期权定价数值方法
期权定价模型与数值方法

❖ 例行化δ。1价波0格动.2率95假为元设5,现0欧%价式,无为股风1票0险0期元利权,率无,三为股个1利0月支%后,付计到,算股期期价,执权年 ❖ 代码如下: Price=60:1:100; %标底资产价格 Strike=95; %执行价格 Rate=0.1; %无风险收益率(年化) Time=(1:1:12)/12; %剩余时间 Volatility=0.5; %年化波动率
❖ 若要分析期权δ与标的资产价格、剩余期限的关 系,即不同的Price与Time计算不同的δ三维关 系,可以编写如下代码:
Price=60:1:100; %标底资产价格 Strike=95; %执行价格 Rate=0.1; %无风险收益率(年化) Time=(1:1:12)/12; %剩余时间 Volatility=0.5; %年化波动率
10.2.4 Black-Scholes方程求解
例10.2 假设欧式股票期权,三个月后到期,执行价 格95元,现价为100元,无股利支付,股价年化波动率
为50%,无风险利率为10%,计算期权价格。 %标底资产价格代码如下: %Pr执ice行=1价00格;
%无风险收St益rik率e=(95年; 化)10% %R剩at余e=时0.1间
10.1 期权基础概念
10.1.1 期权及其有关概念
1. 期权的定义 期权分为买入期权(call option)和卖出期权
(put option)。 买入期权:又称看涨期权(或敲入期权),它是赋予 期权持有者在给定时间(或在此时间之前任一时刻) 按规定价格买入一定数量某种资产的权利的一种法律
合同。 卖出期权:又称看跌期权(或敲出期权),它是赋予
期权定价模型与数值方法

参考文献1、期权、期货和其它衍生产品,John Hull,华夏出版社。
2、期权定价的数学模型和方法,姜礼尚著,高等教育出版社。
3、金融衍生产品定价的数学模型与案例分析,姜礼尚等著,高等教育出版社。
4、金融衍生产品定价—数理金融引论,孙建著,中国经济出版社。
5、金融衍生工具中的数学,朱波译,西南财经大学出版社。
6、N umerical methods in finance and economics—a MATLAB-based introduction,Paolo Brandimarte,A JOHN WILEY & SONS,INC.,PUBLICATION7.金融计算教程—MATLAB金融工具箱的应用,张树德编著,清华大学出版社。
8、数值分析及其MATLAB实现,任玉杰著,高等教育出版社。
9、数学物理方程讲义,姜礼尚著,高等教育出版社。
10、英汉双向金融词典,田文举主编,上海交通大学出版社。
11、偏微分方程数值解法,孙志忠编著,科学出版社。
第三部分期权定价模型与数值方法期权是人们为了规避市场风险而创造出来的一种金融衍生工具。
理论和实践均表明,只要投资者合理的选择其手中证券和相应衍生物的比例,就可以获得无风险收益。
这种组合的确定有赖于对衍生证券的定价。
上个世纪七十年代初期,Black 和 Scholes 通过研究股票价格的变化规律,运用套期保值的思想,成功的推出了在无分红情况下股票期权价格所满足的随机偏微分方程。
从而为期权的精确合理的定价提供了有利的保障。
这一杰出的成果极大的推进了金融衍生市场的稳定、完善与繁荣。
一、期权定价基础1.1 期权及其有关概念1.期权的定义期权分为买入期权(Call Option)和卖出期权(Put Option)买入期权:又称看涨期权(或敲入期权),它赋予期权持有者在给定时间(或在此时间之前任一时刻)按规定价格买入一定数量某种资产的权利的一种法律合同。
卖出期权:又称看跌期权(或敲出期权),它赋予期权持有者在给定时间(或在此时间之前任一时刻)按规定价格卖出一定数量某种资产的权利的一种法律合同。
期权定价数值方法

期权定价数值方法期权定价是金融学和衍生品定价的重要研究领域之一。
相对于传统的基于解析公式的定价方法,数值方法在期权定价中发挥了重要作用。
本文将介绍几种常用的期权定价数值方法。
第一种方法是蒙特卡洛模拟法。
这种方法通过生成大量的随机路径,从而模拟出期权的未来价格演化情况。
蒙特卡洛模拟法能够处理各种复杂的衍生品,尤其适用于路径依赖型期权的定价。
其基本思想是通过随机游走模拟资产价格的变化,并在到期日计算期权的收益。
蒙特卡洛方法的优点在于简单易懂,适用于任意的收益结构和模型。
缺点是计算复杂度高,需要大量的模拟路径,同时计算结果存在一定的误差。
第二种方法是二叉树模型。
二叉树模型将时间离散化,并用二叉树结构模拟资产价格的变化。
每一步的价格变动通过建立期权价格的递归关系进行计算。
二叉树模型适用于欧式期权的定价,特别是在波动率较低或资产价格较高时效果更好。
二叉树模型的优点在于计算速度快,容易理解,可以灵活应用于各种不同类型的期权。
缺点是对期权到期日的分割存在一定的限制,复杂的期权结构可能需要更多的分割节点。
第三种方法是有限差分法。
有限差分法将连续时间和连续空间离散化,通过有限差分近似式来计算期权价格。
其基本思想是将空间上的导数转化为有限差分的形式,然后通过迭代的方法求解有限差分方程。
有限差分法适用于各种不同类型的期权定价,特别是美式期权。
它是一种通用的数值方法,可以处理多种金融模型。
缺点是计算复杂度高,特别是对于复杂的期权结构和高维度的模型,需要更多的计算资源。
综上所述,期权定价的数值方法包括蒙特卡洛模拟法、二叉树模型和有限差分法。
不同的方法适用于不同类型的期权和市场情况。
在实际应用中,可以根据具体的问题选择合适的数值方法进行期权定价。
期权定价是金融学中一个重要的研究领域,它的核心是确定期权合理的市场价值。
与传统的基于解析公式的定价方法相比,数值方法在期权定价中有着重要的应用。
本文将进一步介绍蒙特卡洛模拟法、二叉树模型和有限差分法,并探讨它们的优缺点及适用范围。
期权定价数值方法

期权是一种合约,赋予其持有人在一定时期内以指定价格买卖标的资产的权 利。
期权类型
按行权时间可分为欧式期权和美式期权,按交易场所可分为场内期权和场外 期权。
期权定价模型
Black-Scholes模型
基于无套利原则,通过随机过程和偏微分方程等方法,推导出标的资产价格和波 动率的关系。
二叉树模型
将连续的时间和空间离散化为有限个元素,通过建立线性方程组来求解期权价格。优点是 适用于处理不规则区域和复杂边界条件,精度较高。缺点是对于某些复杂期权或边界条件 ,需要使用高阶元素,计算量较大。
蒙特卡洛模拟法(Monte Carlo Si…
通过随机抽样来模拟期权价格的波动过程,并利用此模拟结果来估算期权价格。优点是适 用于各种类型的期权和边界条件,计算速度快。缺点是对于某些特殊期权或边界条件,需 要设计特定的抽样方法,精度相对较低。
风险中性概率
在蒙特卡洛模拟中,使用风险中性概率来计算标的资产价格在未 来的可能性,该概率将风险中性概率和实际概率联系起来。
估计期权收益
通过模拟标的资产价格路径,可以估计期权的收益,从而得到期 权的预期价格。
蒙特卡洛模拟法的实现步骤
定义参数
确定影响期权价格 的因素,如标的资 产价格、行权价、 剩余期限、波动率 和无风险利率等。
05
偏微分方程法在期权定价 中的应用
偏微分方程的推导
基于无套利原则
通过无套利原则,推导出偏微分方程,该方程描述了资产价格变 化的随机过程,以及投资者对风险和收益的权衡。
风险中性概率
在风险中性概率下,衍生品的价格可以表示为标的资产价格和相 应期限的贴现值之积。
标的资产价格动态
标的资产价格的变化受到多种因素的影响,如市场利率、波动率 、股息等。
第12章 期权定价的数值方法

S it S it De
r it
其中, D 表示红利。
26
因此,我们需要先构造不含红利的价格树图,之 后再加上未来红利的现值。在 it 时刻: ◦ 当 it 时,这个树上每个节点对应的证券价 格为: * j i j
S0 u d j 0,1......i
t pd 12 2 t pu 12 2
2 pm 3
32
基本原理:期权 A 和期权 B 的性质相似,我们 可以得到期权 B 的解析定价公式,而只能得到 期权 A 的数值方法解,这时就可以利用期权 B 解析法与数值法定价的误差来纠正期权 A 的数 值法的定价误差。 用 f B 代表期权 B 的真实价值(解析解),f A ˆ 和 ˆ 表 表示关于期权 A 的较优估计值, f fB A 示用同一个二叉树、相同的蒙特卡罗模拟或是同 样的有限差分过程得到的估计值。
e
r q t
pu 1 p d
e
r q t
相应有
p
d ud
式( 12.5 )和( 12.6 )仍然成立:
u e d e
t t
21
可通过调整在各个节点上的证券价格,算出期权 价格; 如果时刻 i∆t 在除权日之前,则节点处证券价 格仍为:
为了模拟路径
dS r q Sdt Sdz
我们把期权的有效期分为 N 个长度为 ∆t 的时 间段,则上式的近似方程为:
S t t S t (r q )S t t S t t (12.9)
(12.10)
或
或
2 ln S t t ln S t r q t t 2
期权定价的数值方法

随机抽样值
0.52 1.44 -0.86 1.46 -0.69 -0.74
该时间步长中的 股票价值变化 0.236
0.611 -0.329
0.628 -0.262 -0.280
19
(二)、单个变量和多个变量的蒙特卡罗模拟
▪ 蒙特卡罗模拟的优点之一在于无论回报结果依赖于标的变量S所遵循 的路径还是仅仅取决于S的最终价值,都可以使用这一方法。同时, 这个过程也可以扩展到那些回报取决于多个标的市场变量的情况。
期权定价的数值方法
1
二、基本二叉树方法的扩展
▪ 支付连续红利率资产的期权定价 ▪ 支付已知红利率资产的期权定价 ▪ 已知红利额 ▪ 利率是时间依赖的情形
2
连续红利率资产的期权定价
▪ 当标的资产支付连续收益率为q的红利时,在风 险中性条件下,证券价格的增长率应该为r-q, 因此:
e (rq)t pu (1 p)d
其中
p e(rq)t d ud
u, d表达式仍然适用
3
支付已知红利率资产的期权定价
▪ 若标的资产在未来某一确定时间将支付已知红利率(红 利与资产价格之比),只要调整在各个结点上的证券价 格,就可算出期权价格。调整方法如下:
▪ 如果it 时刻在除权日之前,则结点处证券价格仍为: Su j d i j , j 0,1, , i
S t t S t r qS t t S t t
或
ln
ห้องสมุดไป่ตู้
S
t
t
ln
S
t
r
q
2
2
t
t
S
t
t
S
t exp
r
q
2
2
金融工程学期权定价的数值方法课件

ud
PPT学习交流12来自同样,在风险中性世界中,股票期权未来 价格的期望值按无风险利率贴现的现值必须等 于该期权当前的价格,即
fe rf(T t) p fu (1 p )fd
其中
erf (T t) d p
ud
PPT学习交流
13
例:
假设一种不支付红利股票目前的市价为10 元,我们知道在3个月后,该股票价格要么是11 元,要么是9元。假设现在的无风险年利率等于 10%,则一份3个月期以该股票为标的资产,且 执行价格为10.5元的欧式看涨期权的价值是多少?
ud
fd
E S T p S u 1 p S d S 0 e r fT t
f0p fu 1 pfde r fT t
PPT学习交流
11
风险中性定价原理 假定股票的上升概率为p。在风险中性世界 中,股票未来价格的期望值按无风险利率贴现 的现值必须等于该股票目前的价格,因此有
S e r f( T t)u S p d S ( 1 p )
构造无风险组合:
S0 : c :1
因为无风险,则有
u S T c u d S T c d
2 2 1 1 8 0 0.25
S0
c0
uST cu
1rf Tt
c0 0.631068
S 0 c 0 d S T c de rfT t
c0 0.632995
PPT学习交流
2
例:S020;Xc 21;u110%;
7
⒋ 美式期权的两步二叉树定价法
定价的过程从二叉树的末端开始倒推到起 始点,在每个节点上必须检验期权是否会被提 前执行,如果会被提前执行,则以行权收益为 该节点的期权价格,否则按照标准公式计算期 权价格,末端节点的价格均按照欧式期权计算。
B-S期权定价模型、公式与数值方法

B-S期权定价公式:假设条件
1.证券价格遵循几何布朗运动,,为常数 2.允许卖空标的证券 3.没有交易费用或税收 4.所有证券都是无限可分的 5.标的证券在有效期内没有红利支付 6.不存在无风险套利机会 7.交易是连续的 8.无风险利率为常数
B-S期权定价公式
经典的B-S期权定价公式是对于欧式股票期权给出的。
期权的价值正是来源于签订合约时,未来标的资产价格与合约执 行价格之间的预期差异变化,在现实中,资产价格总是随机变化 的。需要了解其所遵循的随机过程。
研究变量运动的随机过程,可以帮助我们了解在特定时刻,变量 取值的概率分布情况。在下面几节中我们会用数学的语言来描述 这种定价的思想。
6.1 证券价格的变化过程
**随机微积分与非随机微积分的差别 d ln S dS
S
变量x和t的函数G也遵循Ito 过程:
dG ( G xa G t1 2 2 x G 2b2)d t G xbdz
dSSdtSdz
根据Ito引理,衍生证券的价格G应遵循如下过程:
d G ( G SS G t1 2 S 2 G 22 S2)d t G SSdz
但是当人们开始采用分形理论研究金融市场时,发现它的运行并 不遵循布朗运动,而是服从更为一般的分数布朗运动。
对于标准布朗运动来说:设t 代表一个小的时间
间隔长度,z代表变量z在 t 时间内的变化,遵循标
准布朗运动的 z 具有两种特征:
特征1:z和 t 的关系满足:
z = t
其中, 代表从标准正态分布中取的一个随机值。
的普通布朗运动:
Ito过程
dxadb t dz d xa (x,t)d tb (x,t)dz
or:x( t)x0a t bz(t)x(t)x00 tad s0 tbd
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于原股票价格S的二叉树,在 it 时刻:
当 it 时,股票价格为:S0*u j d i j Der ( it )
当 it 时,股票价格为: S0*u jd i j
在某些情形下,尤其是当期权的期限很短时,最符合现实的做法是假设已
知股息支付的数量而不是股息收益率。假设股票波动率 为常数,二叉树的
形状如下图所示。
Su S
Sd
Su2-D S-D
除权日
Sd2-D
将股票价格分为两个部分:一部分是不确定的;另一部分是期 权有效期内所有未来股息的贴现值。假设在期权有效期内只有一个 除息日,则在时刻 不确定部分的价值为:
Se rt pSu (1 p)Sd e rt pu (1 p)d
假设证券价格遵循几何布朗运动,则:
S 2 2t pS 2u2 (1 p)S 2d 2 S 2[ pu (1 p)d ]2
2 t pu 2 (1 p)d 2 pu (1 p)d 2
再设定:u 1/ d(第三个条件的设定则可以有所不同, 这是Cox、Ross和
e (rq)t pu (1 p)d
e (r q)t d p
ud
u e t
d e t
Derivagem求解例20-3,20-4
20.3 对于支付股息股票的二叉树模型
20.3.1 股息收益率是已知的情形
假设股息离散支付,股息收益率已知
可通过调整在各个结点上的股票价格,算出期权价格;
如果时刻 it 在除权日之前,则结点处股票价格仍为:Su j d i j , j 0,1,, i
20.1.5 代数表达式
假设把一期权有效期划分成N个长度为 t 的小区间,同时用 S0u jd i j
表示结点 (i, j) 处的证券价格可得(以看涨期权为例):
f N , j max(S0u dj N j K ,0) 其中 j 0,1, , N
假定期权不被提前执行,则:
fij ert [ pfi1, j1 (1 p) fi1, j ] (0 i N ,0 j i) (表示在时间 it 时第j个结点处的欧式看涨期权的价值)
Su p
把期权的有效期分为很多很小的时间间
S 1-p Sd
隔 ,t 并假设在每一个时间间隔 t 内证
券价格只有两种运动的可能:
1、从开始的 S 上升到原先的 u 倍,即到达 Su ;
t 时间内资产价格的变动 2、下降到原先的 d 倍,即 Sd 。
其中 u 1,d 1 .如图所示。价格上升的概率假设为 p ,下降的概率假设为
第20章
基本数值方法
第20章 基本数值方法
20.1 二叉树 20.2 采用二叉树对股指、货币与期货期权定价 20.3 对于支付股息股票的二叉树模型 20.4 构造树形的其他方法 20.5 参数依赖于时间的情形 20.6 蒙特卡罗模拟法 20.7 方差缩减程序 20.8 有限差分法
20.1 二叉树
Sd4
一般而言,在 it 时刻,证券价格有 i 1 种可能,它们可用符号表示为:
S0u j d i j 其中 j 0,1,
,i
由于
u 1 d
,使得许多结点是重合的,从而大大简化了树图。
20.1.4 通过树形倒推计算
得到每个结点的资产价格之后,就可以在二叉树模型中采用倒推定价法, 从树型结构图的末端T时刻开始往回倒推,为期权定价。
1 p 。
相应地,期权价值也会有所不同,分别为 fu 和 fd 。
无套利定价法:
构造投资组合包括 份股票多头和1份看涨期权空头 当 Su u Sd fd 。则组合为无风险组合
此时
因为是无风险组合,可用无风险利率贴现,得
ቤተ መጻሕፍቲ ባይዱ
S f Su fu ert
将
fu Su
fd Sd
代入上式就可得到:
如果时刻 it 在除权日之后,则结点处证券价格相应调整为:
S (1 )u jd i j
j 0,1, ,i
若在期权有效期内有多个已知红利率,则 it 时刻结点的相应的证券价格
为:S (1 i )u j d i j
( i 为0时刻到 it 时刻之间所有除权日的总红利支付率)
20.3.2 已知股息数量的情形
如果是欧式期权,可通过将 T时刻的期权价值的预期值在 t时间长度
内以无风险利率 r贴现求出每一结点上的期权价值;
如果是美式期权,就要在树型结构的每一个结点上,比较在本时刻提前 执行期权和继续再持有 时t 间,到下一个时刻再执行期权,选择其中较 大者作为本结点的期权价值。
例20-1 DerivaGem示范
f ert pfu 1 p fd
其中
e rt d p
ud
20.1.1 风险中性定价
在对衍生产品定价时,可以假定世界是风险中性的。 在风险中性世界里: (1)所有可交易证券的期望收益都是无风险利率; (2)未来现金流可以用其期望值按无风险利率贴现。
20.1.2 确定p,u,d
在风险中性的条件下, 参数值满足条件:
j 0,1, ,i
( S0* 为零时刻的 S * 值)
例20-5
20.3.3 控制变量技术
基本原理:期权A和期权B的性质相似,我们可以得到期权B的解析 定价公式,而只能得到期权A的数值方法解。
Rubinstein所用的条件)
由以上三式可得,当 t
很小时:p
e rt d ud
u e
t
d e
t
从而 f ert pfu 1 p fd
以上可知,无套利定价法和风险中性定价法具有内在一致性。
20.1.3 资产价格的树形
Su4 Su3
Su2
Su2
Su
Su
S
S
S
Sd
Sd
Sd2 Sd2
Sd3
若有提前执行的可能性,则:
fi, j max{S0u j d N j K , ert [ pfi!, j1 (1 p) fi1, j ]}
20.1.6 估计Delta与其他希腊值
f2,1 f0,0 2t
f* f
20.2 采用二叉树对股指、货币与期货期权进行定 价
当对股指、货币和期货上的期权定价时,可以将这些标的资产看作是提供已 知收益率的资产。对于股指而言,收益率就是股指中股票组合的股息收益率;对 于货币而言,收益率等于外币无风险利率;对于期货合约而言,收益率等于无风 险利率。