螺旋天线初步仿真总结
螺旋天线的分析

黄冈师范学院本科生毕业论文题目:螺旋天线的分析专业年级:电子信息工程(2008级)学号:学生姓名:指导教师:论文完成日期2012 年 5 月郑重声明本人的毕业论文是在指导老师的指导下独立撰写并完成的。
毕业论文没有剽窃、抄袭、造假等违反学术道德、学术规范和侵权行为,如果有此现象发生,本人愿意承担由此产生的各种后果,直至法律责任;并可通过网络接受公众的查询。
特此郑重声明。
毕业论文作者(签名):______年月日目录摘要 (I)ABSTRACT (Ⅱ)1、绪论 (1)1.1螺旋天线的发展历史 (1)1.2螺旋天线发展前景 (2)2、螺旋天线的原理 (3)2.1相关背景与技术 (3)2.1.1 相似原理 (3)2.1.2 非频变原理 (4)2.1.3 螺旋天线工作原理 (4)2.2螺旋天线的技术指标 (5)2.3螺旋天线原理和相关计算 (8)2.3.1 平面阿基米德螺旋天线的基本形式 (8)2.3.2 螺旋天线辐射原理 (9)2.3.3 螺旋天线的藕合原理 (10)3.1HFSS简要介绍 (13)3.2天线建模、仿真及结果分析 (13)3.2.1 螺旋天线HFSS仿真流程图 (13)3.2.2 天线仿真的参数结果和分析 (14)结束语 (20)参考文献 (21)致谢 (23)螺旋天线的分析专业:电信班级:作者:指导老师:摘要本文对螺旋天线的发展历史和前景作了简要介绍,并对螺旋天线的工作原理和分析方法作了概述,包括对天线进行分析的主要指标、计算公式,螺旋天线的各项参数。
针对平面阿基米德螺旋天线进行了详细分析和论述;同时针对该工作在2.4GHZ的阿基米德螺旋天线实体用ansoft hfss13.0软件进行仿真,探究了阿基米德螺旋天线参数对方向图、增益宽度、阻抗宽度、轴比宽度的影响,并且对仿真后的输入功率、净输入功率、辐射功率、辐射效率、方向性系数、最大增益、前后向比等进行分析。
关键词:螺旋天线阿基米德螺旋天线 hfss仿真功率辐射增益Analysis of the helical antennaSpeciality: Electronic & Information EngineeringClass: 0802 Author: Song Biao Tutor: Luo ChunyaAbstractThis article briefly introduced the history of the development and prospects of the spiral antenna, and spiral antenna works and methods of analysis are summarized. Analysis of the key indicators, including the antenna calculation formula, the parameters of the helical antenna, A detailed analysis and discussion of planar Archimedean spiral antenna. The work Archimedean spiral antenna entities in 2.4GHZ of by ansoft hfss13.0 software simulation. Explore the Archimedean spiral antenna parameters on the pattern, gain width, impedance width, the influence of the axial ratio of the width,And the Incident power after the simulation, the Acceptable power, Max U, radiation efficiency, directivity, maximum gain before and after analysis to the ratio. Keywords: Helical antenna Archimedean spiral antenna HFSS simulationPower Radiation Gain1、绪论1.1 螺旋天线的发展历史德国物理学家赫兹在1887年为验证英国数学家麦克斯韦预言的电磁波设计了第一个天线,其组成是两根30cm长的金属杆,杆的终端是两块40cm2 的金属板,采用火花放电激励电磁波,而接收天线刚是环天线。
算法仿真天线实验报告

算法仿真天线实验报告一、实验介绍本次实验旨在通过算法仿真的方式,研究和探索天线的工作原理及性能。
通过使用仿真软件,可以加深对天线特性的理解,并通过仿真结果分析进一步优化天线设计。
二、实验过程1. 确定仿真软件:本次实验使用的是电磁仿真软件HFSS,该软件可以进行电磁场分析,可以用来模拟和分析天线的性能。
2. 设计天线模型:根据实验要求,选择天线的类型和参数。
可以选择一根直立的天线杆,设置杆的高度和直径。
也可以选择适当的天线形状和尺寸,例如常用的方形衬型天线、印制天线、贴片天线等。
3. 定义天线工作频段:根据实验要求,确定天线的工作频段。
可以选择一个单一频段,也可以选择多个频段。
4. 设计电源供应:确定天线的电源方式,可以选择直流电源或者交流电源。
5. 进行电磁仿真:将天线模型导入HFSS软件中,在软件中配置和定义仿真参数。
定义天线工作频段、电源参数等。
进行电磁仿真。
6. 仿真结果分析:根据仿真结果,分析天线的增益、方向性、频率响应等性能指标。
对于无法满足实验要求的天线,可以进行参数调整和优化。
7. 优化设计:根据分析结果,对天线模型进行优化设计。
可以调整天线的尺寸、形状、材料等参数。
再次进行仿真。
8. 重复实验:根据需要,可以进行多次优化设计和仿真实验,以进一步提高天线性能。
三、实验结果与分析通过电磁仿真软件进行天线实验,在给定的频段和工作条件下进行仿真,可以获得以下性能指标:1. 增益:增益是衡量天线辐射效果的重要指标,表示天线辐射功率与理论理想辐射功率之比。
一般来说,增益越大,天线辐射能力越强。
2. 方向性:方向性是指天线辐射功率随辐射方向的变化情况。
一般来说,天线的方向性越集中,表示天线的辐射范围越小,辐射功率更集中。
3. 频率响应:频率响应是指天线在不同频段上的辐射能力。
在实际应用中,天线需要能够覆盖整个工作频段,保持稳定的性能。
通过对仿真结果的分析,可以得到天线在不同频段下的增益、方向性等性能指标的变化情况。
平面螺旋天线及宽带匹配网络的设计和仿真

平面螺旋天线及宽带匹配网络的设计和仿真徐 琰 张漠杰(上海航天局第八○二研究所 上海200090)摘要:本文介绍了阿基米德平面螺旋天线及微带渐变线阻抗变换器的原理和设计方法,运用以有限元法为原理的专业软件Ansoft HFSS 对该天线及宽带匹配网络进行仿真,并与测量结果进行比较,仿真结果与测量结果吻合。
关键词: 阿基米德平面螺旋天线 渐变线阻抗匹配 平衡馈电一、 平面螺旋天线1.1 阿基米德平面螺旋天线为了满足灵活性和通用性,常常要求天线能以令人满意的方向图、阻抗和极化特性工作于很宽的频带范围内。
线性振子天线的频带是很窄的,增加振子直径只能稍微展宽一些频带,一般很少能大于所设计的中心频率的百分之几。
天线的增益、方向图、输入阻抗等电特性参数在一个较宽的频带内保持不变或变化较小的天线称为宽频带天线。
一般情况下,天线的性能参数是随频率变化的。
有一类天线,其几何形状完全由角度规定,性能与频率无关,这类天线称为非频变天线。
典型的天线有等角螺旋天线。
阿基米德平面螺旋天线不是一个真正意义上的非频变天线,但它也可以在很宽的频带内工作。
因为它不能满足截断要求,电流在工作区后并不明显的减小,螺旋天线被截断后方向图必受影响,因此必须在末端加载而避免波的反射。
阿基米德螺旋的半径随角度的变化均匀的增加,方程为φρρa +=0式中0ρ是起始半径,为螺旋增长率。
a本文设计的是双臂的阿基米德平面螺旋天线(如图1),两臂方程分别为φρρa +=011和)(022πφρρ++=a 。
用印刷电路技术来制造这种天线,使金属螺旋的宽度等于两条螺旋间的间隔宽度,形成自互补天线。
臂的宽度为:20102πρρa W =−=对于一个自互补天线结构,由巴比涅—布克(Babinet -Booker )原理可求得,具有两个臂的无限大结构的输入阻抗为188.5欧。
图1 阿基米德平面螺旋天线在螺旋的周长为一个波长附近的区域,形成平面螺旋的主要辐射区。
螺旋天线的仿真设计

螺旋天线的仿真设计螺旋天线是一种常见的天线形式,其结构为螺旋状,使得天线的增益和方向性较强。
在无线通信中,螺旋天线具有较广泛的应用。
本文将介绍螺旋天线的仿真设计过程,包括建模、设计、优化和仿真。
建模螺旋天线的建模是仿真设计的第一步,通过建立天线的几何模型,可以为后续的设计和仿真提供基础。
在建模过程中,需要考虑天线的参数,包括螺旋元件的长度、宽度、距离、导线的半径等。
通常情况下,建模可以采用CAD软件,如SolidWorks、CATIA等,以三维模型的形式呈现螺旋天线的结构和形状。
设计在建模基础上,需要对螺旋天线进行设计。
设计包括确定天线的工作频率、设计天线的转向、设计天线的匹配电路等。
在设计过程中,需要考虑到天线的增益和方向性,以及天线的信号传输性能。
工作频率螺旋天线的工作频率是设计的关键因素之一。
通常情况下,天线的工作频率与其物理尺寸以及匹配电路有关。
在确定螺旋元件的长度、宽度、距离和导线半径后,可以采用电磁仿真软件进行仿真,从而确定天线的工作频率。
转向设计螺旋天线的转向设计是另一个关键因素。
根据转向的方向和角度,可以调整天线的增益和方向性。
在设计过程中,需要考虑到天线的应用场景,以确定最优的转向设计。
匹配电路设计匹配电路是螺旋天线的关键组成部分之一。
通过匹配电路的设计,可以提高天线的功率传输效率,并降低反射损耗。
在设计匹配电路时,需要考虑天线的输入阻抗和负载阻抗之间的匹配,以保证天线能够有效工作。
优化螺旋天线的设计和优化是一个迭代过程,通过反复的仿真分析和优化设计,可以使螺旋天线达到最优的性能。
在优化过程中,需要考虑到天线的特性,如阻抗、增益、方向性等,以及其在实际环境下的表现。
仿真螺旋天线的仿真是验证天线性能和效果的重要步骤。
在仿真过程中,可以得到螺旋天线的各项性能指标,如增益、方向性、回波损耗等。
通过仿真分析,可以调整和优化天线的参数,从而使其达到最佳的性能。
本文介绍了螺旋天线的仿真设计过程,包括建模、设计、优化和仿真。
轴向模螺旋天线的仿真研究

起点到接地板 的距离 g 2 mm, =2 接地板 直径 为 16 m。 6m
过改变接地板直径 d为 1m 在 H S 1 5 m, F S 2中进行仿 真 。
图6 所示为 3 D方向图。 7 图 所示为 极坐标 方向图。 从图 7中可 以看 出, 背射增益为 2 8B .d。 0
3结束语
8 1
[] O JY O D C,E C h rn p otns cb a 2K , H L E Y H.o ee t p r it e m— o u i
f r n wi p ril h n e if r ain n o mi g t h a t c a n l n om t i m u u e a o his r
i l 堇 R I
1 朴
~
…
…
图 63 方 向 图 D
图 7极 坐标 方 向 图
参考文 献 :
【] 昌禄, 1 林 聂在平 . 天线工程手册【 . : M] 北京 电子工业 出版
社 , 0 :9~ 9 . 2 2 4 49 0 4
[ 林 昌禄. 天线设计【 ] 京: 民邮 电出版社, 9 . 2 ] 近代 M. 北 人 1 0 9
螺旋天线初步仿真总结

螺旋天线初步仿真简介螺旋天线是现代通信领域中常用的一种天线。
与传统的线性天线相比,螺旋天线具有更广阔的频率范围和更强的极化适应性。
在实际应用中,螺旋天线可用于卫星通信、雷达、移动通信等领域。
本文将对螺旋天线进行初步仿真,并对仿真结果进行。
仿真工具在仿真螺旋天线时,我们使用了Ansoft HFSS这一电磁仿真工具。
该工具具有强大的电磁仿真能力,并且能够模拟多种复杂的天线结构。
天线结构螺旋天线的特殊结构可使其具有更广泛的频带和更稳定的性能。
螺旋天线通常由驻波耦合带、电感耦合框架和辐射器三部分组成。
其中,辐射器是螺旋天线中最重要的部分。
辐射器通常由导线或金属板制成。
在我们的仿真中,我们选择使用导线制作辐射器,并通过Ansoft HFSS进行建模。
仿真参数在进行螺旋天线的仿真时,我们需要设置一些关键参数。
下面是我们在仿真中所使用的参数:•驻波耦合带长度:3mm•电感耦合框架长度:2.5mm•螺旋天线直径:20mm•扭转距离:10mm•辐射器长度:40mm•频率范围:2GHz到4GHz•单元类型:tetrahedron仿真结果在仿真完整的螺旋天线结构之后,我们可以通过Ansoft HFSS获得一系列仿真结果。
下面是我们在仿真过程中得到的一些关键结果:•S11参数:通过S11参数,我们可以了解到螺旋天线的反射损耗。
在我们的仿真中,螺旋天线的S11参数在整个频率范围内均小于-30dB,表明螺旋天线的反射损耗较低。
•阻抗带宽:螺旋天线的阻抗带宽非常重要,它能够告诉我们螺旋天线在多大范围内能够保持正常工作。
在我们的仿真中,螺旋天线的阻抗带宽达到了500MHz,表明螺旋天线具有较广泛的工作频率范围。
•极化:螺旋天线具有左旋和右旋两种极化方式。
在我们的仿真中,螺旋天线的极化为右旋,符合我们预期的结果。
通过以上仿真结果,我们可以发现螺旋天线具有较好的阻抗带宽和反射损耗,适用于多种通信领域。
同时,在其他仿真参数固定的前提下,通过对辐射器长度等参数进行调整,我们可以进一步提高螺旋天线的性能。
等角螺旋天线

等角螺旋天线仿真分析Abstract:本文基于等角螺旋天线的基本原理,利用电磁让真软件HFSS构建并仿真分析了一个基本的等角螺旋天线。
通过仿真结果,得到了一个频带为442MHz~929MHz,频带内S参数小于-10dB的天线,并分别给出450MHz,670MHz,900MHz处的E、H面方向图。
关于结果的分析也列于最后。
1.引言螺旋天线属于非频变天线,具有可观的带宽比,通常都具有圆极化特性,半功率带宽一般约为70°~90°。
由于螺旋天线具有体积小,宽带宽的特性,因而广泛应用于国防,遥感等方面。
螺旋天线阵列还用于1~18GHz的军用飞行器方面。
2.天线设计本文仿真的等角螺旋天线如图1所示,可由4个公式表示定义每个支臂的内外半径r1=r0e aφ(1)r2=r0e a(φ-δ)(2)r2=r0e a(φ-π)(3)r2=r0e a(φ-π-δ)(4) 式中r0为φ=0时的矢径,a为一个常数,用于控制螺旋的张率。
用式(1)可以建立起图1所示的平面等角螺旋天线。
当δ=π/2时,图1所示的结构是自补的,在这种情况下,方向图对称性最好。
自补天线有如下特性:Z金属=Z空气=η/2=188.5Ω(5) 这就要求在HFSS中仿真的时候馈电对口阻抗大致设为188.5Ω。
等角螺旋天线工作频带的上限f u 由亏点结构决定,最小半径r0在馈电区的周长2πr0=λu=c/f u。
当然,螺旋在该店终止,连接到馈电传输线。
下限频率通过天线整体半径R来限制,使其约为f L的1/4波长。
实验发现半圈到三圈的螺旋对参数a和δ相对来说不敏感。
一圈半的螺旋约为最佳。
本文利用HFSS构建模型,并进行仿真分析。
构建的模型如图2所示。
仿真的天线最终选定参数如下:r0=27.5cm,a=0.27,n=0.92。
图1 平面等角螺旋天线几何模型图2 等角螺旋天线(a)斜视图(b)顶视图(c)侧视图3.仿真分析3.1 S参数图3所示为S参数仿真结果,由图可以看出,从442MHz~929MHz处,S参数都低于-10dB,说明此等角螺旋天线在次带宽内为通带。
螺旋天线的仿真设计微波课设要点

螺旋天线的仿真设计微波课设要点一、背景介绍螺旋天线是一种常用于微波通信和雷达系统中的天线。
它具有频带宽度大、辐射效率高、阻抗匹配良好、天线尺寸小等优点,是目前最为流行的微波天线类型之一。
因此,针对螺旋天线的仿真设计是非常有研究价值的。
在微波课设中,螺旋天线的仿真设计是一个非常重要的环节。
本文将介绍关于螺旋天线仿真设计的一些注意要点,旨在为微波课设中的学生提供帮助和指导。
二、仿真工具的选择对于螺旋天线的仿真设计,目前主要使用的工具有以下几个:1.Ansoft HFSS2.CST Microwave Studio3.FEKO针对这些工具的选择,主要需考虑仿真精度、仿真速度以及使用难度等因素。
以本文为例,我们选择使用 Ansoft HFSS 作为仿真工具。
三、螺旋天线的基本结构螺旋天线具有较为复杂的结构,主要包括螺距、半径、匝数、导线宽度和间距等参数。
其中,螺距和半径是影响天线辐射特性的重要参数。
螺旋天线的形式化表达式为:Z = A * exp(-j * b * p) * cos(p) + A * exp(j * b * p) * sin(p)其中,A 为天线辐射功率,b 为螺距,p 为方位角。
四、天线参数的建模针对螺旋天线的建模,我们可以使用不同的建模方法,如等效电路模型、仿真模型等。
在 Ansoft HFSS 中,我们可以使用 3D 宏模型进行建模。
在建模过程中,需要输入天线参数,并进行优化和调整。
这包括调整半径和螺距等参数,以实现更好的辐射效果和阻抗匹配。
五、天线仿真分析螺旋天线的仿真分析主要包括以下几个方面:1.带宽特性分析2.辐射特性分析3.阻抗匹配分析在分析过程中,需要对仿真结果进行分析和优化,以达到预期的结果。
同时,还需要根据仿真结果进行天线参数调整,使之达到更好的性能。
六、仿真结果分析与优化在仿真分析完成后,需要对仿真结果进行分析和优化。
这包括调整天线参数、优化辐射效果等。
具体来说,我们需要根据分析结果,对螺距和半径等参数进行调整,以实现更好的辐射效果和阻抗匹配。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反射系数(驻波)和耦合系数:
不圆度:m1-m2=
增益()
加载线圈:
无线圈:
总结:
不圆度指标可在1dB内;
驻波和耦合是难点;
把螺旋天线内置在天线罩中,耦合增强,但对位置敏感,需要和室分天线联合调参。
fpc-induce2 good
天线变小了
反射系数(驻波)和耦合系数:940MHz
0.50
0.75
1.00
1.25 1.50
1.75
2.00
F req [
G
H z ]
-30.00
-25.00
-20.00
-15.00
-10.00
-5.00
0.00
Y 1
g o o d
X Y P lo t 2
-6.2077-4.7591-9.3256
C u rve I n fo d B (S (1,1))S e tu p 1 : S we e p d B (S (1,2))S e tu p 1 : S we e p d B (S (2,2))S e tu p 1 : S we e p
不圆度:m1-m2=
-2.20
-2.00
-1.80
-1.6090
60
300
-30-60
90-120-150150
120
m 1
m 2
N a m e P h i
An g M a g
m 1
269.0000-91.0000-2.2586
m 2
85.000085.0000-1.5142
940Mhz 端口损耗=()= dB
S11=, P: S21=, P:
GAIN-REALIZEDGAIN=1-|S11|-|S21|= = dB 吻合!
螺旋天线方向图:水平全向,和室分天线类似
IBEACON仿真结果:
1.2cm*2cm地板()
沿y轴放置的ibeacon天线,方向图为y轴零点的面包圈。
增益。
2.大地板()
方向图为y轴仍为零点。
随着地板增大,ibeacon天线辐射偏向了地板方向,出现3个副瓣,端口匹配容易,增益增大为。
3.室分天线+螺旋天线+IBEACON()
1.50
1.75
2.00 2.25 2.50 2.75
3.00 3.25 3.50
F req [
G
H z]
-15.00
-12.50
-10.00
-7.50
-5.00
-2.50
0.00
Y
1
ib e a co n+a n te n n a
X Y P lo t 1
-8.4173
-0.0506
-10.1141
C u rve I n fo
d B(S(1,1))
S e tu p1 : S we e p
d B(S(2,2))
S e tu p1 : S we e p
d B(S(3,3))
S e tu p1 : S we e p
室分天线和ibeacon的方向图
Theta=30,60时的方向图
其中,端口1是室分天线,端口2是螺旋天线,端口3是ibeacon天线。
Ibeacon方向图基本和2类似,增益有所损失。
总结:
1、Ibeacon天线会偏向相反方向辐射,且有3个明显的副瓣,最大增益和最小增益差4dB。
天线尺寸小,方向图较难控制。
2、ibeacon和室分天线共地摆放,布线较为容易。
若需要水平均匀方向图,则重新考虑ibeancon摆放位置、ibeacon天线形态(一定会增大尺寸)。
3、该方向图是否可以足够满足定位需求,建议后续结合业务容量、距离进行测试。