短波段无线电波的传播规律与短波无线电通信的频率选择及预测
短波无线电传递常识

面对二十多个业余波段,究竟该用哪一段?春夏秋冬阴晴雨雪对通信会有什么影响?当你对这些问题打算亲自体验一番之前,应该对无线电波的传播规律及各业余波段的特点等等先做些“调查研究”,这样才能事半功倍。
一、无线电波的传播方式无线电波以每秒三十万公里的速度离开发射天线后,是经过不同的传播路径到达接收点的。
人们根据这些各具特点的传播方式,把无线电波归纳为四种主要类型。
1)地波,这是沿地球表面传播的无线电波。
2)天波,也即电离层波。
地球大气层的高层存在着“电离层”。
无线电波进入电离层时其方向会发生改变,出现“折射”。
因为电离层折射效应的积累,电波的入射方向会连续改变,最终会“拐”回地面,电离层如同一面镜子会反射无线电波。
我们把这种经电离层反射而折回地面的无线电波称为“天波”。
3)空间波,由发射天线直接到达接收点的电波,被称为直射波。
有一部分电波是通过地面或其他障碍物反射到达接收点的,被称为反射波。
直射波和反射波合称为空间波。
4)散射波,当大气层或电离层出现不均匀团块时,无线电波有可能被这些不均匀媒质向四面八方反射,使一部分能量到达接收点,这就是散射波。
在业余无线电通信中,运用最多的是“天波”传播方式,这是短波远距离通信向必要条件。
空间波和散射波的运用多见于超高频通信,而地波传播“般只用于低波段和近距离通信。
二、电离层与天波传播1、电离层概况在业余无线电中,短波波段的远距离通信占据着极重要的位置。
短波段信号的传播主要依靠的是天波,所以我们必需对电离层有所了解。
地球表面被厚厚的大气层包围着。
大气层的底层部分是“对流层”,其高度在极区约为九公里,在赤道约为十六公里。
在这里,气温除局部外总是随高度上升而下降。
人们常见的电闪雷鸣、阴晴雨雪都发生在对流层,但这些气象现象一般只对直射波传播有影响。
在离地面约10到50公里的大气层是“同温层”。
它对电波传播基本上没有影响。
离地面约50到400公里高空的空气很少流动。
在太阳紫外线强烈照射下,气体分子中的电子挣脱了原子的束缚,形成了自由电子和离子,即电离层。
短波频率选择方法分析

短波频率选择方法分析短波是指波长在10-100米范围内的无线电波,其传播距离可达数千公里且具有较强的抗干扰能力,因此被广泛用于国际通信、天气预报、无线电广播等领域。
在短波通信中,频率的选择对于信号的传输质量至关重要。
本文将对短波频率选择的方法进行分析,以帮助读者在短波通信中更加准确地选择合适的频率。
短波频率的分类短波频率一般以频率(单位:兆赫兹,MHz)为主要参数进行分类,主要可以分为以下几类:•超短波(2-30MHz):主要用于国际通信、航空通信、电离层研究等领域;•短波广播(3-30MHz):主要用于全球广播、中外语广播、科学教育等领域;•单边带通信(0.5-30MHz):主要用于军事通信、海事通信、天气预报、救援通信等领域。
在这些领域中,选择合适的频率可以使得信号传输的质量得到最大化。
短波频率选择的方法短波频率的选择方法主要有以下几种:经验法经验法是根据历史数据和经验总结得出的一种选择短波频率的方法。
例如,在太阳黑子最多的年份,使用低频段(5-15MHz)的短波会取得较好的传输效果;而在太阳黑子最少的年份,则需要选用高频段(15-30MHz)的短波才能获得较好的传输效果。
经验法具有简单易行、经济实用的特点,但也具有局限性,因为其选择频率的依据过于简单,难以适应新的传输环境和信息需求。
利用预测利用太阳黑子周期预测是一种选择短波频率的方法。
太阳黑子最多的年份,表明太阳活动较强,此时阳光照射的上部大气层对电离能力影响最大,电离层中的电子浓度相对较高,短波易于穿过。
而太阳黑子最少的年份,表明太阳活动较弱,此时阳光照射的上部大气层对电离能力影响较小,电离层中的电子浓度相对较低,短波易于反射和散射。
这种预测方法需要预先了解太阳黑子周期,而且只适用于一定周期内的预测。
使用天磁数据短波信号受地球磁场影响较大,因此天磁数据可以用来选择合适的短波频率。
短波传输的合适频率和太阳活动的强弱、夜间磁层的状况等有很大关系。
短波通信频率选择算法研究

短波通信频率选择算法研究第一章:引言短波通信是一种利用短波信号在地球上不同地区进行远距离通信的技术。
由于短波信号的特性,其在大气中的传播具有一定的不确定性,频率选择成为短波通信中的一个重要问题。
本章将介绍研究动机、目的以及文章的组织结构。
第二章:短波通信频率选择原理短波通信频率选择的核心在于找到一种能够不受大气情况变化影响,并且能够提供良好通信质量的频率。
本章将介绍短波的传播特性、大气的影响因素以及频率选择的原理和目标。
第三章:已有的短波通信频率选择算法目前,已有多种短波通信频率选择算法被广泛应用于实际通信系统中。
本章将对已有的算法进行分类和评述,包括传统的经验法、基于计算机仿真的方法以及基于智能算法的方法。
第四章:基于计算机仿真的短波通信频率选择算法计算机仿真方法是基于对短波信号传播特性的深入了解和大量仿真实验数据的积累,通过分析数据和建立数学模型来选择最佳频率。
本章将介绍基于计算机仿真的短波通信频率选择算法的原理、实现过程以及优缺点。
第五章:基于智能算法的短波通信频率选择算法随着人工智能技术的不断发展,智能算法在频率选择领域的应用逐渐增多。
本章将介绍基于智能算法的短波通信频率选择算法的原理和常用算法,如遗传算法、模拟退火算法和粒子群优化算法等,以及它们在频率选择中的应用。
第六章:频率选择算法的性能评估指标为了评估不同频率选择算法的性能,需要定义一些评估指标。
本章将介绍常用的性能评估指标,并分析其适用性和优缺点,为后续章节的比较分析打下基础。
第七章:案例研究与实验结果本章将通过案例研究和实验结果的分析,对比不同频率选择算法在不同场景下的性能。
通过实验数据的定量分析,来验证各算法在实际应用中的可行性和有效性。
第八章:讨论与未来展望本章将综合前文的研究成果,对短波通信频率选择算法进行总结和讨论。
同时,对未来研究方向进行展望,包括结合机器学习、优化算法的研究、实时自适应频率选择算法等。
第九章:结论本章将对全文进行总结,总结短波通信频率选择算法的研究成果和应用前景,指出研究的不足之处,并提出未来进一步研究的方向和建议。
短波电台的无线电传输与调制方式

短波电台的无线电传输与调制方式短波电台是一种无线电通信设备,通过无线电波传输信息。
在现代通信领域,短波电台被广泛应用于无线电广播、海上通信、遥感和天文观测等领域。
而为了实现高效的信息传输,短波电台需要采用适当的调制方式。
调制方式是指将要传输的原始信号转换为适合于传输的调制信号的过程。
在短波电台中,常见的调制方式包括幅度调制(AM)、频率调制(FM)和相位调制(PM)。
首先,幅度调制(AM)是最早出现的调制方式之一。
它通过改变信号的幅度来传输信息。
在幅度调制中,原始信号(也称为调制信号)使载波信号的振幅随时间变化。
这样,原始信号中的音频信号就可以通过调制成为载波信号的幅度变化,从而传输音频信息。
幅度调制技术简单且成本低廉,适用于长距离传输。
然而,幅度调制在传输过程中容易受到噪声干扰,信号质量较差。
其次,频率调制(FM)是另一种常用的调制方式。
它通过改变信号的频率来传输信息。
在频率调制中,原始信号使载波信号的频率随时间变化。
与幅度调制相比,频率调制的信号质量较好,抗干扰能力较强,但传输距离相对较短。
频率调制技术被广泛应用于无线电广播和移动通信领域。
此外,相位调制(PM)是调制方式的另一种重要形式。
它通过改变信号的相位来传输信息。
在相位调制中,原始信号使载波信号的相位随时间变化。
相位调制具有良好的抗干扰能力,传输质量高,也被广泛应用于无线通信领域,尤其是数字通信系统中。
值得一提的是,为了提高短波电台的传输效果,可以使用一种相对较新的调制方式,即联合调制。
联合调制是将多种调制方式相结合的复合调制技术,以获得更好的传输效果。
比如,可以将频率调制和相位调制结合,形成频率相位调制(FSK),适用于数字通信系统。
联合调制技术在现代无线通信系统中得到广泛应用,为信息传输提供了更多的选择。
除了调制方式,短波电台的无线电传输也依赖于其天线、功率和调制信号的频谱分布等因素。
天线是将电台的输出信号转换为电磁波并发射出去的关键部件。
通信中的短波无线电技术简介

通信中的短波无线电技术简介随着科学技术的飞速发展,人们交流的方式也出现了诸多的变化。
而短波无线电技术的应用便是其中之一。
短波无线电技术作为一种重要的通信技术,已广泛应用于无线电通信、无线电广播、导航和遥感等领域。
本文将简要介绍短波无线电技术的基本原理和应用。
一、短波无线电技术的基本原理1.频率范围和波长:短波无线电波是指频率在3-30MHz之间的无线电波,相应的波长在10-100米之间。
由于短波无线电波长度较短,穿透力强,容易反射和散射等特点,短波无线电通信可以在长距离的情况下实现快速、稳定和可靠的通信。
2.传输方式:短波无线电技术的传输方式分为地面波、空间波和天波等三种,其中地面波可以在平地和水面上传输很远的距离,空间波可以反射、折射和散射,从而实现远距离通信,而天波则可以穿透电离层。
3.噪声干扰:短波无线电技术的传输过程存在着一些干扰,如电离层折反射影响、太阳辐射等,这些都会对通信质量产生一定的影响。
二、短波无线电技术的主要应用1.无线电通信:短波无线电通信广泛应用于商业、军事、科学、工业和医疗等领域,其通信范围广泛,无论是面积占据很大的荒野、洲际远距离通信,还是船舶、飞机、火车或者足球场、音乐厅、会议室等狭小场合的通信都可以使用短波无线电技术实现。
2.无线电广播:短波无线电广播可以覆盖到全球,无论居住\在哪个国家的人都能收听到国外广播电台的信息。
同时,短波无线电广播可以快速传送重要的新闻和信息,特别是在灾难、战争等情况下,短波无线电广播可以迅速传递出相应的信息。
3.导航和遥感:在导航和遥感领域中,短波无线电技术应用最为广泛,它可以实现定位、监视、数据收集和传输等任务。
短波无线电技术可以在无人机、卫星、浮标、探测器等无人机器上进行应用,实现灾难辅助和环境监测等功能。
三、短波无线电技术的未来发展趋势随着科技的发展,短波无线电技术也在飞速进步。
短波无线电技术的未来发展趋势主要体现在以下三个方面:1.技术次第更新:由于短波无线电技术应用的需求不断增加,可以预见的是,短波无线电技术必将不断地进行技术升级,新的技术将会取代旧的技术,以满足不同的需求。
短波段无线电波的传播规律与短波无线电通信的频率选择及预测

短波段无线电波的传播规律与短波无线电通信的频率选择及预测一、引言:在无线电通信中,无线电发射机的天线辐射载有信息的电磁波,到达接收点无线电接收机的天线,要经过一段自然路径。
无线电波在自然环境中的传播主要有三个路径常用于无线电通信:视距传播、地波传播、天波传播。
不同波长的无线电波在以上三种传播路径中有不同的传播规律。
短波无线电波(2—30Mhz)的传播有不同于其它频段的特殊规律,只有透彻认识和运用其特殊规律,才能发挥短波无线电通信设备的应有效能,建立稳定可靠的通信联系,提高通信质量。
二、无线电波的传播路径:(1)视距传播:视距传播是指电波在发射天线与接受天线互相“看得见”的距离内的传播方式。
电波在靠近地面的低空大气层中以近似直线的路径传播(见图-1),在发射功率一定的情况下,其通信距离相当大的程度上取决于收发双方的天线高度,多用于超短波通信,本文不多作讨论。
(2)地波传播:地波是指沿地球表面传播的电波。
当电波沿地表传播时,在地表面产生感应电荷,这些电荷随着电波的前进而形成地电流。
由于大地有一定的电阻,电流流过时要消耗能量,形成地面对电波的吸收。
地电阻的大小与电波频率有关,频率越高,地的吸收越大。
因此,地波传播适宜于长波和中波作远距离广播和通信;小型短波电台采用这种方式只能进行几公里至几十公里的近距离通信。
地波是沿着地表面传播的,基本上不受气候条件的影响,因此信号稳定,这是地波传播的突出优点。
(3)天波传播:天波是指地面发出的经电离层折射返回地面的电波。
短波无线电台站可以较小的发射功率,不依赖任何地面系统利用天波路径独自建立数百公里甚至数千公里的通信联系,是为有别于其它通信方式的突出优势。
但是,电离层随昼夜、季节、年度而变化,导致天波传播状况依时间变化。
因此,依赖电离层反射所建立的短波无线电天波通信是不稳定、不可靠的(相对于其他传播路径而言)。
远程短波通信要求设备操作人员对短波波段无线电波的传播规律有深入的了解和较多的实践经验,并且依赖于通信各方的配合默契。
短波无线电通信的电磁学知识

短波无线电通信的电磁学知识是指与短波无线电通信相关的电磁学原理和技术,包括短波无线电波的发射、传播、接收及调制解调等技术和方法。
一、短波无线电波的发射短波无线电波的发射是指将电信号通过天线辐射成电磁波,传播到空中。
短波无线电波的频率范围在3MHz~30MHz之间,是高频电波的一部分。
短波无线电波的发射可以通过调幅、调频和调相等多种方式实现,其中调幅是最常用的方法。
调幅的原理是将要传送的信息信号与一个高频振荡信号相乘,产生一个包含信息信号的高频振荡电信号,然后将这个高频信号通过天线辐射成无线电波。
二、短波无线电波的传播短波无线电波的传播是指电磁波在空间传播的过程。
短波无线电波的传播受许多因素的影响,如大气层的电离程度、地形、距离、时间、功率等。
短波无线电波的传播有地波传播和天波传播两种方式。
一般来说,在短波频段,地波传播在近距离通信时占优势;而在远距离通信时,则需要借助天波传播。
三、短波无线电波的接收短波无线电波的接收是指将天线接收到的电磁波信号通过调制解调的方式还原成原始信息信号的过程。
短波无线电波的接收需要借助一系列电路和设备,包括天线、前置放大器、中频放大器、解调器等。
短波无线电波的接收可以分为单边带接收和双边带接收两种方式。
单边带接收是指在接收端只接收要传输信号的一个侧边带,以减少幅度调制信号带宽,并提高抗噪特性。
四、短波无线电波的调制解调短波无线电波的调制解调是指将要传输的信息信号调制到高频载波上,并在接收端将高频信号解调成原始信息信号的过程。
短波无线电波的调制解调有多种方式,包括幅度调制、频率调制和相位调制等。
幅度调制是将信息信号的振幅与高频载波的幅度进行调制,从而产生调制信号。
频率调制是将信息信号的频率与高频载波的频率进行调制,从而产生调制信号。
相位调制则是将信息信号的相位与高频载波的相位进行调制,从而产生调制信号。
总之,是短波无线电通信的核心技术和理论,了解和熟悉这些知识对于设备维护和无线电操作的有效性有很大的帮助。
无线电频带和各波段的应用知识简介

无线电频带和各波段的应用知识简介无线电频带无线电按波长和频率分为:长波:波长>1000米,频率300KHz以下;中波:波长100米~1000米,频率300KHz~3000KHz;短波:波长100米~10米,频率3MHz~30MHz;超短波:波长1米~10米,频率30MHz~300MHz,亦称甚高频(VHF)波、米波;微波:波长1米~0.1毫米,频率300MHz~3THz [5] 。
各波段的应用波段(频段)符号波长范频率范围应用范围围3-30kHz 海岸:潜艇通信超长波(甚低频)VLF 100000-10000m海上导航30-300kHz 大气层内中等距离通信长波(低频)LF 10000-1000m地下岩层通信海上导航300-3000kHz 广播中波(中频)MF 1000-100m海上导航短波(高频)HF 100-10m 3-30MHz 远距离短波通信短波广播超短波(甚高频)VHF 10-1m 30-300MHz 电离层散射通信(30-60MHz)流星余迹通信(30-100MHz)人造电离层通信(30-144MHz)对大气层内、外空间飞行体(飞机、导弹、卫星)的通信对大气层内电视、雷达、导航、分米波(特高频)UHF 1-0.1m 300-3000MHz 对流层工散射通信(700-1000MHz)小容量(8-12路)微波接力通信(352-420MHz)中容量(120路)微波接力通信(1700-2400MHz)移动通信厘米波(超高频)SHF 10-1cm 3-30GHz 大容量(2500路、6000路)微波接力通信(3600-4200MHz,5850-8500MHz)数字通信卫星通信波导通信毫米波(极高频)EHF 10-1mm 30-3THz 穿入大气层时的通信应用编辑无线电的最早应用于航海中,使用摩尔斯电报在船与陆地间传递信息。
无线电有着多种应用形式,包括无线数据网,各种移动通信以及无线电广播等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
短波段无线电波的传播规律与短波无线电通信的频率选择及预测一、引言:在无线电通信中,无线电发射机的天线辐射载有信息的电磁波,到达接收点无线电接收机的天线,要经过一段自然路径。
无线电波在自然环境中的传播主要有三个路径常用于无线电通信:视距传播、地波传播、天波传播。
不同波长的无线电波在以上三种传播路径中有不同的传播规律。
短波无线电波(2—30Mhz)的传播有不同于其它频段的特殊规律,只有透彻认识和运用其特殊规律,才能发挥短波无线电通信设备的应有效能,建立稳定可靠的通信联系,提高通信质量。
二、无线电波的传播路径:(1)视距传播:视距传播是指电波在发射天线与接受天线互相“看得见”的距离内的传播方式。
电波在靠近地面的低空大气层中以近似直线的路径传播(见图-1),在发射功率一定的情况下,其通信距离相当大的程度上取决于收发双方的天线高度,多用于超短波通信,本文不多作讨论。
(2)地波传播:地波是指沿地球表面传播的电波。
当电波沿地表传播时,在地表面产生感应电荷,这些电荷随着电波的前进而形成地电流。
由于大地有一定的电阻,电流流过时要消耗能量,形成地面对电波的吸收。
地电阻的大小与电波频率有关,频率越高,地的吸收越大。
因此,地波传播适宜于长波和中波作远距离广播和通信;小型短波电台采用这种方式只能进行几公里至几十公里的近距离通信。
地波是沿着地表面传播的,基本上不受气候条件的影响,因此信号稳定,这是地波传播的突出优点。
(3)天波传播:天波是指地面发出的经电离层折射返回地面的电波。
短波无线电台站可以较小的发射功率,不依赖任何地面系统利用天波路径独自建立数百公里甚至数千公里的通信联系,是为有别于其它通信方式的突出优势。
但是,电离层随昼夜、季节、年度而变化,导致天波传播状况依时间变化。
因此,依赖电离层反射所建立的短波无线电天波通信是不稳定、不可靠的(相对于其他传播路径而言)。
远程短波通信要求设备操作人员对短波波段无线电波的传播规律有深入的了解和较多的实践经验,并且依赖于通信各方的配合默契。
本文主要讨论短波通信的地波和天波传播。
三、短波的地波传播:利用地波路径,可在一定距离内建立稳定可靠的短波通信联络。
其有效距离主要取决于短波电台的发射功率、天线的架设方式、传播路径上的地形地物的影响及使用的载波频段。
在发射功率、天线架设、地形地物均已确定的情况下,载波频率成为决定通信距离的唯一可选因素。
鉴于频率越低大地对电波的吸收越小,短波电台的地波通信宜选用短波频率的低段(2 — 6 Mhz)。
很明显,地波的场强与传播距离成反比,距离越远,信号强度越弱。
远至一定距离,信号/ 噪声比将降低到无法保证可靠通信的程度,导致通信中断。
对于短波通信而言,其噪声主要来自产生于大气的天电和周围工业设备的电气干扰。
一般来说,在一方天线高架的情况下,选择合适的载波频率,小型短波电台利用地波路径可在数十公里范围内建立可靠的通信联络。
四、短波的天波传播:(1)关于电离层:短波无线电远程通信依赖于高空电离层反射的天波路径,了解电离层的生成、结构和变化规律,了解电离层不同时段对不同频段的短波段电波的反射规律,对短波无线电通信有至关重要的意义。
由于太阳紫外线照射、宇宙射线的碰撞,使地球上空大气中的氮分子、氧分子、氮原子、氧原子电离,产生正离子和电子,形成所谓电离层,其分布高度距地面几十公里至上千公里。
电离层中电子密度呈层状分布,对短波通信影响大的有 D 层、E 层、F1 层、F2 层,各层的中部电子密度最大,各层之间没有明显的分界线。
各层的电子密度 D〈 E〈 F1〈F2 ):由于电离层的形成主要是太阳紫外线照射的结果,因此电离层的电子密度与阳光强弱密切相关,随地理位臵、昼夜、季节和年度变化,其中昼夜变化的影响最大。
D 层:高度 60—80公里,中午电子密度最大,入夜后很快消失;E 层:高度 100—120公里,白天电子密度增加,晚上相应减少;F1 层:高度 180公里,中午电子密度最大,入夜后很快消失;F2 层:高度 200—400公里,下午达到最大值,入夜逐渐减少,黎明前最小。
(2)电离层对电波的折射和反射:电离层可看成具有一定介电常数的媒质,电波进入电离层会发生折射。
折射率与电子密度和电波频率有关。
电子密度越高,折射率越大;电波频率越高,折射率越小。
电离层电子密度随高度的分布是不均匀的,随高度的增加电子密度逐渐加大,折射率亦随之加大。
可以将每一层划分为许多薄层,每一薄层的电子密度可视为均匀的。
电波在通过每一薄层时都要折射一次,折射角依次加大,当电波射线达到电离层的某一点时,该点的电子密度值恰使其折射率为900,此时电波射线达到最高点,尔后沿折射角逐渐减小的轨迹由电离层深处折返地面。
当频率一定时,电波射线入射角越大,则越容易从电离层反射回来。
当入射角小于一定值时,由于不能满足 900 的折射角的条件,电波将穿透电离层进入太空不再返回地面。
当入射角一定时,频率越高,使电波反射所需的电子密度越大,即电波越深入电离层才能返回。
当频率升高到一定值时,亦会因不能满足 900 折射角的条件而使电波穿透电离层进入太空,不再返回地面。
(3)电离层对电波的吸收:当电波通过电离层时,电离层中的自由电子在电波的作用下作往返运动,互相碰撞,消耗能量。
这部分能量来自电波,此为电离层对电波的吸收。
吸收的大小主要与电子密度和电波频率有关。
电子密度越高、电波频率越低,吸收越大,反之则低。
当吸收大到一定程度时,电波强度将不能满足短波接收机的信号/噪声比要求,导致通信中断。
五、短波天波通信的频率选择与预测:由于电离层的高度及电子密度主要随日照强弱昼夜变化,因此工作频率的选择是影响通信质量的关键性问题,若频率太低,则电离层吸收增大,不能保证必须的信噪比,若频率太高,电波不能从电离层反射回来。
一般来说,选择频率应考虑以下原则:(1)不能高于最高可用频率:当通信距离一定时,可以被电离层反射回来的最高频率叫最高可用频率。
很明显,通信频率不能高于最高可用频率,否则电波将穿出电离层。
最高可用频率与电子密度有关,电子密度越大,最高可用频率越高。
电离层电子密度主要随时间变化,所以最高可用频率也随之变化。
其次,对一定电离层高度而言,通信距离越远,则电波入射角也就越大,就是说最高可用频率越高。
但应注意,由于电离层电子密度是经常变化的,其最高可用频率不能保证每时每刻可靠反射电波,因此实际使用的频率为最佳工作频率。
经验说明,最佳工作频率约为最高可用频率的85%。
附表列出了我国南方夏季不同通信距离在不同时段的最高工作频率及最佳工作频率。
需要说明的是,表中所列的工作频率并非确定的准确频率,而是在此频率附近即可。
实际应用时,可从表列最佳工作频率向下1-2Mhz的范围内选取合适的工作频率,以适应不同的季节及地域。
(2)不能低于最低可用频率:在短波通信中,频率越低,电离层吸收越大。
当低到一定程度以致不能保证通信所必须的信噪比时,通信质量严重下降导致通信中断。
能保证最低所需的信噪比的频率称为最低可用频率。
根据经验,不同距离、不同时段的最低可用频率一般比相应的最佳工作频率低3—4Mhz。
此外,频率为1.4Mhz附近的电波可与电离层中自由电子的振动发生谐振,产生较大的谐振吸收。
所以天波通信时工作频率不应低于2Mhz。
(3)一日之内适时改变工作频率:原则上说,最低可用频率至最佳工作频率之间的频段可作为工作频率。
但是,这一频段在一昼夜之间是随时变化的,而电台的工作不可能随时变化。
实际工作中一昼夜内只改频1—2次。
在一段时间内只用一个频率,通常选日频、夜频各一个。
改频时间通常是在电离层电子密度变化急剧的黎明和黄昏时刻适时进行。
六、短波通信的“盲区”:短波通信的盲区亦称“静区”。
盲区现象是短波无线电通信很难回避的问题。
在地波最远覆盖范围与天波最近反射区之间有一段所谓“盲区”。
在一方天线高架的情况下,盲区从数十公里的距离开始出现,大约在150—200公里处消失,从理论上说,在此区域内收不到任何信号。
但是,当前的一些新的天线技术已部分解决了这一问题,在理论上的盲区内可建立沟通,只是信噪比差些而已。
在此区域内,适当降低工作频率,减少大地对电波的吸收,同时使仰角较大的电波能被电离层反射下来,可能会使信噪比状况有所改善。
七、关于“频率自适应技术”:(1)传统短波通信选频方式的固有缺陷:合理选频对中远程短波通信至关重要,这一点已有说明。
传统的中远程短波通信的选频模式是:通信指挥人员根据长期频率预测和短期频率预测以及电离层随季节、昼夜变化规律和通信距离指定“时间—频率表”,各台站之间以定时、定频方式进行通信联络。
但是,问题在于要准确地预测电离层的传输频率,并使通信效果始终保持良好状态非常困难。
其主要原因是:短波信道(电离层)是一种典型的随机变参数信道,它的信道特性随时间、空间和工作频率而随机变化。
而预测所得到的频率是在既往资料的基础上,运用统计学方法得到的,是人们一厢情愿的“最佳频率”。
它可能与当时当地的实际电离层传输频率有较大的偏差,并且无法考虑到诸如多径效应、多普勒频移和各种干扰等因素,是一种比较粗糙的办法。
以这种方法预测的工作频率有时只能作为参考。
实际工作中,很大程度上要依赖通信系统指挥人员和各台站操作人员的经验、技巧、随机应变能力和通信各方的配合默契。
而这种能力和默契的取得,有赖于专业化训练和长时间的磨合,并非易事。
(2)问题的解决办法:为使现有的装备能充分发挥其应有的作用,应尽可能减少通信系统对人员条件的依赖,采取技术措施使设备操作(关键是频点选择)自动化、“傻瓜”化。
当前,中远程短波通信自动选择可用工作频点的所谓“频率自适应技术”及产品已经成熟,并得到了广泛应用。
短波自适应通信方式是现代短波通信的象征,使短波通信系统具有自动适应通信条件变化的能力(还有功率自适应技术,本文不作讨论)。
它采用微处理机控制技术,使短波通信机实现自动频率选择、自动信道存储、自动天线调谐,能实时选择出当时当地最佳的短波通信信道,克服短波信道的时变性,能非常有效地改善通信效果,简化了人工选频的复杂操作,非专业人员也能使用。
需要指出的是,自动选频是在事先预臵的一组频点中选择最佳可用频率,如预臵频点不当,当然无法从中选出合适的频率。
(3)频率自适应系统的工作过程为:在链路建立前,主叫方先在一组预臵频率上发送测试码,被叫方接收并测量信号质量,对各信道的通信质量评分,按优劣排序。
然后,向主叫方发出应答信号,反馈各可用信道评分排序信息。
主叫方收到应答信号后,向被叫方发出确认信号,双方建立频率库,进入自适应扫描状态。
此时,通信各方发射机处于寂静状态,接收机对已存入频率库的各频点循环扫描。
当需要进行通话时,主叫台在频率库中选取最佳信道发出呼叫信号,被叫目标台收到呼叫信号后发送应答信号,主叫台收到应答信号后发出确认信号。