平行线有关模型汇总

合集下载

初中数学 中考复习 第01讲—平行线的五大拐点模型

初中数学 中考复习  第01讲—平行线的五大拐点模型

模型一:铅笔头模型基础(1)如图,若CD AB //,此时,E D B ∠∠∠,,之间有什么关系?请证明解答:如图,过点E 作AB l //得证360=∠+∠+∠E D B(2)反之,如图,若360=∠+∠+∠E D B ,直线AB 与CD 有什么位置关系?请证明解答:如图,过点E 作AB l //得证CD l //则CD AB //总结:①辅助线:过拐点作平行线②若CD AB //,则360=∠+∠+∠E D B③若360=∠+∠+∠E D B ,则CD AB //模型一:铅笔头模型进阶如图,两直线CD AB ,平行,则=∠+∠+∠+∠+∠+∠654321解答:如图,过F 作AB l //1,过G 作12//l l ,过H 作23//l l ,过I 作34//l l 得证900654321=∠+∠+∠+∠+∠+∠总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线②)1(180121-=∠+∠+⋅⋅⋅+∠+∠-n A A A A n n【2-n 个拐点】模型二:锯齿模型基础(1)如图,若CD AB //,则E D B ∠=∠+∠,你能说明为什么吗?解答:如图,过点E 作AB l //得证E D B ∠=∠+∠(2)在图中,CD AB //,G E ∠+∠与D F B ∠+∠+∠又有何关系?解答:如图,过点E 作AB l //1,过点F 作AB l //2,过点G 作AB l //3得证G E ∠+∠=D F B ∠+∠+∠(3)在图中,若CD AB //,又得到什么结论?解答:同理可得n n E E E D F F F B ∠++∠+∠=∠+∠++∠+∠+∠- 21121总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和模型二:锯齿模型进阶【例1】如图所示,已知CD AB //,BE 平分ABC ∠,DE 平分ADC ∠,求证:)(21C A E ∠+∠=∠解答:①方法一:锯齿模型【锯齿ABEDC 】如图,过点E 作AB EF //+转化思想得证 ②方法二:8字模型(详解见第2讲)总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和 ③转化思想【例2】如图,已知CD AB //,EAB EAF ∠=∠41,ECD ECF ∠=∠41,求证: AEC AFC ∠=∠43解答:锯齿BAECD+锯齿BAFCD ;过点E 作AB GE //,过点F 作CD HF //+方程思想【βα,表示角度】得证总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和 ③方程思想【例3】如图,CD AB //,61=∠BED ,ABE ∠的平分线与CDE ∠的平分线交于点F ,则=∠DFB ( ) A.149B.5.149C.150D.5.150解答:锯齿CDFBA+铅笔头CDEBA ;得证B总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②铅笔头模型:角之和=180×(拐点个数+1)③锯齿模型:所有朝左的角之和等于所有朝右的角之和【例4】如图,已知点P 是矩形ABCD 内一点(不含边界),设21,θθ=∠=∠PBA PAD ,43,θθ=∠=∠PDC PCB ,若 50,80=∠=∠CPD APB ,则( )A. 30)()(3241=+-+θθθθB.40)()(3142=+-+θθθθC.70)()(4321=+-+θθθθ D.180)()(4321=+++θθθθ解答:锯齿ADPCB+锯齿DAPBC ;得证A总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和模型三:臭脚模型基础如图,若CD AB //,E D B ∠∠∠,,之间有什么关系?请证明解答:如图,过点E 作AB l //得证B E D ∠=∠+∠臭脚模型基础(汇总)总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线模型三:臭脚模型进阶如图,直线CD AB //,50,30,90,30=∠=∠=∠=∠CNP HMN FGH EFA ,则GHM ∠的大小是解答:①方法一:如图,过点H 作AB QH //则有铅笔头AFGHQ+臭脚QHMNC 得证 40=∠GHM ②方法二:锯齿BFGHMND 得证40=∠GHM 总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线模型四:蛇型基础如图,若D C B CD AB ∠∠∠,,,//之间有什么关系?请证明解答:过点C 作AB l //得证180=∠-∠+∠D C B 总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线模型五:蜗牛模型基础如图,若D C B DE AB ∠∠∠,,,//之间有什么关系?请证明解答:过点C 作AB l //得证180=∠+∠+∠D C B 总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线。

平行线四种常见模型解题技巧(解析版)--2024年新八年级数学

平行线四种常见模型解题技巧(解析版)--2024年新八年级数学

平行线四种常见模型解题技巧题型聚焦题型一:“猪蹄”模型题型二:“铅笔”模型题型三:“鸡翅”模型题型四:“骨折”模型难题突破模型一:“猪蹄”模型如图,若AB⎳CD,你能确定∠B、∠D与∠BED的大小关系吗?解:∠B+∠D=∠DEB.理由如下:过点E 作 EF⎳AB又 ∵AB⎳CD.∴EF⎳CD.∴∠D=∠DEF.∠B=∠BEF.∴∠B+∠D=∠BEF+∠DEF=∠DEB即∠B+∠D=∠DEB.猪蹄模型的基本特征:一组平行线,中间有一个点,分别与平行线上的点构成“猪蹄”。

如图,已知AB∥CD,求∠E、∠B、∠D之间的数量关系.思路1:过拐点作平行线过点E作EF∥AB,∴∠B=∠BEF,又∵AB∥CD,∴EF∥CD,∴∠D=∠DEF,∴∠E=∠BEF+∠DEF=∠B+∠D.∴∠E=∠B+∠D.思路2:延长BE交CD于点F∵AB∥CD,∴∠B=∠BFD,∴∠D+∠BFD=∠BED,∴∠B+∠D=∠E.小结证明的方法还有很多,同学们可以多多尝试。

重点在于构造平行线的三线八角,就可以得到经典结论:猪蹄模型顶点在同一侧的角之和等于顶点在另一侧的角之和。

猪蹄模型(又名燕尾模型、M字模型)结论:∠B+∠D=∠E步骤总结步骤一:过猪蹄(拐点)作平行线步骤二:借助平行线的性质找相等或互补的角步骤三:推导出角的数量关系模型二、“铅笔”模型如图,AB⎳CD,探索∠B、∠D与∠DEB的大小关系?解:∠B+∠D+∠DEB=360°.理由如下:过点E 作 EF⎳AB.又 ∵AB⎳CD.∴EF⎳CD.∴∠B+∠BEF=180°.∠D+∠DEF=180°.∴∠B+∠D+∠DEB=∠B+∠D+∠BEF+∠DEF=360°.即∠B+∠D+∠DEB=360°.从猪蹄模型可以看出,点E是凹进去了,如果点E是凸出来,如下图:那么,像这样的模型,我们就称为铅笔头模型。

模型结论:∠B+∠E+∠D=360°二、模型证明如图,若AB⎳CD,求证:∠B+∠E+∠D=360°证明一:如图,过点E作FG⎳AB∵ AB⎳FG,AB⎳CD∴ FG⎳CD∵ AB⎳FG∴∠BEF+∠B=180°(两直线平行,同旁内角互补)∵FG⎳CD∴ ∠D+∠DEF=180°(两直线平行,同旁内角互补)∴ ∠BEF+∠B+∠D+∠DEF=360°∴∠B+∠D+∠BED=360°证明二:如图,连接BD,∵AB⎳CD∴∠ABD+∠BDC=180°在△BDE中,∠DBE+∠E+∠EDB=180°∴ ∠DBE+∠E+∠EDB+∠ABD+∠BDC=360°∴ ∠ABD+∠DBE+∠E+∠EDB+∠BDC=360°∴∠ABE+∠E+∠CDE=360°证明该模型结论的还有其他方法,这里就没有全部写出来,可以自行证明。

平行线知识点四大模型

平行线知识点四大模型

平行线四大模型平行线的判定与性质l、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四“骨折”模型·点P在EF左侧,在AB、CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.巩固练习平行线四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°. (2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP ,求证AE //CF .模块一平行线四大模型应用例1(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= ..练(1)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为.(2) 如图,AB∥CD,∠B=30°,∠O=∠C.则∠C= ..例2如图,已知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.练如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).例3如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.求证:∠E= 2 (∠A+∠C) .练如图,己知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.例4如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.练(武昌七校2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°模块二平行线四大模型构造例5如图,直线AB∥CD,∠EFA= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .练如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .例6 已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.练已知AB∥EF,求∠l-∠2+∠3+∠4的度数.(1)如图(l),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的关系.(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.(3)如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.。

平行线的判定模型

平行线的判定模型

平行线的判定模型
1.同位角判定法:如果两条直线被一条横线(称为横截线)所截,且同位角相等,则这两条直线是平行的。

2.内错角判定法:如果两条直线被一条横线所截,且内错角互补(和为180度),则这两条直线是平行的。

3.副交角判定法:如果两条直线被一对平行线所截,副交角相等,则这两条直线是平行的。

4.斜率判定法:如果两条直线的斜率相等,则这两条直线是平行的。

注意,这个判定法只适用于不垂直的直线,对于垂直的直线则斜率不存在。

其中,同位角判定法和内错角判定法基于直线与横截线的相交关系,而副交角判定法基于直线与平行线的相交关系。

这些判定模型是基于几何性质和角度的推理,可以用于判断平行关系的成立或者非成立。

需要注意的是,这些判定模型只适用于二维空间中的直线和平行线判定,而对于三维空间中的直线和平行线,还需要借助向量的概念和性质进行判断。

同时,这些判定模型是根据平行线的定义和性质推导出来的,可以作为判断平行关系的依据,但并非绝对准确,必须根据具体问题和情境进行判断和验证。

平行线四大模型(归纳总结)

平行线四大模型(归纳总结)

点 P 在 EF 左侧,在 AB、 CD 外部
“骨折”模型
结论 1:若 AB∥CD,则∠P=∠CFP-∠AEP 或∠P=∠AEP-∠CFP;
结论 2:若∠P=∠CFP-∠AEP 或∠P=∠AEP-∠CFP,则 AB∥CD.
【发散思维】
图 1: 180
图 2: 180
图 3: 180
“猪蹄”模型
模型三“臭脚”模型(“鸡翅”模型)
点 P 在 EF 右侧,在 AB、 CD 外部
“臭脚”模型
结论 1:若 AB∥CD,则∠P=∠AEP-∠CFP 或∠P=∠CFP-∠AEP;
结论 2:若∠P=∠AEP-∠CFP 或∠P=∠CFP-∠AEP,则 AB∥CD.
模型四“骨折”模型(“鹰嘴”模型)
图 4: 180
图 5: 180 图 6: 180
【探索发现】
思考 1:
1 +2 ++ n 与 1+2 ++ n1 的关系?
思考 2:
1+2 ++ n =
.
平行线四大模型 模、 CD 内部 结论 1:若 AB∥CD,则∠P+∠AEP+∠PFC=3 60°; 结论 2:若∠P+∠AEP+∠PFC= 360°,则 AB∥CD.
“铅笔”模型
模型二“猪蹄”模型(M 模型)
点 P 在 EF 左侧,在 AB、 CD 内部 结论 1:若 AB∥CD,则∠P=∠AEP+∠CFP; 结论 2:若∠P=∠AEP+∠CFP,则 AB∥CD.

平行线四大模型

平行线四大模型

平行线四大模型1、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+∠4=180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补平移3.平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移(translation),简称平移。

4.平移的性质经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。

(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。

平行线中的核心模型

平行线中的核心模型

平行线中核心模型【知识要点】模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.点P在EF左侧,在AB、CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.【典例精析】(一)平行线四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP ,求证AE //CF .(二)平行线四大模型应用例1:(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.(3)如图,已知AB ∥DE ,∠ABC =80°,∠CDE =140°,则∠BCD = .(4) 如图,射线AC ∥BD ,∠A = 70°,∠B = 40°,则∠P = .练习:(1)如图所示,AB ∥CD ,∠E =37°,∠C = 20°,则∠EAB 的度数为 .(2) 如图,AB ∥CD ,∠B =30°,∠O =∠C .则∠C = .例2:如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.练习:如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).例3:如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.求证:∠E= 2 (∠A+∠C) .练习:如图,己知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.例4:如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.练习:如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°(三)平行线四大模型构造例5:如图,直线AB∥CD,∠EFA= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .练习:如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .例6:已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.练习:(1)已知AB∥EF,求∠l-∠2+∠3+∠4的度数.(2)如图(1),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的关系.如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.(3)如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.课后作业1.如图,AB // CD // EF , EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ).A . 180°B . 270°C . 360°D . 450° 2.(武昌七校2015-2016七下期中) 若AB ∥CD ,∠CDF =32∠CDE ,∠ABF =32∠ABE ,则∠E :∠F =( ).A .2:1B .3:1C .4:3D .3:23.如图3,己知AE ∥BD ,∠1=130°,∠2=30°,则∠C = .4.如图,已知直线AB ∥CD ,∠C =115°,∠A = 25°,则∠E = .5.如阁所示,AB ∥CD ,∠l =l l 0°,∠2=120°,则∠α= .6.如图所示,AB ∥DF ,∠D =116°,∠DCB =93°,则∠B = .7.如图,将三角尺的直角顶点放在直线a上,a∥b.∠1=50°,∠2 =60°,则∠3的度数为 .8.如图,AB∥CD,EP⊥FP, 已知∠1=30°,∠2=20°.则∠F的度数为.9.如图,若AB∥CD,∠BEF=70°,求∠B+∠F+∠C的度数.10.已知,直线AB∥CD.(1)如图l,∠A、∠C、∠AEC之间有什么关系?请说明理由;(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明理由;(3)如图3,∠A 、∠E 、∠F 、∠G 、∠H 、∠O 、∠C 之间的关是 .挑战压轴题如图1,直线AB ∥CD ,P 是截线MN 上的一点,MN 与CD 、AB 分别交于E 、F . (1) 若∠EFB =55°,∠EDP = 30°,求∠MPD 的度数;(2) 当点P 在线段EF 上运动时,∠CPD 与∠ABP 的平分线交于Q ,问:DPBQ∠∠是否为定值?若是定值,请求出定值;若不是,说明其范围;(3) 当点P 在线段EF 的延长线上运动时,∠CDP 与∠ABP 的平分线交于Q ,问DPBQ∠∠的值足否定值,请在图2中将图形补充完整并说明理由.。

平行线有关模型汇总

平行线有关模型汇总

直线平行的条件和性质1. 猪蹄模型已知:如图,AB ∥CD ,求证:∠B+∠D=∠BED 。

2. 铅笔模型如图,已知: CD AB ∥,求证: ∠+B ∠D +∠=BED 360°. (至少用三种方法)3. 其他4. 角平分线如图1,在ABC ∆中,BE 平分,ABC CE ∠平分ACB ∠.若80A ∠=︒,则BEC ∠= ;若A n ∠=︒,求BEC ∠用含n 的代数式表示)如图3,在ABC ∆中,BO 平分外角,CBD CO ∠平分外角BCE ∠.若A n ∠=︒,求BOC ∠.如图5,在ABC ∆中,BE 平分ABC ∠, CE 平分外角ACM ∠.若A n ∠=︒,求BEC ∠.5. “8”字形 如图b 所示的“”字型,其也存在着一个等式:1+2=3+4∠∠∠∠,请证明;6. “A ”字型如图a 所示的“”字型,我们可称其为“A 字型”或“塔形”,其存在一个等式:1+2=3+4∠∠∠∠,请证明;7. 燕尾形如图c所示,其也存在着如下等式:D A B C∠=∠+∠+∠,请证明一.考点:平行线的性质,角度的计算与证明.二.重难点:常见的几种两条直线平行的结论1.两条平行线被第三条直线所截,一组同位角的角平分线平行;2.两条平行线被第三条直线所截,一组内错角的角平分线平行;3.两条平行线被第三条直线所截,一组同旁内角的角平分线垂直.三.易错点:1.性质是由图形的“位置关系”决定“数量关系”;2.两条平行线之间的距离其实可看成点到直线的距离.题型一:猪蹄模型例1. 如图,直线a∥b,直角三角形ABC的顶点B在直线a上,∠C=90°,∠β=55°,则∠α的度数为()A. 15° B. 25° C. 35° D. 55°题型二:铅笔模型∠+∠+∠+∠=()例2. 如图,AB∥CD,A E F CA . 180°B . 360°C . 540°D . 720°题型三:铅笔、猪蹄模型综合压轴例3. 某学习小组发现一个结论:已知直线a ∥b ,若直线c ∥a ,则c ∥b .他们发现这个结论运用很广,请你利用这个结论解决以下问题:已知直线AB ∥CD ,点E 在AB 、CD 之间,点P 、Q 分别在直线AB 、CD 上,连接PE 、EQ . (1)如图1,运用上述结论,探究∠PEQ 与∠APE +∠CQE 之间的数量关系,并说明理由; (2)如图2,PF 平分∠BPE ,QF 平分∠EQD ,当∠PEQ =140°时,求出∠PFQ 的度数; (3)如图3,若点E 在CD 的下方,PF 平分∠BPE ,QH 平分∠EQD ,QH 的反向延长线交PF 于点F .当∠PEQ =70°时,请求出∠PFQ 的度数.题型三:其他例4. (周练)如图,已知AB ∥CD ,则∠A 、∠C 、∠P 的关系为.FE DCBA练习1. 如图,若AB∥CD,则α、β、γ之间的关系为.题型四:翻折例5. 如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置,若∠EFB=65°,则∠AED′等于______例6. 如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在点A1、D1处.若∠1+∠2=140°,则∠B+∠C=°.题型五:角平分线例7. 如图,在△ABC中,∠ABC与∠ACB的平分线交于点O.(1)如图1,已知∠ABC=40°,∠ACB=60°,求∠BOC的度数.(2)如图2,已知∠A=90°,求∠BOC的度数.(3)如图1,设∠A=m°,求∠BOC的度数.例8. 如图13, 1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是1A BD ∠的角平分线,2CA 是1A CD ∠的角平分线,3BA 是2A BD ∠的角平分线,3CA 是2A CD ∠的角平分线,若A α∠=,则2018A ∠为 .1. 如图,∠A +∠B +∠C +∠D +∠E +∠F 的度数为( )A .180°B .360°C .540°D .720°2. 如图,将ABC ∆纸片沿DE 折叠,使点A 落在点'A 处,且'A B 平分ABC ∠,'A C 平分ACB ∠,若'110BA C ∠=︒,则12∠+∠的度数为( ) A. 80° B. 90° C. 100° D. 110°3. 如图,将矩形纸带ABCD ,沿EF 折叠后,C 、D 两点分别落在C ′、D ′的位置,经测量得∠EFB=65°,则∠AED ′的度数是( )A . 65°B . 55°C . 50°D . 25°4. 如图,已知30B ∠=︒,55BCD ∠=︒,45CDE ∠=︒,20E ∠=︒,求证:AB ∥CD .AFBC ED3.5. 如图,已知AB ∥DE ,BF ,EF 分别平分∠ABC 与∠CED ,若140BCE ∠=︒,求BFE ∠的度数.1. 如图,ABCDE 是封闭折线,则∠A 十∠B +∠C +∠D +∠E 为_______度.2. 如图,△ABE 和△ACD 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠BAC =150°,则∠θ的度数是_______.3. 如图,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是A .40°B .60°C .70°D .80° 4. 如图,把矩形沿对折后使两部分重合,若,则=( )A .110°B .115°C .120°D .130°A BCD E1.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=____度.2. 如图,若AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=70o,则∠BFD=________.3. 将一张长方形纸片如图所示折叠后,再展开.如果∠1=55o,那么∠2等于( )A.55o B.60o C.65o D.70o4. 问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP =∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.5. 在△ABC中,∠A=40°(1)如图1,若两内角∠ABC、∠ACB的角平分线交于点P,则∠P=,∠A与∠P 之间的数量关系是.为什么有这样的关系?请证明它;(2)如图2,若内角∠ABC、外角∠ACE的角平分线交于点P,则∠P=,∠A与∠P 之间的数量关系是;(3)如图3,若两外角∠EBC、∠FCB的角平分线交于点P,则∠P=,∠A与∠P 之间的数量关系是.6. 【探究发现】如图1,在△ABC中,点P是内角∠ABC和外角∠ACD的角平分线的交点,试猜想∠P与∠A 之间的数量关系,并证明你的猜想.【迁移拓展】如图2,在△ABC中,点P是内角∠ABC和外角∠ACD的n等分线的交点,即∠PBC=∠ABC,∠PCD=∠ACD,试猜想∠P与∠A之间的数量关系,并证明你的猜想.【应用创新】已知,如图3,AD、BE相交于点C,∠ABC、∠CDE、∠ACE的角平分线交于点P,∠A=35°,∠E=25°,则∠BPD=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线平行的条件和性质
1. 猪蹄模型
已知:如图,AB ∥CD ,求证:∠B+∠D=∠BED 。

2. 铅笔模型
如图,已知: CD AB ∥,求证: ∠+B ∠D +∠=BED 360°. (至少用三种方法)
3. 其他
4. 角平分线
如图1,在ABC ∆中,BE 平分,ABC CE ∠平分ACB ∠.若80A ∠=︒,则BEC ∠= ;若A n ∠=︒,求BEC ∠用含n 的代数式表示)
如图3,在ABC ∆中,BO 平分外角,CBD CO ∠平分外角BCE ∠.若A n ∠=︒,求BOC ∠.
如图5,在ABC ∆中,BE 平分ABC ∠, CE 平分外角ACM ∠.若A n ∠=︒,求BEC ∠.
5. “8”字形 如图b 所示的“
”字型,其也存在着一个等式:1+2=3+4∠∠∠∠,请证明;
6. “A ”字型
如图a 所示的“”字型,我们可称其为“A 字型”或“塔形”,其存在一个等式:
1+2=3+4∠∠∠∠,请证明;
7. 燕尾形
如图c所示,其也存在着如下等式:D A B C
∠=∠+∠+∠,请证明
一.考点:平行线的性质,角度的计算与证明.
二.重难点:常见的几种两条直线平行的结论
1.两条平行线被第三条直线所截,一组同位角的角平分线平行;
2.两条平行线被第三条直线所截,一组内错角的角平分线平行;
3.两条平行线被第三条直线所截,一组同旁内角的角平分线垂直.
三.易错点:
1.性质是由图形的“位置关系”决定“数量关系”;
2.两条平行线之间的距离其实可看成点到直线的距离.
题型一:猪蹄模型
例1. 如图,直线a∥b,直角三角形ABC的顶点B在直线a上,∠C=90°,∠β=55°,则∠α的度数为()
A. 15° B. 25° C. 35° D. 55°
题型二:铅笔模型
∠+∠+∠+∠=()
例2. 如图,AB∥CD,A E F C
A . 180°
B . 360°
C . 540°
D . 720°
题型三:铅笔、猪蹄模型综合压轴
例3. 某学习小组发现一个结论:已知直线a ∥b ,若直线c ∥a ,则c ∥b .他们发现这个结论运用很广,请你利用这个结论解决以下问题:
已知直线AB ∥CD ,点E 在AB 、CD 之间,点P 、Q 分别在直线AB 、CD 上,连接PE 、EQ . (1)如图1,运用上述结论,探究∠PEQ 与∠APE +∠CQE 之间的数量关系,并说明理由; (2)如图2,PF 平分∠BPE ,QF 平分∠EQD ,当∠PEQ =140°时,求出∠PFQ 的度数; (3)如图3,若点E 在CD 的下方,PF 平分∠BPE ,QH 平分∠EQD ,QH 的反向延长线交PF 于点F .当∠PEQ =70°时,请求出∠PFQ 的度数.
题型三:其他
例4. (周练)如图,已知AB ∥CD ,则∠A 、∠C 、∠P 的关系为.
F
E D
C
B
A
练习1. 如图,若AB∥CD,则α、β、γ之间的关系为.
题型四:翻折
例5. 如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置,若∠EFB=65°,则∠AED′等于______
例6. 如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在点A1、D1处.若∠1+∠2=140°,则∠B+∠C=°.
题型五:角平分线
例7. 如图,在△ABC中,∠ABC与∠ACB的平分线交于点O.
(1)如图1,已知∠ABC=40°,∠ACB=60°,求∠BOC的度数.
(2)如图2,已知∠A=90°,求∠BOC的度数.
(3)如图1,设∠A=m°,求∠BOC的度数.
例8. 如图13, 1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是1A BD ∠的角平分线,2CA 是1A CD ∠的角平分线,3BA 是2A BD ∠的角平分线,3CA 是2A CD ∠的角平分线,若A α∠=,则2018A ∠
为 .
1. 如图,∠A +∠B +∠C +∠D +∠E +∠F 的度数为( )
A .180°
B .360°
C .540°
D .720°
2. 如图,将ABC ∆纸片沿DE 折叠,使点A 落在点'A 处,且'A B 平分ABC ∠,'A C 平分
ACB ∠,若'110BA C ∠=︒,则12∠+∠的度数为( ) A. 80° B. 90° C. 100° D. 110°
3. 如图,将矩形纸带ABCD ,沿EF 折叠后,C 、D 两点分别落在C ′、D ′的位置,经测量得∠EFB=65°,则∠AED ′的度数是( )
A . 65°
B . 55°
C . 50°
D . 25°
4. 如图,已知30B ∠=︒,55BCD ∠=︒,45CDE ∠=︒,20E ∠=︒,求证:AB ∥CD .
A
F
B
C E
D
3.
5. 如图,已知AB ∥DE ,BF ,EF 分别平分∠ABC 与∠CED ,若140BCE ∠=︒,求BFE ∠的度数.
1. 如图,ABCDE 是封闭折线,则∠A 十∠B +∠C +∠D +∠E 为_______度.
2. 如图,△ABE 和△ACD 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠BAC =150°,则∠θ的度数是_______.
3. 如图,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是
A .40°
B .60°
C .70°
D .80° 4. 如图,把矩形
沿
对折后使两部分重合,若
,则
=( )
A .110°
B .115°
C .120°
D .130°
A B
C
D E
1.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=____度.
2. 如图,若AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=70o,则∠BFD=________.
3. 将一张长方形纸片如图所示折叠后,再展开.如果∠1=55o,那么∠2等于( )
A.55o B.60o C.65o D.70o
4. 问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP =∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
5. 在△ABC中,∠A=40°
(1)如图1,若两内角∠ABC、∠ACB的角平分线交于点P,则∠P=,∠A与∠P 之间的数量关系是.为什么有这样的关系?请证明它;
(2)如图2,若内角∠ABC、外角∠ACE的角平分线交于点P,则∠P=,∠A与∠P 之间的数量关系是;
(3)如图3,若两外角∠EBC、∠FCB的角平分线交于点P,则∠P=,∠A与∠P 之间的数量关系是.
6. 【探究发现】
如图1,在△ABC中,点P是内角∠ABC和外角∠ACD的角平分线的交点,试猜想∠P与∠A 之间的数量关系,并证明你的猜想.
【迁移拓展】
如图2,在△ABC中,点P是内角∠ABC和外角∠ACD的n等分线的交点,即∠PBC=∠ABC,∠PCD=∠ACD,
试猜想∠P与∠A之间的数量关系,并证明你的猜想.
【应用创新】
已知,如图3,AD、BE相交于点C,∠ABC、∠CDE、∠ACE的角平分线交于点P,∠A=35°,∠E=25°,则∠BPD=.。

相关文档
最新文档