应用重力模型进行交通分布的详细步骤
第三章 交通需求预测-重力模型

l 基本假设为:交通区i到交通区j的出行分布
1、无约束重力模型
l
万有引力模型
模型为:
F = K⋅
l
量与i区的出行发生量、j区的出行吸引量成正 比,与i区和j区之间的交通阻抗成反比。 根据对约束情况的不同分类,重力模型有三种 形式:无约束重力模型、单约束重力模型和双 约束重力模型。
X ij = k ⋅
可采用先考虑宏观因素预测其总比例,再考 虑微观因素预测各交通区间出行方式的分担率的 方法。 出行总比例预测 条件类方式:根据车辆拥有量进行预测。
l
竞争类方式 取决于需求的出行方式其总比例预测可根据有关的社 会经济发展目标,结合其发展实际状况,通过综合分 析求得。如出租车等。 取决于有关政策的出行方式其总比例预测可按照有关 的发展策略,根据已有基础进行规划确定,如公交车 出行等。 各交通区间的出行比例预测 各交通区间某种出行方式的出行比例取决于该出行方 式的总比例、出行目的结构和出行距离,通过前述模 型以及根据出行调查等资料统计分析拟合建立的现状 关系曲线进行预测。
其中, c:汽车(car);b:公共汽车(bus)
l
∑∑ A
j m
其中Tijm——从交通区i到交通j,第 m种交通方 式的交通量;
4、 回归模型法——产生分担组合模型
l
二、交通方式的分类
l l l l l l l
该模型是通过建立交通方式分担率与其相关因素 间的回归方程,作为预测交通方式模型。
可分为:自由类、条件类和竞争类。 1、自由类交通方式 主要指步行交通,影响因素(内在因素)包括: 出行目的、出行距离、气候条件等 2、条件类交通方式 主要指单位小汽车、单位大客车、私人小汽车、摩托 车等交通方式 影响因素(外在因素)包括:有关政策、社会、经济 的发展水平。 影响因素(内在因素)包括:车辆拥有量、出行目的、 出行距离等。
重力模型标定方法及分析

以幂 函数双约束 重力模 型的标 定为例 :
^
=
由于重力模型是从万有引力 的定律 抽象而来 , 因此 用于交通 分析时必然存在 一定 的弊端 。首 先模 型的物 理意义是 揭示 人 的 活动的社会现象 , 又没有 完全立 足于人 的 出行规 律。其次 , 但 对
收 稿 日期 :0 20 —0 2 1 -21 作者 简 介 : 季 凯 (9 7 , , 士 , 程 师 17 .) 男 硕 工
其中 , A 为小 区 的交通吸引总量 ; I P 为小 区 i 的交通发生总
第 0 12年 1 期 8卷 1 23 第 4 月
季
凯: 重力模型标定方法及分析
K P /C 。 ; ; A
J
K :[ i ∑ AC] 。 /  ̄~
=
于阻抗 函数而言 , 出行距 离的 系数 为 常数 的假 设不 符合 实际 , 对 对于距离太小 的情 况 , 有时 预测值 过高 , 导致 与实 际值 的误 差 较 大 。此外 , 小区内出行时 间较难 确定 , 使得 小 区内交通 量预 测结
, c )= ep f 。 ( x ( C ) l 4 多项式 函数 : )
广义费进行 测度 。 常用的阻抗 函数形式包括 以下 5类 :
1 幂 函数 : )
, C )=c 。 (
1 1 重力模 型分 类 .
随着交通研究者 的不 断努 力开 发 , 重力模 型在 表达 形式 、 参 数标定 与检验 方法上 已有多种 形式 。按 照表达形 式 的不 同可 分
第 3 卷 第 1 期 8 1
・
1 ・ 8
20 12 年 4 月
山 西 建 筑
交通规划设计之重力模型法

)
C -n ij
exp(
Cij)
二、重力模型参数标定
在 现 状 OD 表 已 知 的 条 件 下 , Oi, Dj, Cij 和 tij 已 知 , k,α,,可以用最小二乘法求得。对(7.3.1)式取对数:
tij
k
Oi
D
j
Cij
(7.3.1)
ln tij ln k ln Oi ln Dj ln Cij
1,
1 bmj 1 /ቤተ መጻሕፍቲ ባይዱbmj 1
第三步,将求得参数代入,用现状OD值求现 状理论分布表{ tˆij }
第四步,计算现状实际OD分布表的平均交通
阻抗 R 1 ti
tij Rij
j
,再计算理论分布表中的平均
交通阻抗: Rˆ 1 ti
tij Rij
j
,求两者相对误差。
第五步,如果 满足要求(<3%),则接受γ 的求解,否则: ①若 Rˆ R ,则理论分布量小于实际, 应减 少γ的值,可令γ= γ/2; ②若 ,则理论分布量大于实际,应增 大γ的值,令γ=2 γ; ③返回第一步,重新计算。
j
S.t.
t ij Oi
j
Kij为调整系数,采用试算法确定。当Kij =1时,
即为乌尔希斯重力模型。
Kij (1 Yij )ij /(1 Yijij )
• λij—i小区到j小区的实际分布交通量与计算分布交 通量之比,λij=tij/t’ij; • Yij—i小区到j小区的实际分布交通量与i小区的出 行产生量之比,Yij=tij/Oi。
R 1503 100 2 505 4003 1005 200 4 3.4 1000
Rˆ 147.63 95.7 2 56.75 402.43 104.35 193.3 4 1000
transcad四阶段法

六、Connect连接 Connect连接就是将小区中心点连接到路网上, 目的是将小区的属性与路网的属性进行融合, 使小区真正成为路网中的一部分,只有这样才 能对路网进行交通分配。 在Connect连接之前需在路网节点层(Endpoints) 添加一个字段(table),取名为index,在路网层 也添加一个字段,也取名为index。这些都是为 下一步ID转换作准备的。
四、用重力模型进行交通分布预测
注意点:
Dataview中须 选小区中心点 层 Productions选 出行发生量(O) Attractions选 出行吸引量(D)
五、检验路网的连通性 该步骤用以检验路网中各路段与节点之间是否 真正连接。其操作过程为:路网层Tools → Map Editing → Check Line Layer Connectivity 在Threshold中填上检查的间隔。
二、生成小区图
新建交通区层(面层) New-Geographic File,选择Area Geographic File, options选择第二项,输入层名:area 添加域字段:交通区编码ID,现状base,现状吸引量A base,现状交通区容量POP base,未来发生量P fur, 未来吸引量A fur,未来交通区容量POP fur 画交通区:Tools-Map Editing-Toolbox
应用重力模型进行交通分布的详细步骤

应用重力模型进行交通分布的详细步骤第一步:求阻抗矩阵Rij(Impedance Matrix)交通阻抗可表示为:出行距离和行程时间的长短,以及出行费用的大小等。
为真实地反映交通阻抗,依托工程道路网规划采用通常使用的平均行程时间表示。
小区之间的阻抗——平均行程时间越小表示小区之间阻抗越小,越大表示小区之间阻抗越大,因此以平均行程时间为道路权值求各小区之间的最短路径(Shortest Path),其值即为小区之间的阻抗R ij。
1、数据准备(1)创建路网图1表示的是TransCAD创建路网的界面。
(2)做选择集。
在Endpoints层,于dataview中选择质心点,将其作为一个选择集。
(3)各路段平均行程时间(Travel time)其中,平均行程时间=Length/平均车速*602、操作过程Networks/Paths—Multiple paths调出其对话框如图2所示。
3、运行结果(即为阻抗矩阵),如图3所示。
第二步:重力模型标定(校准)(Gravity Mode Calibration)1、数据准备(1)基础OD矩阵。
(2)阻抗矩阵(Shortest Paths),如图3所示。
重力模型标定(校准)(Gravity Mode Calibration)数据准备:基年OD矩阵的索引(质心层质心ID)与最短路径矩阵的索引(路网节点层质心ID)不匹配,并且因为下面将在路网节点层上操作,因此必须使基年OD索引与最短路径矩阵的索引相一致,以使两表数据相对应(转换为“质心ID”)。
操作方法:按其对话框4示意操作。
2、操作过程按对话框(如图5)操作即可。
3、运行结果(1)标定参数结果(这里选用伽马函数):a=2.6288,b=0.2361,c=0.0,如图6所示,不过大看show report 里面参数更准确。
(2)K-Factor Flow:如图7所示。
第三步:创建综合阻抗因子f (Rij) (Synthetic Friction Factors)1、数据准备(1)创建空矩阵“Friction Factor shell”;(2)已标定的a、b、c值;(3)阻抗(最短路径)矩阵,如图8所示。
重力模型的解释及系数计算方法

重力模型法(gravity model)是一种最常用的方法,它根据牛顿的万有引力定律,即两物体间的引力与两物体的质量之积成正比,而与它们之间距离的平方成反比类推而成。
下式为Casey(1955)提出的重力模型。
其中,:i,j小区的人口; d为i,j小区间的距离,α为系数。
上式的约束条件为:s.t.同时满足守恒条件的α是不存在的,因此,将重力模型修改如下:其中,为交通阻抗函数。
交通阻抗函数的几种形式:指数函数:(1)幂函数:(2)组合函数:(3)为参数。
单约束型B.P.R.模型其中,调整系数。
发生侧得到保证,即:以下以幂指数交通阻抗函数为例介绍其计算方法:第1步令m=0,m为计算次数。
第2步给出n(可以用最小二乘法求出)。
第3步令第4步求出第5步收敛判定。
若下式满足,则结束计算;反之,令m+1=m,返回第2步重复计算。
,作业:按上次作业给出的现状OD表和将来生成、发生与吸引交通量,利用下式重力模型和弗拉塔算法,求出将来OD表。
收敛标准。
重力模型:其中,,,。
读者也可以利用以前给出的现状分布交通量和表4-1示现状行驶时间,估计出这3个参数。
表4-1 现状行驶时间表4-2将来行驶时间解:利用重力模型求解分布交通量如下:同理,可以计算出其它各交通小区之间的交通量如下表所示。
重力模型的优点:a.直观上容易理解;b.能考虑路网的变化和土地利用对人们的出行产生的影响;c.特定交通小区之间的OD交通量为零时,也能预测;d.能比较敏感地反映交通小区之间行驶时间变化的情况。
重力模型的缺点:a.重力模型仅仅是将物理法则简单直观上容易理解;b.能考虑路网的变化和土地利用对地应用到社会现象,尽管有类似性,需要更加贴合人们出行的方法;c.一般,人们的出行距离分布在全区域并非为定值,而重力模型将其视为定值;d.交通小区之间的行驶时间因交通方式和时间段的不同而异,而重力模型使用了同一时间;e.求内内交通量时的行驶时间难以给出;f.交通小区之间的距离小时,有夸大预测的可能性;g.利用重力模型计算出的分布交通量必须借助于其它方法进行收敛计算。
trsc交通规划实例详细步骤

t r s c交通规划实例详细步骤内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)T r a n s C A D 交通规划实例作者:applepin启动TransCAD软件插入软件狗,启动TransCAD软件。
建立路段层点击新建文件图标,出现点击建立地理文件,点击OK,出现选择文更改名更改名选中Line 层地理文件类型,并更改名字,点击OK,出现路段层属性对话框:点击Add Field,逐一增加字段属性点击OK,出现保存对话框:选择保存路径及文件名称点击Save,出现路段层地图界面添加路段在路段层上,点击Tools→map editing→toolbox出现地图编辑工具栏:点击,逐一增加路段应用保存得到7条线路、5个节点的路网。
输入路段属性数据打开路段层数据库:逐一输入路段属性数据(通行时间等于路段长度除以速度)建立小区层点击新建文件图标,出现点击建立地理文件,点击OK,出现点击OK,出现小区层属性对话框逐一添加小区的字段属性点击OK,出现保存对话框:起好名字,点击Save。
再次回到路段层地图界面。
画小区。
点击Tools→map editing→toolbox出现工具栏:画出3个小区,并保存。
输入小区属性数据打开小区层数据库输入各小区的属性数据将小区质心点连接到路网(目的是做ID转换)。
在节点层上,增加Index。
原先节点层上只有经纬度两个字段两个字段点击数据库菜单,修改数据库属性增加一个新字段Index在小区层上,点击Tools→Map Editing →Connect 调出对话框:点击Fill,完成如下设置:点出OK,路网显示出已经连接,出现小区质心节点打开点层数据库,发现新的变化:打开路段层数据库,发现新的变化:增加的三个节点的小区质心节增加了6,7,8三个填充连接后新增路段的填充连接后新增路段(质心连杆)的值。
将其通行能力设为无穷大(大数即可)的值,通行时间设为很小的值。
TransCAD运用重力模型预测详细步骤

TransCAD 运用重力模型进行预测详细步骤一、将CAD 创建的DXF 文件导入到TransCAD用TransCAD 软件打开.dxf 文件会弹出窗口,按照下图所示操作即可,Road 层和Area 层需要分两次导入。
导入路网层:点击OK ,命名为Road 并保存(Save )。
导入小区层:点击点击OK ,命名为Area 并保存(Save )。
Road 层和Area 层叠加:右键选择Layers 重命名图层:点击点击检查路段连接性:tools-map editing-check line layerconnectivity无问题,则显示为黑色点儿,继续下一步;有问题则显示为其他颜色点儿,需要进行调整。
二、分别给Road 层和Area 层建立相应字段并填充数据切换到Road 层,点击Dataview ,选择Modify Table ,弹出如下窗口,建立luming 、danxiangchedaoshu 、daoludengji 、danchedaonengli 、AB-T 、BA-T 、AB-V 、BA-V 、AB-C 、BA-C 和reallength字段。
切换到Endpoints 层,点击Dataview ,选择Modify Table ,弹出如下窗口,建立xiaoqu字段。
点击填充Road层数据表:其中luming 、danxiangchedaoshu 、daoludengji 根据调查结果进行填充,本例快速路AB-V 和BA-V 取60km/h ,主干路AB-V 和BA-V 取40km/h ,次干路AB-V 和BA-V 取30km/h ,支路AB-V 和BA-V 取20km/h ,不同等级道路单车道通行能力视隔离情况(机非隔离、中央隔离)进行取值,本例中快速路取值1100pcu/h ;主干路无隔离,则取950pcu/h ,有一种隔离措施,则取1000pcu/h ,有两种隔离措施,则取1050pcu/h ;次干路则依次取值为800pcu/h 、850pcu/h 、900pcu/h ;支路无机非隔离带则取450pcu/h ,有机非隔离带则取650pcu/h 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用重力模型进行交通分布的详细步骤
第一步:求阻抗矩阵Rij(Impedance Matrix)
交通阻抗可表示为:出行距离和行程时间的长短,以及出行费用的大小等。
为真实地反映交通阻抗,依托工程公交规划采用通常使用的平均行程时间表示。
小区之间的阻抗——平均行程时间越小表示小区之间阻抗越小,越大表示小区之间阻抗越大,因此以平均行程时间为路权值求各小区之间的最短路径(Shortest Path),其值即为小区之间的阻抗R ij。
1、数据准备
(1)创建路网
图1表示的是TransCAD创建路网的界面。
(2)做选择集。
在Endpoints层,于dataview中选择质心点,将其作为一个选择集。
(3)各路段平均行程时间(Travel time)
其中,平均行程时间=Length/平均车速
2、操作过程
Networks/Paths—Multiple paths调出其对话框如图2所示。
3、运行结果(即为阻抗矩阵),如图3所示。
第二步:重力模型标定(校准)(Gravity Mode Calibration)1、数据准备
(1)公交基础OD矩阵。
(2)阻抗矩阵(Shortest Paths),如图3所示。
重力模型标定(校准)(Gravity Mode Calibration)数据准备:
基年OD矩阵的索引(质心层质心ID)与最短路径矩阵的索引(路网节点层质心ID)不匹配,并且因为下面将在路网节点层上操作,因此必须使基年OD 索引与最短路径矩阵的索引相一致,以使两表数据相对应(转换为“质心ID”)。
操作方法:按其对话框4示意操作。
2、操作过程
按对话框(如图5)操作即可。
3、运行结果
(1)标定参数结果:a=2.6288,b=0.2361,c=0.0,如图6所示,不过大看show report 里面参数更准确。
(2)K-Factor Flow:如图7所示。
第三步:创建综合阻抗因子f (Rij) (Synthetic Friction Factors)
1、数据准备
(1)创建空矩阵“Friction Factor shell”;
(2)已标定的a、b、c值;
(3)阻抗(最短路径)矩阵。
如图8所示。
2、操作过程
详见图9对话框所示。
3、运行结果
如图10所示。
第四步:应用重力模型(得2010年公交OD分布矩阵)1、数据准备
(1)已标定的a,b,c值;
(2)综合阻抗因子矩阵;
(3)阻抗(最短路径)矩阵。
(4)K-Factor矩阵
因为采用重力模型分布时要用到规划年交通出行量,所以必须在小区层上操作,因此综合阻抗因子矩阵、阻抗(最短路径)矩阵、K-Factor矩阵索引值必须与2010PCU_P、2010PCU_A的ID相匹配。
即要将这三个矩阵的ID转换回
来。
ID转换后的数据见图11。
2、操作过程
详见图12所示。
3、运行结果
规划年(2010年)公交OD矩阵(ID转换为实际小区号),详见图13。
操作结束,希望对大家有用!
我的QQ号是250234329.欢迎一起交流。