液压传动与控制技术的发展

合集下载

液 压 传 动 的 现 状 及 发 展 趋 势

液 压 传 动 的 现 状 及 发 展 趋 势

液压传动的现状及发展趋势摘要:通过对世界流体传动及控制技术发展趋势的分析,介绍了我国液压行业面临的危机和现状以及和世界水平的差距,并提出我国液压行业的发展方向和对策。

关键词:流体传动,液压控制,元件,仿真动力传动,以及运动控制依然是21世纪全球经济的重要组成部分,流体传动及控制术也依然是其中极为重要和积极的角色。

中国加入W TO ,液压工业在中国的发展将面临空前的挑战和机遇。

作为液压元件制造行业中的一员,在工作中,有幸接触了众多既是对手又是朋友的国外知名企业,每年的中国P TC展览会也感触颇深。

民族工业的振兴,需要每个人都为之努力。

希望中国液压工业能够在世界列强中占有一席之地。

1 液压传动技术发展现状近代液压传动技术是由19 世纪崛起并蓬勃发展的石油工业推动起来的,最早实践成功的液压传动装置是舰船上的炮塔转位器,其后出现了液压六角车床和磨床,一些通用车床到20 世纪30年代末才用上了液压传动。

第二次世界大战期间,由于军事上的需要,出现了以电液伺服系统为代表的响应快、精度高的液压元件和控制系统,从而使液压技术得到了迅猛发展。

20 世纪50 年代,随着世界各国经济的恢复和发展,生产过程自动化的不断增长,使液压技术很快转入民用工业,在机械制造、起重运输机械及各类施工机械、船舶、航空等领域得到了广泛的发展和应用。

20世纪60 年代以来,随着原子能、航空航天技术、微电子技术的发展,液压技术在更深、更广阔的领域得到了发展,在工程机械,数控加工中心,冶金自动线等国民经济的各个方面也都得到了应用。

目前液压技术应用的主要领域是工程机械和冶金机械等,具体来说,液压系统在以下领域中有着广泛的应用。

(1) 工程机械工程机械是液压产品的最大用户,占行业销售的42.3% ,今后比例还会扩大。

每年为国产和合资生产的挖掘机、道路机械、建设机械、桩工机械、水泥搅拌车等配套所进口的液压件,约达1.5 亿美元以上。

(2) 机床机床产品需要大量高压、大流量柱塞泵,插装阀、叠加阀、电磁阀、比例阀、伺服阀、低噪声叶片泵和轻型柱塞泵等液气密元件产品。

液压传动技术现有成果和发展趋势

液压传动技术现有成果和发展趋势

液压传动技术现有成果和发展趋势1液压传动技术的现有成果和发展趋势摘要:应本次毕业设计选题要求,为加强对液压传动技术的了解,本文从液压传动技术的优势、应用范围以及重要程度开始引入,简要介绍了液压传动的原理和基本组成。

重点讨论了液压传动技术的发展历程和国内外的研究现状,并由此总结出液压传动技术未来的发展趋势。

关键词:液压传动;原理;组成;研究现状;发展趋势1.引言与其他传动及控制方式相比,液压传动具有多种技术优势,例如功率密度大(单位功率的重量轻)、配置灵活方便、调速范围大、工作平稳性且快速性好、易于操纵控制并实现过载保护、易于实现自动化和机电液整合、系统设计制造和使用维护方便,因而已成为现代机械工程的基本技术构成和现代控制工程的基本技术要素。

作为现代机械设备实现传动与控制的重要技术手段,液压技术的应用遍及国民经济各领域,例如机械制造、能源与冶金工业、工程机械及农林牧机械、航空航天、试验机领域等等,可以说液压技术的发展对整个工业领域起着举足轻重的作用。

通过学校图书馆、互联网等手段,我对液压传动了解如下文所诉。

2.液压传动的基本原理液压传动是以液体为工作介质,利用液体的静压能实现信息、运动和动力的传递及工程控制的技术,其工作原理基于流体力学的帕斯卡原理,因此又称为容积式液体传动或静液传动。

液压传动的机械设备或装置中,其液压系统多数使用具有连续流动性的液压油液作为工作介质,通过液压泵将驱动泵的原动机的机械能转换成液体的压力能,然后经过封闭管路及控制阀,送至执行元件(液压缸、液压马达或摆动液压马达)中,转换为机械能去驱动负载和实现工作机构所需的直线运动或回转运动。

3.液压传动系统组成(1)动力元件:即能源装置,液压系统的动力元件一般指液压泵或蓄能器,其作2用是将原动机输出的机械能转换成液体压力能,并向系统供给压力液体。

(2)执行元件:包括液压缸和液压马达,前者实现往复运动,后者实现旋转运动,其作用是将液体压力能转换成机械能,输出到工作机构上。

液压技术在现代农业机械中的应用现状及发展趋势

液压技术在现代农业机械中的应用现状及发展趋势

液压技术在现代农业机械中的应用现状及发展趋势随着科技的不断发展,农业机械化程度不断提高,液压技术在农业机械中的应用越来越广泛。

液压技术取代了传统的机械传动方式,使得农业机械的操作更加简便、灵活和高效。

下面将就液压技术在现代农业机械中的应用现状及发展趋势做一个简要阐述。

一、应用现状1. 液压传动技术液压传动技术应用于农业机械中的比例越来越大。

液压系统可以实现各种方向、速度、力矩的传递,从而使得农机的运作更加平稳、精确和高效。

比如喷雾器、收割机、农用拖拉机等都采用了液压传动技术,实现了精确的调节和控制。

2. 液压控制技术液压控制技术应用于农业机械中,可以实现对农机各项参数的实时监测和控制。

比如收割机的刀片高度、播种机的种子量等,都可以通过液压控制实现精准的调节和控制。

液压控制技术的应用使得农业机械的操作更加方便、快捷和高效,可以有效提高作业效率和质量。

3. 液压制动技术液压制动技术广泛应用于农业机械中,可以实现快速、平稳的停车和缓冲作用。

比如拖拉机的刹车系统、轮式联合收割机的车轮制动系统等,都采用了液压制动技术。

液压制动技术的应用可以保障操作人员的安全,提高农机的使用寿命。

二、发展趋势1. 智能化液压技术的智能化已经成为液压技术发展的一个重要趋势。

农业机械的液压系统可以通过智能控制系统实现各项参数的监测和控制。

比如喷雾器的自动调节、颗粒施肥机的自动化操作等,都可以通过智能液压系统实现。

智能液压系统可以实现自适应、自学习和自适应等功能,可以有效提高农机的使用效率和作业质量。

2. 节能环保随着气候变化和环保意识的提高,农业机械的节能环保性也成为液压技术发展的一个关键。

液压技术在农业机械中的应用要求具有高效、低耗、环保的特点。

液压系统的优化设计和节能措施可以有效减少环境污染和能源浪费,使得农机的使用更加节能环保。

3. 个性化定制农业机械对液压系统的需求越来越个性化,农业机械生产厂家需要按照不同的需求定制液压系统。

液压传动技术发展现状[1]

液压传动技术发展现状[1]

液压传动技术发展现状[1] 液压传动技术是一种重要的工程技术,它利用液体的压力能来传递动力和运动。

随着科学技术的发展,液压传动技术不断得到完善和提升,目前已经广泛应用于工程机械、航空航天、汽车、能源、机器人等领域。

本文将介绍液压传动技术的发展现状。

一、液压传动技术的概述液压传动技术是一种以液体为工作介质的传动方式,它利用液体的压力能来传递动力和运动。

相比于其他传动方式,液压传动具有传动力大、传动平稳、噪声小、易于实现无级调速等优点,因此在许多领域得到了广泛应用。

液压传动系统主要由液压泵、液压缸、液压阀、管路等组成。

二、液压传动技术的发展现状1.高压化随着液压传动技术的不断发展,液压系统的压力等级也在不断提高。

高压化可以使得液压系统的传动力更大,同时也能够减少管路损失,提高传动效率。

目前,液压系统的压力等级已经达到3000bar以上。

2.集成化为了减少液压系统的体积和重量,提高系统的可靠性,液压元件的集成化已经成为一种趋势。

集成化可以使得液压系统的各个部件紧凑排列,减少占地面积和重量,同时也可以提高系统的稳定性和可靠性。

目前,液压元件的集成化已经实现了从单一功能到多功能的发展。

3.轻量化轻量化是液压传动技术的另一个重要发展方向。

轻量化的目的是减少液压系统的重量和体积,提高系统的机动性和灵活性。

目前,许多液压元件已经实现了轻量化设计,采用了高强度材料和紧凑的结构设计,使得重量和体积得到了有效减少。

4.智能化智能化是液压传动技术的未来发展方向。

智能化可以实现液压系统的自动控制和调节,提高系统的自动化程度和可靠性。

目前,许多液压元件已经实现了智能化控制,可以通过传感器和执行器来实现对系统的自动控制和调节。

5.模块化模块化是液压传动技术的另一个重要发展方向。

模块化可以实现液压系统的快速组装和维修,提高系统的灵活性和可靠性。

目前,许多液压元件已经实现了模块化设计,可以通过简单的组装和连接来实现对系统的快速组装和维修。

液压技术的发展现状和趋势

液压技术的发展现状和趋势

液压技术的发展现状和趋势Last updated on the afternoon of January 3, 2021内蒙古科技大学课程论文论文题目液压传动技术现状及趋势学生姓名刘颖学号专业班级机09-9班指导老师钟金豹液压技术的发展现状及趋势摘要:液压与气压传动相对于机械传动来说是一门新兴技术。

二十一世纪国内外的液压技术日渐走向成熟,但由于液压技术存在的一些优缺点,导致液压技术的发展速度受限。

本文介绍了液压传动技术的一些优缺点和国内外液压技术的一些发展状况和趋势。

关键词:液压技术发展趋势发展现状新兴技术国内外液压液压与气压传动相对于机械传动来说是一门新兴技术。

从1795年世界上第一台水压机诞生起,已有几百年的历史,液压传动技术被广泛采用和有较大幅度的发展是由19世纪崛起并蓬勃发展的石油工业推动起来的,最早实践成功的液压传动装置是舰船上的炮塔转位器,其后出现了液压六角车床和磨床,一些通用车床到20世纪30年代末才用上了液压传动。

第二次世界大战期间,在一些兵器上用上了功率大,反应快,动作准的液压传动和控制装置,大大提高了兵器的性能,也大大促进了液压技术的发展。

战后,液压技术迅速转向民用,并随着各种标准的不断制订和完善,各类元件的标准化,规格化,系列化而在机械制造,工程机械,材料科学,控制技术,农业机械,汽车制造等行业中推广开来。

由于军事及建设需要的刺激,液压技术日益成熟。

20世纪60年代后,原子能技术,空间技术,计算机技术等的发展再次将液压技术推向前进,使它发展成为包括传动,控制,检测在内的一门完整的自动化技术,在国民经济的各个方面都得到了应用。

如工程机械,数控加工中心,冶金自动线等。

液压传动在某些领域内甚至已占有压倒性优势。

液压传动是以流体作为工作介质对能量进行传动和控制的一种传动形式。

利用有压的液体经由一些机件控制之后来传递运动和动力。

因而在工程机械、冶金、军工、农机、汽车、轻纺、船舶、石油、航空和机床行业中,液压技术得到了普遍的应用。

流体传动及控制的现状及新发展

流体传动及控制的现状及新发展

流体传动及控制的现状及新发展目前,流体传动及控制技术已经广泛应用于各个领域,包括机械工程、航空航天、汽车工程、能源工程等。

流体传动技术主要指液压传动和气动传动两种方式,它们具有传动平稳、传动效率高、传动功率大、容易实现自动化等优点,因此在各个领域得到广泛应用。

在液压传动方面,目前主要发展趋势包括以下几个方面:1. 高效节能:为了提高流体传动的效率,减小能源消耗,可以采用新型液压泵、液压马达和节流装置等技术手段,以及优化系统的设计和控制算法。

2. 高速高压:随着科技的发展,液压传动系统的工作压力和流量要求越来越高,因此需要研发能够满足高速高压工况的液压元件和系统。

3. 精密控制: 现代流体传动系统对于精密控制的需求越来越大,因此需要研发高性能的液压伺服系统和控制器,以满足精密运动控制的要求。

4. 静音环保:传统液压传动系统噪音较大,对环境有一定的污染,因此需要研发低噪音、低振动、环保型的液压元件和系统。

在气动传动方面,主要的发展趋势包括以下几个方面:1. 高效节能:研发新型气动元件,提高气动系统的传动效率,减小能源消耗。

2. 轻质化:开发轻质的气动元件和系统,以减小设备的重量和体积。

3. 高速高精度:提高气动系统的响应速度和精度,以满足高速运动和高精度控制的需求。

4. 自动化:研发智能化的气动传动系统,实现自动化控制和远程监控。

此外,随着新兴技术的发展,如人工智能、大数据、物联网等技术的应用也将对流体传动及控制技术带来新的发展机遇。

例如,通过数据化管理和智能化控制,可以实现流体传动系统的故障预测和优化运行,提高系统的可靠性和可维护性。

同时,利用物联网技术,可以实现对流体传动系统的远程监控和集中控制,提高工作效率和运行安全性。

液压传动技术的发展与思考

液压传动技术的发展与思考

液压传动技术的发展与思考一、液压传动技术的发展液压传动就利用液体物质所特有的性质对能量进行控制与传动的一种新的方式,液压传动装置依靠机械对流体介质进行操控使其可以传递能力。

相比较于传统的电力和机械传动来说,输出功率大,质量较轻,惯性也比较小,控制与调速方便是液压传动的突出特点,因此被广泛应用与民用工业、工程机械、汽车与船舶机床。

早在第一次世界大战之后液压技术就得到了广泛的应用,特别是在1920 年以后,其发展更为迅速。

随着19世纪30年代平衡式叶片泵的发明液压传动技术逐步形成了一套完整的体系。

在第二次世界大战期间,美国有近三分之一的机床应用了液压技术。

随着时代的进步,机械工艺水平的提高,液压技术随着计算机控制技术,传感器技术的发展而迅速的发展,液压传动技术逐步形成了包括检测、控制与会传动为一体的一门完整的自动化技术。

液压技术的发展程度牵动着一个国家工业发展的命脉。

二、液压传动技术的优缺点(一)液压传动技术的优点。

在各种工作机械中,液压传动相比较其他基本的传动方式如机械传动、气压传动、以及电气传动。

有其独特的优点。

1.有润滑作用,延长元件和系统的寿命。

液压传动大多数是采用矿物油作为工作的介质,矿物质油可以润滑运动面,减少运用面的摩擦,从而使延长了机械的使用寿命。

2.调整速度较为容易。

液压传动装置的速度调整很简单,只需要调整流量的控制阀来进行无级调速。

3.与其他机械传动装置相比较在相同的功率下,液压传动所执行的元件体积小,重量轻,结构更为紧凑。

液压传动一般使用的压力是在70Mpa左右,也可达到50Mpa。

但是液压传动装置的体积远小于同样输出压力的电机或其他机械传动装置的。

4.很容易实现机器的自动化。

液压传动设备配上其他元件,采用电液联合控制后,利用可以的编程控制器与计算机,可以实现高程度的自动化控制。

(二)液压传动技术的缺点。

总而言之,液压传动装置的优点很突出,但不可否认其自身也存在这令人无法忽视的缺点。

液压技术的发展现状及趋势

液压技术的发展现状及趋势

液压技术的发展现状及趋势
液压技术作为一种传动方式和控制方式,在工程机械、航空航天、汽车工业、冶金工业、煤炭工业等领域具有广泛的应用。

目前,液压技术的发展现状及趋势主要表现在以下几个方面:
1. 小型化和集成化:随着科技的不断进步和现代工艺的发展,液压元件和系统的体积越来越小,功能越来越强大。

液压技术逐渐向集成化方向发展,形成了集成的液压系统,提高了系统的整体性能和效率。

2. 高效性:液压技术在能源转换效率上不断提高,采用新型材料和先进制造工艺,减少能量损耗和泄漏,提高系统的效率。

3. 智能化:液压技术与电子、计算机等先进技术的融合,实现了液压系统的智能化控制。

通过传感器、执行器和控制器的配合,实现对液压系统参数的精确控制和实时监测,提高系统的可靠性和灵活性。

4. 环保和节能:液压技术在节能和环保方面也有了新的发展。

采用新型的液压系统设计和控制策略,减少系统的能耗和噪音,降低对环境的污染。

5. 网络化和大数据应用:液压技术的网络化和大数据应用也是未来发展的趋势之一。

通过互联网和物联网技术,实现液压系统的远程监控和故障诊断,提高系统的可靠性和维修效率。

总的来说,液压技术在小型化、高效性、智能化、环保和节能、
网络化等方面都有了显著的进步和发展,未来还将继续朝着更加先进、可靠和高效的方向发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、液压比例控制
电液比例阀特点:
用电信号控制液压信号
控制电流与阀芯位移或力近似成比例 内部无反馈,精度低
结构简单 对油液的清洁度要求不高 成本较低
比例电磁铁典型结构
比例电磁铁与普通电磁铁的比较
比例电磁铁电磁力组成
比例电磁铁典型特性
比例电磁铁控制特性
液 压 比 例 控 制
直接控制比例压力控制阀外观
液压传动与控制技术的发展
内容提要
一 液压传动应用领域
二 传统液压传动
三 液压伺服控制
四 液压比例控制
一、液压传动应用领域
工程机械
液压挖掘机
YZ18C/YZ20/YZ26E全液压压路机
WTU75/95混凝土摊铺机
PQ190/160/PY190A平地机
推土机
混凝土泵车 及施工现场
高空作业车
1936年Harry Vickers 发明了先导式溢流阀
上海液压泵厂


液 压


液 压
朝田叶片泵
朝田齿轮泵
Gear pumps
国际上著名的液压公司
Parker Vickers Rexroth Bosch Atos
公司 公司 公司 公司 公司
三、液压伺服阀控制



永磁式力矩马达出现,形成了电液伺服 阀的雏形(1950年始) 喷嘴—挡板阀作为先导级的电液伺服阀 出现(1950年底) 各种形式的电液伺服阀开始出现(1960 年始)
谢谢!
矿山机械
液压提升机
滚筒式采煤机
部分断面掘进机
综采液压支架
农业机械
收割机
机床
冶金机械
运输机械
液 压动力元件
二 、传统液 压 传动
液 压执行元史
1905年Williams and Janney 发明了以矿物油作
介质的柱塞式液压泵
1930年Hans Thoma 发明了弯轴柱塞泵
直接控制比例压力控制阀结构
先导控制比例压力控制阀外观
先导控制比例压力控制阀结构
电液比例流量压力控制阀
综合性液压阀实验设备
液压综合实验系统主要参数
泵1型号:63SCY14-1B 泵2型号:25SCY14-1B
排量: 63ml/r 压力:31.5MPa 排量: 25ml/r 压力:31.5MPa
二级力反馈电液伺服阀外型
二级力反馈电液伺服阀结构
MOOG三级电液伺服阀外型
MOOG二级电液伺服阀(弹簧)结构
MOOG直动电液伺服阀外型
MOOG直动电液伺服阀结构
力士乐三级电液伺服阀外型
力士乐三级电液伺服阀结构
二级动圈式电液伺服阀外型(北京、上海)
二级动圈式电液伺服阀结构(北京、上海)
电液伺服阀特点:
用电信号控制液压信号
控制电流与阀芯位移成比例 内部有反馈,精度高
结构复杂 对油液的清洁度要求高 成本高
i2
i1
1 2 3
Ⅰ Ⅲ
Ⅱ Ⅳ
4 5 6 7 8 9 10 11 12 13
14
p2 T p0 位置-力反馈伺服阀原理 1导磁体 2 永久磁铁 3控制线圈 4衔铁 5弹簧管 6挡板 7喷嘴 8溢流腔 9 反馈杆 10滑阀 11阀套 12回油节流孔 13固定节流孔 14滤油器 p1
国际流体传动与控制研究学会








Austria - Universitat Linz, Convenor: Prof. Rudolf Scheidl. Australia ?Monash University, Convenor: Dr. Jacek S. Stecki. Brasil -Federal University of Santa Catarina, Convenor: A/Prof. Jonny Carlos da Silva. Canada ?University of Saskatchewan, Convenor: Prof. Richard Burton. China - Zhejiang University, Convenor: A/Prof. Xin Fu. Czech Republic - Technical University of Ostrava, Convenor: A/Prof. Petr Noskievic. Denmark 朌enmark Technical University, Convenor: Prof. Finn Conrad. Finland - Tampere University of Technology, Convenor: Prof. Jari Rinkinen.
A/D多功能PCI-8333板卡,该卡使用PCI总线,有16路模拟输
入信号,2路模拟输出信号,16路数字量输入、输出信号。
A/D 芯片为 AD1674 ,该芯片的 A/D 转换时间为 10μ s , 12 位模 数转换,该板卡具有转换速度快,功能齐全的特点。
国外流体传动与控制研究机构





英国巴斯大学(university of bath) 德国汉堡技术大学(Technical university of Hamburg-Harburg) 德国亚琛工业大学(Technical university of Archen) 加拿大萨斯喀彻温大学(University of saskatchewan) 芬兰坦佩雷工业大学(Tampere university of technology)
相关文档
最新文档