB∥CD,BP、DP分别平分∠ABD、∠BDC.(1)∠BPD=90°°;(2)如图2,将BD改为折线BED,BP、DP分别平分∠ABE、∠EDC,其余条件不变,若∠BED=140°,求∠BPD的度数;(3)如图3,若∠BEF=152°,∠EFD=136°,BP、DP分别平分∠ABE、∠CDF,其余条件不变,那么∠BPD=54°.【分析】(1)先根据平行线的性质得出∠ABD+∠BDC=∠180°,再根据角平分线的定义得出∠PBD+∠PDB的度数,由三角形内角和定理即可得出结论;(2)连接BD,先求出∠EBD+∠EDB的度数,再由平行线的性质得出∠ABD+∠CDB的度数,由角平分线的性质得出∠PBE+∠PDE的度数,根据∠BPD=180°﹣∠PBE﹣PDE﹣∠EBD﹣∠EDB即可得出结论.(3)连接BD,先求出∠EBD+∠FDB的度数,再求出∠PBE+∠PDF的度数,再利用三角形内角和定理即可解决.【解答】解:(1)∵AB∥CD,∴∠ABD+∠BDC=∠180°,∵BP、DP分别平分∠ABD、∠BDC,∴∠PBD+∠PDB=90°,∴∠BPD=180°﹣90°=90°.(2)连接BD,∵∠BED=140°,∴∠EBD+∠EDB=40°,∵AB∥CD,∴∠ABD+∠CDB=180°,∵BP、DP分别平分∠ABE、∠EDC,∴∠PBE=∠ABE,∠PDE=∠CDE,∴∠PBE+∠PDE=×(180°﹣40°)=70°,∴∠BPD=180°﹣∠PBE﹣PDE﹣∠EBD﹣∠EDB=70°.(3)连接BD,∵∠BEF=152°,∠EFD=136°,∴∠EBD+∠FDB=360°﹣(152°+136°)=72°,∵BP、DP分别平分∠ABE、∠FDC,∴∠PBE=∠ABE,∠PDF=∠CDF,∴∠PBE+∠PDF=×(180°﹣72°)=54°,∴∠BPD=180°﹣(∠EBD+∠FDB)﹣(∠PBE+∠PDF)=54°.故答案为:90;54°.8.已知AB∥CD,点E在AB与CD之间.(1)图1中,试说明:∠BED=∠ABE+∠CDE;(2)图2中,∠ABE的平分线与∠CDE的平分线相交于点F,请利用(1)的结论说明:∠BED=2∠BFD.(3)图3中,∠ABE的平分线与∠CDE的平分线相交于点F,请直接写出∠BED与∠BFD之间的数量关系.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE =180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【解答】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°﹣2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°﹣(∠ABE+∠CDE),即∠BED=360°﹣(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°﹣2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°﹣2∠BFD.9.已知:点E、点G分别在直线AB、直线CD上,点F在两直线外,连接EF、FG (1)如图1,AB∥CD,求证:∠AEF+∠FGC=∠EFG;(2)若直线AB与直线CD不平行,连接EG,且EG同时平分∠BEF和∠FGD如图2,请探索∠AEF、∠FGC、∠EFG之间的数量关系?并说明理由.【分析】(1)过F作FQ∥AB,利用平行线的性质,即可得到∠AEF+∠FGC=∠EFQ+∠GFQ=∠EFG;(2)延长AB,CD,交于点P,依据∠FEP=180°﹣∠AEF,∠FGP=180°﹣∠FGC,即可得到∠FEP+∠FGP=360°﹣(∠AEF+∠FGC),再根据四边形内角和,即可得到四边形EFGP中,∠F+∠P=360°﹣(∠FEP+∠FGP)=∠AEF+∠FGC,进而得出结论.【解答】解:(1)如图1,过F作FQ∥AB,∵AB∥CD,∴FQ∥CD,∴∠AEF=∠QFE,∠FGC=∠GFQ,∴∠AEF+∠FGC=∠EFQ+∠GFQ=∠EFG;(2)如图2,延长AB,CD,交于点P,∵EG同时平分∠BEF和∠FGD,∴∠FEG=∠PEG,∠FGE=∠PGE,∴∠F=∠P,∵∠FEP=180°﹣∠AEF,∠FGP=180°﹣∠FGC,∴∠FEP+∠FGP=360°﹣(∠AEF+∠FGC),∵四边形EFGP中,∠F+∠P=360°﹣(∠FEP+∠FGP)=360°﹣[360°﹣(∠AEF+∠FGC)]=∠AEF+∠FGC,即2∠EFG=∠AEF+∠FGC.10.如图,已知AB∥CD.(1)发现问题:若∠ABF=∠ABE,∠CDF=∠CDE,则∠F与∠E的等量关系为∠BED=2∠BFD.(2)探究问题:若∠ABF=∠ABE,∠CDF=∠CDE.猜想:∠F与∠E的等量关系,并证明你的结论.(3)归纳问题:若∠ABF=∠ABE,∠CDF=∠CDE.直接写出∠F与∠E的等量关系.【分析】(1)首先连接FE并延长,易得∠BED=∠BFD+∠EBF+∠EDF,又由BF、DF 分别平分∠ABE、∠CDE,以及(1)的结论,易证得∠BED=2∠BFD;(2)过点E、F分别作AB的平行线EG、FH,由平行线的传递性可得AB∥EG∥FH∥CD,根据平行线的性质得到∠ABF=∠BFH,∠CDF=∠DFH,根据已知条件即可得到结论.(3)由(1)(2)即可得出∠F与∠E的等量关系.【解答】解:(1)∠BED=2∠BFD.证明:连接FE并延长,∵∠BEG=∠BFE+∠EBF,∠DEG=∠DFE+∠EDF,∴∠BED=∠BFD+∠EBF+∠EDF,∵BF、DF分别平分∠ABE、∠CDE,∴∠ABE+∠CDE=2(∠EBF+∠EDF),∵∠BED=∠ABE+∠CDE,∴∠EBF+∠EDF=∠BED,∴∠BED=∠BFD+∠BED,∴∠BED=2∠BFD;(2)过点E、F分别作AB的平行线EG、FH,由平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE;∵∠BFD=∠DFH+∠BFH=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=3∠BFD.(3)由(1)(2)可得∠BED=n∠BFD.11.【引入】如图1,已知∠ABC+∠ECB=180°,∠P=∠Q,求证:∠1=∠2.【变式】如图2,AB∥CD,∠1=∠2,求证:∠F=∠M【分析】【引入】先判定AB∥DE,则∠ABC=∠BCD,再由∠P=∠Q,则∠PBC=∠QCB,从而得出∠1=∠2.【变式】延长EF交CD于G,利用平行线的性质得出∠1=∠EGD,进而得出∠EGD=∠2,再利用平行线的判定方法得出答案.【解答】【引入】证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC﹣∠PBC,∠2=∠BCD﹣∠BCQ,∴∠1=∠2.【变式】证明:延长EF交CD于G,如图:∵AB∥CD,∴∠1=∠EGD∵∠1=∠2,∴∠EGD=∠2∴EF∥MN,∴∠EFM=∠M.12.模型与应用.【模型】(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.【应用】(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为900°.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为180°(n﹣1).(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1O与∠CM n M n﹣1的角平分线M n O 交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n ﹣1的度数.(用含m、n的代数式表示)【分析】(1)过点E作EF∥CD,根据平行线的判定得出EF∥AB,根据平行线的性质得出即可;(2)过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,根据平行线的判定得出EQ∥FW∥GR∥HY∥AB∥CD,根据平行线的性质得出即可;(3)过点O作SR∥AB,根据平行线的性质得出即可;【解答】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°,∴∠1+∠2+∠MEN=360°;【应用】(2)过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,∵CD∥AB,∴EQ∥FW∥GR∥HY∥AB∥CD,∴∠1+∠MEQ=180°,∠QEF+∠EFW=180°,∠WFG+∠FGR=180°,∠RGH+∠GHY=180°,∠YHN+∠6=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=5×180°=900°,同理∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n﹣1),故答案为:900°,180°(n﹣1);(3)解:过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n﹣1=2∠CM n O,∴∠AM1M2+∠CM n M n﹣1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n﹣1+∠CM n M n﹣1=180°(n﹣1),∠2+∠3+∠4+∠5+∠6+…+∠n﹣1=(180n﹣180﹣2m)°.13.如图1,MA1∥NA2,则∠A1+∠A2=180度.如图2,MA1∥NA3,则∠A1+∠A2+∠A3=360度.如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=540度.如图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=720度.从上述结论中你发现了什么规律?如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=180(n﹣1)度.【分析】首先过各点作MA1的平行线,由MA1∥NA2,可得各线平行,根据两直线平行,同旁内角互补,即可求得答案,注意找到规律:MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=180(n﹣1)度是关键.【解答】解:如图1,∵MA1∥NA2,∴∠A1+∠A2=180°.如图2,过点A2作A2C1∥A1M,∵MA1∥NA3,∴A2C1∥A1M∥NA3,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A3=180°,∴∠A1+∠A2+∠A3=360°.如图3,过点A2作A2C1∥A1M,过点A3作A3C2∥A1M,∵MA1∥NA3,∴A2C1∥A3C2∥A1M∥NA3,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A2A3C2=180°,∠C2A3A4+∠A4=180°,∴∠A1+∠A2+∠A3+∠A4=540°.如图4,过点A2作A2C1∥A1M,过点A3作A3C2∥A1M,过点A4作A4C3∥A1M,∵MA1∥NA5,∴A2C1∥A3C2∥A4C3∥NA5,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A2A3C2=180°,∠C2A3A4+∠A3A4C3=180°∠C3A4A5+∠A5=180°,∴∠A1+∠A2+∠A3+∠A4+∠A5=720°.从上述结论中你发现了规律:如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=180(n ﹣1)度.故答案为:180,360,540,720,180(n﹣1).14.如图,AB∥CD,点F在CE上,∠EAF=∠BAF,若∠AEC=105°,∠DCE=115°,求∠AFC的度数.【分析】过点E作EM∥AB,由平行线的性质得到∠MEC=65°,从而得到∠AEM=40°,再根据平行线的性质得到∠EAB=180°﹣∠AEM=140°,进而得到∠EAF=35°,最后根据三角形的外角定理即可求解.【解答】解:如图,过点E作EM∥AB,∵AB∥CD,∴EM∥CD,∴∠MEC+∠DCE=180°,∵∠DCE=115°,∴∠MEC=180°﹣115°=65°,∵∠AEC=∠MEC+∠AEM,∠AEC=105°,∴∠AEM=40°,∵EM∥AB,∴∠AEM+∠EAB=180°,∴∠EAB=180°﹣∠AEM=140°,∵∠EAB=∠EAF+∠BAF,∠EAF=∠BAF,∴∠EAF+3∠EAF=140°,∴∠EAF=35°,∴∠AFC=∠EAF+∠AEC=35°+105°=140°.15.直线AB∥CD,E为直线AB、CD之间的一点,完成以下问题:(1)如图1,若∠B=15°,∠BED=90°,则∠D=75°;(2)如图2,若∠B=α,∠D=β,求出∠BED的度数(用a、β表示);(3)如图3,若∠B=α,∠C=β,则a、β与∠BEC之间有什么等量关系?请猜想证明.【分析】(1)过E作EF∥AB,根据两直线平行,内错角相等进行计算;(2)过E作EF∥AB,根据两直线平行,同旁内角互补进行计算;(3)过点E作EF∥AB,根据两直线平行,内错角相等,以及两直线平行,同旁内角互补进行计算.【解答】解:(1)过E作EF∥AB,∵AB∥CD,∴EF∥CD,∵∠B=15°,∴∠BEF=15°,又∵∠BED=90°,∴∠DEF=75°,∵EF∥CD,∴∠D=75°,故答案为:75°;(2)过E作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠B+∠BEF+∠DEF+∠D=360°,又∵∠B=α,∠D=β,∴∠BED=∠BEF+∠DEF=360°﹣α﹣β,故答案为:∠BED=360°﹣α﹣β;(3)猜想:∠BEC=180°﹣α+β.证明:过点E作EF∥AB,则∠BEF=180°﹣∠B=180°﹣α,∵AB∥EF,AB∥CD,∴EF∥CD,∴∠CEF=∠C=β,∴∠BEC=∠BEF+∠CEF=180°﹣α+β.16.问题情境:如图1,AB∥CD,∠P AB=135°,∠PCD=125°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可求得∠APC的度数.请写出具体求解过程.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【分析】过P作PE∥AB,构造同旁内角,通过平行线性质,可得∠APC=45°+55°=100°.(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【解答】解:过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°﹣∠A=45°,∠CPE=180°﹣∠C=55°,∴∠APC=45°+55°=100°;(1)∠CPD=∠α+∠β,理由如下:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线几何模型之M 型解题方法专题练习
一、解答题
1.在数学课本中,有这样一道题:已知:如图1,B C BEC ∠+∠=∠.求证://AB CD 请补充下面证明过程:
证明:过点E ,作//EF AB ,如图2 ∴B ∠=∠______(_________________)
∵B C BEC ∠+∠=∠,BEF ∠+∠_______=BEC ∠(已知) ∴B C BEF FEC ∠+∠=∠+∠(___________) ∴∠______=∠_______
∴//EF _____(________________) ∵//EF AB ∴//AB CD
2.(2021·山东禹城·七年级期中)(1)如图1,//AB CD ,33A ∠=︒,40C ∠=︒,则APC ∠= ︒;
(2)如图2,//AB DC ,点P 在射线OM 上运动,当点P 在B 、D 两点之间运动时,BAP α∠=∠,
DCP β∠=∠,求CPA ∠与α∠、β∠之间的数量关系,并说明理由;
(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点B 、D 、O 三点不重合),请你直接写出CPA ∠与α∠、β之间的数量关系.
3.(2021·北京西城·七年级期末)如图,AB//CD,点E为两平行线间的一点.请证明两个结论.(1)12
∠=∠+∠;
BED
(2)360
∠+∠+∠=.
EBM EDN BED
4.如图所示,已知//AB CD ,BE 平分ABC ∠,DE 平分ADC ∠,求证:1
()2
E A C ∠=∠+∠
5.直线AB 、CD 被直线EF 所截,AB ∥CD ,点P 是平面内一动点.
(1)若点P 在直线CD 上,如图①,∠α=50°,则∠2= °.
(2)若点P 在直线AB 、CD 之间,如图②,试猜想∠α、∠1、∠2之间的等量关系并给出证明; (3)若点P 在直线CD 的下方,如图③,(2)中∠α、∠1、∠2之间的关系还成立吗?请作出判断并说明理由.
6.
(2021·河北·曲阳县教育和体育局教研室七年级期中)已知:如图1,12180︒∠+∠=,∠=∠AEF HLN .
(1)判断图中平行的直线,并给予证明;
(2)如图2,2∠=∠PMQ QMB ,2∠=∠PNQ QND ,请判断P ∠与Q ∠的数量关系,并证明.
7.(1)如图1,已知//AB CD ,ABF DCE ∠=∠,求证:BFE FEC ∠=∠
(2)如图2,已知//AB CD ,14
EAF EAB ∠=∠,14ECF ECD ∠=∠,求证:3
4AFC AEC ∠=∠
8.如图,若//AB CD ,则B D E ∠+∠=∠,你能说明为什么吗?
AB CD,又得到什么结论?
9.在图中,若//
AB CD,E是AB、CD之间的一点.10.(2021·湖北硚口·七年级月考)如图1,//
(1)判定BAE ∠,CDE ∠与AED ∠之间的数量关系,并证明你的结论;
(2)如图2,若BAE ∠、CDE ∠的两条平分线交于点F .直接写出AFD ∠与AED ∠之间的数量关系; (3)将图2中的射线DC 沿DE 翻折交AF 于点G 得图3,若AGD ∠的余角等于2E ∠的补角,求BAE ∠的大小.
11.(2021·
黑龙江道里·七年级期末)已知,AB ∥CD ,点E 在CD 上,点G ,F 在AB 上,点H 在AB ,CD 之间,连接FE ,EH ,HG ,∠AGH =∠FED ,FE ⊥HE ,垂足为E . (1)如图1,求证:HG ⊥HE ;
(2)如图2,GM 平分∠HGB ,EM 平分∠HED ,GM ,EM 交于点M ,求证:∠GHE =2∠GME ;
(3)如图3,在(2)的条件下,FK 平分∠AFE 交CD 于点K ,若∠KFE :∠MGH =13:5,求∠HED 的度数.
12.
(2021·重庆江北·七年级期末)如图1,AB //CD ,点E 、F 分别在AB 、CD 上,点O 在直线AB 、CD 之间,且100EOF ∠=︒.
(1)求BEO OFD ∠+∠的值;
(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出EMN FNM ∠-∠的值; (3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,DFH m OFH ∠=∠,直线MN 分别交EG 、FH 分别于点M 、N ,且50FMN ENM ∠-∠=︒,直接写出m 的值.
13.
(2021·湖北武昌·七年级期末)如图1,点A 在直线MN 上,点B 在直线ST 上,点C 在MN ,ST 之间,且满足MAC ACB SBC ∠+∠+∠360=︒. (1)证明://MN ST ;
(2)如图2,若60ACB ∠=︒,//AD CB ,点E 在线段BC 上,连接AE ,且2DAE CBT ∠=∠,试判断CAE ∠与CAN ∠的数量关系,并说明理由; (3)如图3,若180ACB n

∠=
(n 为大于等于2的整数),点E 在线段BC 上,连接AE ,若MAE n CBT ∠=∠,则:CAE CAN ∠∠=______.
14.(2021·
湖北梁子湖·七年级期中)如图1,直线AB //CD ,点P 在两平行线之间,点E 在AB 上,点F 在CD 上,连接PE ,PF .
(1)若∠PEB =60°,∠PFD =50°,请求出∠EPF .(请写出必要的步骤,并说明理由)
(2)如图2,若点P ,Q 在直线AB 与CD 之间时,∠1=30°,∠2=40°,∠3=70°,请求出∠4= .(不需说明理由,请直接写出答案)
(3)如图3,在图1的基础上,作P 1E 平分∠PEB ,P 1F 平分∠PFD ,若设∠PEB =x °,∠PFD =y °,则∠P 1= (用含x ,y 的式子表示).若P 2E 平分∠P 1EB ,P 2F 平分∠P 1FD ,可得∠P 2;P 3E 平分∠P 2EB ,P 3F 平分∠P 2FD ,可得∠P 3…,依次平分下去,则∠P n = .(用含x ,y 的式子表示)
15.
(2021·广东新丰·七年级期中)如图1,点A 、B 分别在直线GH 、MN 上,GAC NBD ∠=∠,C D ∠=∠.
(1)求证://GH MN ;(提示:可延长AC 交MN 于点P 进行证明)
(2)如图2,AE 平分GAC ∠,DE 平分BDC ∠,若AED GAC ∠=∠,求GAC ∠与ACD ∠之间的数量关系; (3)在(2)的条件下,如图3,BF 平分DBM ∠,点K 在射线BF 上,1
3
KAG GAC ∠=∠,若AKB ACD ∠=∠,
直接写出GAC ∠的度数.。

相关文档
最新文档