齿轮泵有关知识
齿轮泵基本知识和检修技术要点

齿轮泵基本知识和检修技术要点01.齿轮泵基本知识(1)齿轮的定义:壳中有一对啮合的齿轮,其中一个是主动齿轮,另一个是从动齿轮,由主动齿轮啮合带动旋转。
齿轮与泵壳之间留有较小的间隙。
当齿轮旋转时,在轮齿逐渐脱离啮合的左侧吸液腔中,齿间密闭容积增大,形成局部真空,液体在压差作用下吸入吸液室,随着齿轮旋转,液体分两路在齿轮与泵壳之间被齿轮推动前进,送到右侧排液腔,在排液腔中两齿轮逐渐啮合,容积减小,齿轮间的液体被挤至排液口。
(2)齿轮泵的齿轮型式有正齿轮、人字齿轮和螺旋齿轮。
齿轮泵分为外啮合齿轮泵(简称外齿轮泵)和内啮合齿轮泵(简称内齿轮泵)如图外齿轮泵如图内齿轮泵(3)外啮合齿轮泵和内啮合齿轮泵的性能区别和应用场合。
外齿轮泵,出口压力小于25MPa,流量小于7m3/h,特点运动件多,维修费用高,价格低。
内齿轮泵,出口压力小于2MPa,流量小于340m3/h,特点运动件少,维修费用低,价格高。
如图,回转泵综合曲线图(国际单位制)02.齿轮泵的型号表示方法(1)2CY型齿轮泵表示:不带安全阀的渐开线齿廓齿轮泵。
示例,2CY-3/2.5表示额定压差2.5MPa,流量3m3/h不带安全阀的渐开线齿廓齿轮泵。
(2)KCB型齿轮泵表示:带安全阀的渐开线齿廓齿轮泵。
示例,KCB-300表示额定压差0.33MPa,流量300m3/h 带安全阀的渐开线齿廓齿轮泵。
(3)YCB型齿轮泵表示:带安全阀的正弦曲线双圆弧齿廓齿轮泵。
示例,YCB-10/0.6表示额定压差0.6MPa,流量10m3/h 带安全阀的正弦曲线双圆弧齿廓齿轮泵。
(4)LB型齿轮泵表示:不带安全阀的正弦曲线双圆弧齿廓齿轮泵。
示例,LB-20/0.6表示额定压差0.6MPa,流量20m3/h不带安全阀的正弦曲线双圆弧齿廓齿轮泵。
(5)LYB型齿轮泵表示:带安全阀的正弦曲线双圆弧齿廓立式齿轮泵。
示例,LYB-20/0.6表示额定压差0.6MPa,流量20m3/h 带安全阀的正弦曲线双圆弧齿廓立式齿轮泵。
齿轮泵知识

齿轮泵知识齿轮泵是一种常见的液压泵,它利用齿轮的旋转运动将液体从进口吸入,并通过齿轮间的密封空间将液体推出。
齿轮泵的工作原理简单,结构紧凑,具有稳定的流量和压力输出,广泛应用于工业领域。
齿轮泵主要由齿轮、泵体、进出口口和密封装置等部件组成。
其中,齿轮是齿轮泵的核心部件,一般由两个或多个齿轮组成。
齿轮通常为圆形,齿数相等且齿形相同。
其中一个齿轮为驱动齿轮,另一个齿轮为从动齿轮。
当驱动齿轮转动时,从动齿轮也会跟随转动。
两个齿轮之间的间隙称为齿轮间隙,通过齿轮间隙形成的密封空间,实现了液体的吸入和推出。
齿轮泵的工作过程可以分为吸入、密封和推出三个阶段。
首先,在吸入阶段,当驱动齿轮转动时,从动齿轮与驱动齿轮啮合,形成一个密闭的空间。
由于齿轮的旋转,空间体积逐渐增大,导致压力降低,液体被吸入到齿轮间隙中。
其次,在密封阶段,当齿轮间隙与进口口对齐时,液体被吸入到泵体内部。
最后,在推出阶段,当齿轮继续转动,从动齿轮与驱动齿轮分离,密封空间逐渐减小,液体被推出到出口口。
通过这样的循环,齿轮泵可以实现连续的液体输送。
齿轮泵具有一些优点,使其在工业领域得到广泛应用。
首先,它具有较高的工作效率和较低的噪音水平。
由于齿轮的啮合关系紧密,液体输送的效率较高,能够满足工业生产的需求。
同时,齿轮泵的工作过程相对平稳,噪音水平较低,减少了工作环境的噪声干扰。
其次,齿轮泵的结构紧凑,占用空间较小。
这使得齿轮泵在安装和维护方面更加方便,适用于工厂中较为狭小的空间。
此外,齿轮泵的流量和压力输出稳定,能够满足不同工艺的需求。
然而,齿轮泵也存在一些局限性。
首先,由于齿轮间隙的存在,齿轮泵在高压下容易产生泄漏现象。
其次,在高速转动时,齿轮泵的噪音水平会增加,影响工作环境的安静。
此外,齿轮泵的密封性能相对较差,容易受到液体的粘度和温度等因素的影响。
为了提高齿轮泵的性能,目前在设计和制造方面进行了一些改进。
例如,采用先进的材料和工艺,提高齿轮的硬度和耐磨性。
气体动力专业知识14-油泵基础知识及用途

3.2 柱塞泵结构 A.轴向柱塞泵(图1)
3.2 柱塞泵结构 A.轴向柱塞泵(图2) 在红色半圈转动时,为排油过程, 在绿色半圈转动时,为吸油过程
3.2 柱塞泵结构 B.斜轴式轴向柱塞泵
3.2 柱塞泵结构 C.径向柱塞泵(图1)
3.2 柱塞泵结构 C.径向柱塞泵(图2)
划
3.3 柱塞泵特点 与其他容积式油泵比较: 1)优点: 耐压高、效率高、传输功率大、转速范围宽、寿命长。 2)缺点: 是对工作介质清洁度要求苛刻、结构复杂价格高、维
护困难等。
4. 叶片泵 4.1叶片泵工作原理: 叶片泵分为双作用泵和单作用泵: 双作用泵工作原理:它由定子、转子、叶片和配油盘等组成。定子内壁近 似椭圆形。叶片安装在转子径向槽内并可沿槽滑动,转子与定子同心安装。 当转子转动时,叶片在离心力的作用下压向定子内表面,并随定子内表面 曲线的变化而被迫在转子槽内往复滑动,相邻两叶片间的密封工作腔就发 生增大和缩小的变化。叶片由小半径圆弧向大半径圆弧处滑移时,密封工 作腔随之逐渐增大形成局部真空,于是油箱中油液通过配油盘上吸油腔吸 入;反之将油压出。转子每转一周,叶片在槽内往复滑移2次,完成2次吸 油和2次压油,并且油压所产生的径向力是平衡的,故称双作用式,也称平 衡式。
4.1叶片泵工作原理: 单作用式叶片泵工作原理:主要由定子、转子、叶片和配油盘等组成。定子 的内表面是一个圆柱形,转子偏心安装在定子中,即有一个偏心距e,叶片 装在转子径向滑槽中,并可在槽内径向滑动。转子转动时,在离心力和叶片 根部压力油的作用下,叶片紧贴在定子内表面上,这样相邻两片叶片间就形 成了密封工作腔。在其中一边,叶片逐渐伸出,密封工作腔逐渐增大,形成 局部真空,形成吸油;反之,另一边,形成压油。转子每转一周,叶片在滑 槽内往复滑移1次,完成1次吸油1次压油。油压所产生的径向力是不平衡的, 故称单作用式,也称不平衡式叶片泵。
油泵基础必学知识点

油泵基础必学知识点
1. 油泵的功能:将液体从储存设备中提取并输送至目标位置。
2. 油泵的工作原理:利用旋转运动将原动机的动力传递给液体,产生一定压力,使液体流动。
常见的工作原理有齿轮泵、叶片泵、螺杆泵等。
3. 油泵的分类:按用途可分为供油泵、润滑油泵、冷却泵等;按工作原理可分为齿轮泵、涡轮泵、柱塞泵等;按工作方式可分为手动泵、电动泵、液压泵等。
4. 油泵的结构组成:主要由泵体、泵轴、泵叶、泵腔、进出口阀门、密封装置等组成。
5. 油泵的选型:根据液体的输送量、压力要求、工作环境等因素,选用合适的油泵型号和规格。
6. 油泵的维护与保养:定期检查和更换液体,保持泵体清洁,检查泵轴和密封件的磨损情况,及时修复故障。
7. 油泵的故障排除:根据故障现象,采取相应的排查方法,包括检查电路是否正常、泵轴是否卡住、密封件是否磨损等。
8. 安全操作规范:使用油泵时应注意安全防护措施,如穿戴好防护装备,确保工作环境通风良好,避免泵体爆炸等意外事故发生。
9. 油泵的应用领域:广泛应用于石油、化工、冶金、电力、航空航天等行业,用于输送、供应和循环液体。
离心泵齿轮泵磁力泵基础知识

传统机械按键结构层图:
按键
PCBA
开关键
传统机械按键设计要点: 1.合理的选择按键的类型,尽量选择平头类的按 键,以防按键下陷。 2.开关按键和塑胶按键设计间隙建议留 0.05~0.1mm,以防按键死键。 3.要考虑成型工艺,合理计算累积公差,以防按 键手感不良。
2、离心泵
• 备用泵为什么要定期盘车? (1)、防止泵内生锈卡住;(2)、防止泵轴受压变形。 • 盘车每次盘半圈或半圈的奇数倍。盘车还可以将润滑油带到各润
图1—21非平衡型双端面机械密封
l一紧定螺钉;2一弹簧座;3弹簧;4推环;
1一静密封圈;2静环;3动环;4一动环密封圈; 5一动环密封
圈;6一动环;7静环;
5一推环;6一弹簧;7紧定螺钉;8弹簧座; 8静环密封圈;9防转销
9一防转销
2021/4/10
16
2、离心泵
• 汽蚀
• 泵通过旋转的叶轮对液体做功,把液体从叶轮内摔出就会有蒸汽 及溶解在液体中的气体从液体中大量逸出,形成混合气体的小气 泡,气泡周围液体压力大,使气泡收缩而迅速重新凝结,而周围 液体又以高速向这个空穴冲来,产生很高局部压力,在频率很高 的连续打击下,金属表面因疲劳而剥离很快,破坏成蜂窝或海绵 状。
• 容积最大:当齿轮继续旋转,这个密封容积又逐渐增大,容积增 大时又会造成局部真空,使油液中的空气被析出,产生气穴现象
• 消除困油的方法:
• 在齿轮泵的两侧端盖上铣两条不对称卸荷槽。
• 当密闭容积减小时,使其与压油腔相通,当密闭容积增大时,使 其与吸油腔相通。
2021/4/10
26
3、齿轮泵
• 消除径向不平衡力的方法: • 可以在壳体上铣出液压平衡槽 • ,将一部分高压油引入低压油 • 侧,将一部分低压油引入高压 • 油侧。 • 在消除径向不平衡力的同时,也可以减小端面的泄露,提高齿泵
喷码机齿轮泵工作原理

喷码机齿轮泵工作原理
喷码机齿轮泵是一种常用于喷码设备中的泵,其主要工作原理如下:
1. 齿轮泵结构:喷码机齿轮泵主要由两个相互啮合的齿轮组成,即驱动轮和从动轮。
驱动轮通过电机等动力源带动从动轮旋转。
2. 泵的工作过程:当驱动轮转动时,从动轮也会跟随转动。
由于齿轮的啮合作用,从动轮的旋转会将液体从入口处吸入,然后通过泵的内部空腔,最后从出口处排出。
3. 出口控制:为了确保喷码机齿轮泵的工作正常,一般会在出口处设置一个压力控制阀。
当泵输出的压力超过设定阈值时,压力控制阀会打开,将多余的液体放回到入口处,以避免泵受损。
4. 润滑和密封:为了保证齿轮的正常运转,喷码机齿轮泵通常需要进行润滑和密封处理。
一般会在齿轮上涂抹润滑油,在轴承处安装密封圈,以减小齿轮的磨损和泄漏。
需要注意的是,喷码机齿轮泵的工作原理是通过齿轮的旋转来实现液体的吸入和排出,所以其输出流量和压力与齿轮的转速和尺寸有关。
因此,在使用喷码机齿轮泵时,需要根据具体应用需求选择合适的转速和齿轮尺寸。
齿轮泵的工作原理

齿轮泵的工作原理
齿轮泵是一种常见的液压泵,其工作原理基于齿轮间的相互啮合和旋转来实现液体的吸入和排出。
齿轮泵通常由两个啮合的齿轮组成,一个是驱动齿轮,另一个是从动齿轮。
驱动齿轮通过外部动力源(如电机或发动机)的驱动旋转,从而带动从动齿轮一起旋转。
在齿轮泵内部,齿轮与泵壳之间会形成密封的腔室,液体会被吸入到这个腔室中。
随着齿轮的旋转,液体会被推送出腔室,通过泵的出口管道排出。
这样循环往复,液体就会被连续地吸入和排出,完成了泵的工作过程。
齿轮泵的工作原理可以简单概括为“吸入-推送-排出”的循环过程。
当驱动齿轮旋转时,从动齿轮也会随之旋转,从而在泵腔中形成一定的容积变化,使液体被吸入和排出。
齿轮泵通常具有较高的工作效率和稳定性,适用于不同领域的液体输送和压力提升。
除了基本的工作原理外,齿轮泵还有一些特点和优势。
首先,齿轮泵结构简单,维护方便,故障率低,使用寿命长。
其次,齿轮泵输送流量稳定,压力脉动小,适用于对流量和压力要求较高的场合。
此外,齿轮泵还可以根据实际需求进行调速,以满足不同工况下的液体输送需求。
然而,齿轮泵也存在一些局限性。
例如,由于齿轮的啮合间隙和轴向间隙较小,对液体的粘度和清洁度要求较高。
同时,齿轮泵在高
速运转时会产生一定的噪音和振动,需要采取相应的减振措施。
总的来说,齿轮泵作为一种常见的液压泵,具有简单可靠、高效稳定的特点,广泛应用于工业生产、农业灌溉、建筑工程等领域。
通过了解齿轮泵的工作原理,我们可以更好地理解其在液体输送中的作用和优势,为相关领域的应用提供技术支持和指导。
齿轮泵安全标识

齿轮泵安全标识摘要:一、齿轮泵简介1.齿轮泵的工作原理2.齿轮泵的主要用途二、齿轮泵安全标识的重要性1.齿轮泵的安全性能2.我国对齿轮泵安全标识的规定三、齿轮泵安全标识的常见类型1.齿轮泵上的标识2.齿轮泵操作手册中的标识四、齿轮泵安全标识的意义1.提醒使用者注意安全2.指导使用者正确操作齿轮泵五、如何正确识别齿轮泵安全标识1.了解相关法律法规2.熟悉齿轮泵的结构和工作原理3.注意标识的位置和内容正文:齿轮泵是一种常见的流体输送设备,广泛应用于各个行业领域。
齿轮泵通过两个相互啮合的齿轮产生压力,将液体从进口输送至出口。
齿轮泵具有结构简单、使用寿命长、流量稳定等优点,被广泛应用于化工、石油、医药等行业。
由于齿轮泵在使用过程中可能存在一定的安全风险,因此,齿轮泵安全标识的设置显得尤为重要。
我国对齿轮泵的安全性能有严格的要求,规定齿轮泵及其附件上应设置安全标识。
这些标识不仅能够提醒使用者注意安全,还能够指导使用者正确操作齿轮泵,避免因操作不当而引发的安全事故。
齿轮泵安全标识的常见类型包括:齿轮泵上的标识和齿轮泵操作手册中的标识。
齿轮泵上的标识通常设置在齿轮泵的显眼位置,如泵体、阀门等,内容包括泵的型号、规格、制造厂家、生产日期等。
齿轮泵操作手册中的标识则包括详细的操作步骤、安全注意事项、故障排除方法等。
正确识别齿轮泵安全标识对于保障使用者安全至关重要。
首先,应了解相关法律法规,确保所使用的齿轮泵符合我国的安全标准。
其次,应熟悉齿轮泵的结构和工作原理,以便在出现问题时能够及时发现并处理。
最后,应注意标识的位置和内容,确保在使用过程中能够正确识别并遵循标识的提示。
总之,齿轮泵安全标识在保障使用者安全和指导正确操作方面具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
齿轮泵学习资料一.概述齿轮泵是机器润滑、供油(或其它液体)系统中的一个部件。
其体积小,要求传动平稳,保证供油,不能有渗漏。
它也是液压系统中广泛采用的一种液压泵,一般做成定量泵。
二.齿轮泵的工作原理当一对齿轮在泵体内做啮合传动时,啮合区前边空间的压力降低而产生局部真空,油池内的油在大气压作用下进入油泵低压区内的进油口,随着齿轮的传动,齿槽中的油不断被带至后边的出油口把油压出,从而提高油的压力,送至机器中需要润滑的部位。
主动齿轮通过轴端的皮带轮与动力(如电动机)相连接,为了防止油沿主动齿轮轴外渗,用密封填料、填料压盖、螺钉组成一套密封装置。
一般齿轮泵有两条装配线,一条是传动装配线,一条是从动装配线。
装配线上是一对啮合齿轮,为标准直齿圆柱齿轮,其齿根圆直径与轴径相差较小,因此和轴均做成一体,叫齿轮轴。
泵体与泵盖间采用毛毡纸垫密封,两零件之间采用两销钉定位,以便安装。
泵的流量直接与泵的转速有关。
实际上,在泵内有很少量的流体损失,这使泵的运行效率不能达到100%,因为这些流体被用来润滑轴承及齿轮两侧,而泵体也绝不可能无间隙配合,故不能使流体100%地从出口排出,所以少量的流体损失是必然的。
然而泵还是可以良好地运行,对大多数挤出物料来说,仍可以达到93%~98%的效率。
三.齿轮泵的分类按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。
下面分别以内、外啮合齿轮泵为例来剖析齿轮泵。
1.外啮合齿轮泵齿轮泵工作原理很简单,外齿轮泵就是一个主动轮一个从动轮,两个齿轮参数相同,在一个泵体内做旋转运动。
在这个壳体内部形成类似一个“8”字形的工作区,齿轮的外径和两侧都与壳体紧密配合,传送介质从进油口进入,随着齿轮的旋转沿壳体运动,最后从出油口排出,最后将介质的压力转化成机械能进行做功。
以下是四张为外啮合齿轮泵工作原理图:CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。
随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。
这时轮齿进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。
齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。
当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油,这就是齿轮泵的工作原理。
泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。
为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为0.025~0.04mm,大流量泵为0.04~0.06mm。
齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取0.13~0.16mm。
为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。
在泵盖和从动轴上的小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑了滚针轴承。
图3-4 CB—B齿轮泵的结构1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9-螺钉 10-压环11-密封环 12-主动轴 13-键 14-泻油孔15-从动轴 16-泻油槽 17-定位销2.内啮合齿轮泵内啮合齿轮泵的工作原理也是利用齿间密封容积的变化来实现吸油压油的。
图3-9所示是内啮合齿轮泵的工作原理图。
它是由配油盘(前、后盖)、外转子(从动轮)和偏心安置在泵体内的内转子(主动轮)等组成。
内、外转子相差一齿,图中内转子为六齿,外转子为七齿,由于内外转子是多齿啮合,这就形成了若干密封容积。
当内转子围绕中心O1旋转时,带动外转子绕外转子中心O2作同向旋转。
这时,由内转子齿顶A1和外转子齿谷A2间形成的密封容积C(图中阴线部分),随着转子的转动密封容积就逐渐扩大,于是就形成局部真空,油液从配油窗口b被吸入密封腔,至A1′、A2′位置时封闭容积最大,这时吸油完毕。
当转子继续旋转时,充满油液的密封容积便逐渐减小,油液受挤压,于是通过另一配油窗口a将油排出,至内转子的另一齿全部和外转子的齿凹A2全部啮合时,压油完毕,内转子每转一周,由内转子齿顶和外转子齿谷所构成的每个密封容积,完成吸、压油各一次,当内转子连续转动时,即完成了液压泵的吸排油工作。
内啮合齿轮泵的外转子齿形是圆弧,内转子齿形为短幅外摆线的等距线,故又称为内啮合摆线齿轮泵,也叫转子泵。
内啮合齿轮泵有许多优点,如结构紧凑,体积小,零件少,转速可高达10000r/mim,运动平稳,噪声低,容积效率较高等。
缺点是流量脉动大,转子的制造工艺复杂等,目前已采用粉末冶金压制成型。
随着工业技术的发展,摆线齿轮泵的应用将会愈来愈广泛内啮合齿轮泵可正、反转,可作液压马达用。
图3-9内啮合齿轮泵的工作原理图图3-10 内啮合式齿轮泵实物四.齿轮泵存在的问题1.齿轮泵的困油问题齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数ε大于1,也就是当一对齿轮尚未脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对齿轮的齿向啮合线之间形成了一个封闭容积,一部分油液也就被困在这一封闭容积中〔见图3-5(a)〕,齿轮连续旋转时,这一封闭容积便逐渐减小,到两啮合点处于节点两侧的对称位置时〔见图3-5(b)〕,封闭容积为最小,齿轮再继续转动时,封闭容积又逐渐增大,直到图3-5(c)所示位置时,容积又变为最大。
在封闭容积减小时,被困油液受到挤压,压力急剧上升,使轴承上突然受到很大的冲击载荷,使泵剧烈振动,这时高压油从一切可能泄漏的缝隙中挤出,造成功率损失,使油液发热等。
当封闭容积增大时,由于没有油液补充,因此形成局部真空,使原来溶解于油液中的空气分离出来,形成了气泡,油液中产生气泡后,会引起噪声、气蚀等一系列恶果。
以上情况就是齿轮泵的困油现象。
这种困油现象极为严重地影响着泵的工作平稳性和使用寿命。
图3-5齿轮泵的困油现象为了消除困油现象,在CB—B型齿轮泵的泵盖上铣出两个困油卸荷凹槽,其几何关系如图3-6所示。
卸荷槽的位置应该使困油腔由大变小时,能通过卸荷槽与压油腔相通,而当困油腔由小变大时,能通过另一卸荷槽与吸油腔相通。
两卸荷槽之间的距离为a,必须保证在任何时候都不能使压油腔和吸油腔互通。
按上述对称开的卸荷槽,当困油封闭腔由大变至最小时(图3-6),由于油液不易从即将关闭的缝隙中挤出,故封闭油压仍将高于压油腔压力;齿轮继续转动,当封闭腔和吸油腔相通的瞬间,高压油又突然和吸油腔的低压油相接触,会引起冲击和噪声。
于是CB—B型齿轮泵将卸荷槽的位置整个向吸油腔侧平移了一个距离。
这时封闭腔只有在由小变至最大时才和压油腔断开,油压没有突变,封闭腔和吸油腔接通时,封闭腔不会出现真空也没有压力冲击,这样改进后,使齿轮泵的振动和噪声得到了进一步改善。
图3-6齿轮泵的困油卸荷槽图图3-7齿轮泵的径向不平衡力2、齿轮泵的径向不平衡力齿轮泵工作时,在齿轮和轴承上承受径向液压力的作用。
如图3-7所示,泵的右侧为吸油腔,左侧为压油腔。
在压油腔内有液压力作用于齿轮上,沿着齿顶的泄漏油,具有大小不等的压力,就是齿轮和轴承受到的径向不平衡力。
液压力越高,这个不平衡力就越大,其结果不仅加速了轴承的磨损,降低了轴承的寿命,甚至使轴变形,造成齿顶和泵体内壁的摩擦等。
为了解决径向力不平衡问题,在有些齿轮泵上,采用开压力平衡槽的办法来消除径向不平衡力,但这将使泄漏增大,容积效率降低等。
CB—B型齿轮泵则采用缩小压油腔,以减少液压力对齿顶部分的作用面积来减小径向不平衡力,所以泵的压油口孔径比吸油口孔径要小。
五、齿轮泵的流量计算齿轮泵的排量V 相当于一对齿轮所有齿谷容积之和,假如齿谷容积大致等于轮齿的体积,那么齿轮泵的排量等于一个齿轮的齿谷容积和轮齿容积体积的总和,即相当于以有效齿高(h=2m)和齿宽构成的平面所扫过的环形体积,即:22V DhB zm B ππ== (3-10)式中:D 为齿轮分度圆直径,D=mz(cm);h 为有效齿高,h=2m(cm);B 为齿轮宽(cm);m 为齿轮模数(cm);z 为齿数。
实际上齿谷的容积要比轮齿的体积稍大,故上式中的π常以3.33代替,则式(3-10)可写成:26.66V zm B = (3-11)齿轮泵的流量q(1/min)为:236.6610v q zm Bn η-=⨯ (3-12)式中:n 为齿轮泵转速(rpm);ηv 为齿轮泵的容积效率。
实际上齿轮泵的输油量是有脉动的,故式(3-12)所表示的是泵的平均输油量。
从上面公式可以看出流量和几个主要参数的关系为:(1)输油量与齿轮模数m 的平方成正比。
(2)在泵的体积一定时,齿数少,模数就大,故输油量增加,但流量脉动大;齿数增加时,模数就小,输油量减少,流量脉动也小。
用于机床上的低压齿轮泵,取z=13~19,而中高压齿轮泵,取z=6~14,齿数z <14时,要进行修正。
(3)输油量和齿宽B 、转速n 成正比。
一般齿宽B=(6~10)m;转速n 为750r/min :1000 r/min 、1500r/min,转速过高,会造成吸油不足,转速过低,泵也不能正常工作。
一般齿轮的最大圆周速度不应大于5~6m/s 。
六、高压齿轮泵上述齿轮泵由于泄漏大(主要是端面泄漏,约占总泄漏量的70%~80%),且存在径向不平衡力,故压力不易提高。
高压齿轮泵主要是针对上述问题采取了一些措施,如尽量减小径向不平衡力和提高轴与轴承的刚度;对泄漏量最大处的端面间隙,采用了自动补偿装置等。
下面对端面间隙的补偿装置作简单介绍。
1.浮动轴套式图3-8(a)是浮动轴套式的间隙补偿装置。
它利用泵的出口压力油,引入齿轮轴上的浮动轴套1的外侧A 腔,在液体压力作用下,使轴套紧贴齿轮3的侧面,因而可以消除间隙并可补偿齿轮侧面和轴套间的磨损量。
在泵起动时,靠弹簧4来产生预紧力,保证了轴向间隙的密封。
图3-8端面间隙补偿装置示意图2.浮动侧板式浮动侧板式补偿装置的工作原理与浮动轴套式基本相似,它也是利用泵的出口压力油引到浮动侧板1的背面〔见图3-8(b)〕,使之紧贴于齿轮2的端面来补偿间隙。
起动时,浮动侧板靠密封圈来产生预紧力。
3.挠性侧板式图3-8(c)是挠性侧板式间隙补偿装置,它是利用泵的出口压力油引到侧板的背面后,靠侧板自身的变形来补偿端面间隙的,侧板的厚度较薄,内侧面要耐磨(如烧结有0.5~0.7mm 的磷青铜),这种结构采取一定措施后,易使侧板外侧面的压力分布大体上和齿轮侧面的压力分布相适应。