交通流理论-流体理论

合集下载

《交通流理论 》课件

《交通流理论 》课件

数值模拟法
定义:通过计 算机程序模拟 交通流现象的
方法
优点:可以模拟 复杂的交通流现 象,包括车辆之 间的相互作用、
道路条件等
缺点:需要较 高的计算能力 和技术水平, 且可能存在误

应用:用于研 究交通流的基 本规律、优化 交通设计和控
制等方面
交通流分析与评价方法
交通流流量分析
交通流量定义:单位时间内通过道路某一断面的车辆数 交通流量分类:基本流量、设计流量、实际流量 交通流量调查方法:路边调查、断面调查、连续调查
交通信号优化:通过调整交通 信号的配时方案,减少车辆在 路口的等待时间和延误
智能交通系统应用:利用智能 交通系统技术,实时监测交通
状况,调整交通流分配
交通流控制策略
交通信号控制:通过调整交通信号灯的配时方案,优化交通流分配,减少 拥堵和事故发生率。
智能交通系统:利用先进的技术手段,实时监测交通流量、车速等参数, 为交通管理部门提供决策支持,实现交通流优化与控制。
交通流分析与评价方法在交 通安全与控制中的应用
交通流分析与评价方法介绍
交通流分析与评价方法在环境 保护与可持续发展中的应用
交通流数据的采集与处理
交通流分析与评价方法的发 展趋势与挑战
交通流优化与控制策略
交通流优化方法
道路设计优化:优化道路布局 和设计,提高道路通行能力和 安全性
交通管理优化:加强交通管理, 提高交通运行效率和管理水平
交通组织优化:通过合理规划道路网络、优化交通标志标线等措施,提高 道路通行效率,减少交通冲突。
公共交通优先:通过设置公交专用道、提高公交服务质量等措施,鼓励市 民选择公共交通出行,减少私家车使用,从而优化交通流。

交通工程学课件-第八章--交通流理论

交通工程学课件-第八章--交通流理论

m 1)!
Pk
•时间t内到达车辆数小于k的概率P(K<k) •时间t内到达车辆数大于等于k的概率P(K≥k) •时间t内到达车辆数大于等于x但不超过y的概率
P(x≤K≤y)
第八章 交通流理论
• 该分布的均值M和方差D都等于m=λt。
• 实际应用中,均值M=E(X)和方差D(X)可分别由其样本 均值和样本方差S2分别进行估计:
1、负指数分布
• 交通流到达服从泊松分布,则交通流到达的车头时距 服从负指数分布, 反之亦然
• 已知到达某交叉口的车流车头时距(单位:s)服从负
指数分布,且 P(h 10) 0.2
• 试求任意10s到达车辆数不小于2辆的概率
P0 0.2 et P1 t et P( X 2) 1 P0 P1
交通工程中,另一个用于描述车辆到达随机特性的度量 就是车头时距的分布,常用的分布有负指数分布、移位的 负指数分布、M3分布和爱尔朗分布
1、负指数分布(Exponential Distribution)
由泊松分布知 P( X 0) (T )0 eT eT
0!
四、连续性分布(continuous distribution)
第八章 交通流理论
一、概述
• 交通流理论是运用物理学与数学的定律来描述交 通特征的一门科学,是交通工程学的基础理论。 它用分析的方法阐述交通现象及其机理,从而使 我们能更好地掌握交通现象及其本质,并使城市 道路与公路的规划设计和营运管理发挥最大的功 效。
第八章 交通流理论
一、概述 当前交通流理论的主要内容: • 1、交通流量、速度和密度的相互关系及测量方法 • 2、交通流的统计分布特性 • 3、排队论的应用 • 4、跟驰理论 • 5、驾驶员处理信息的特性 • 6、交通流的流体力学模拟理论 • 7、交通流模拟

第4章 交通流理论

第4章 交通流理论

P(h t) e。t
4.2.3.1 负指数分布(续)/λ2,用样本均值m代替M、样本的方差S2代替D,
既可算出负指数分布的参数λ 。 (3)适用条件:用于描述有充分超车机会的单列车流
和密度不大的多列车流的车头时距分布,它常与计 数的泊松分布相对应。
(3)排队系统:既包括了等待服务的,又包括了正在被服 务的车辆。
(4)排队论的应用:电话自动交换机;车辆延误、通行能 力、信号灯配时以及停车场、加油站等交通设施的设计 与管理;收费亭的延误估计。
4.3.2 基本原理
(1)排队系统的3个组成部分 输入过程:各种类型的“顾客(车辆或行人)”
按怎样的规律到达。如定长输入;泊松输入;爱 尔郎输入。(到达时距符合什么样的分布)
可算出移位负指数分布的参数λ和τ 。
4.2.3.2 移位负指数分布(续)
(3)适用条件 用于描述不能超车的单列车流的车头时距分布和
车流量低的车流的车头时距分布。 (4)移位负指数分布的局限
移位负指数分布的概率密度函数曲线是随t-τ单 调递降的,车头时距愈接近τ,其出现的可能性愈大。 这在一般情况下是不符合驾驶员的心理习惯和行车特 点的。从统计角度看,车头时距分布的概率密度曲线 一般总是先升后降的。
4.5.1 理论概述
1955年,英国学者莱脱希尔和惠特汉提出。 车流波动理论的定义:通过分析车流波的传播速
度,以寻求车流流量和密度、速度之间的关系, 并描述车流的拥挤——消散过程。 适用条件:流体力学模拟理论假定在车流中各个 单个车辆的行驶状态与它前面的车辆完全一样, 这与实际不符,因此该模型运用于车辆拥挤路段 较为合适。
4.2 交通流的统计分布特 性
4.2.1 交通流统计分布的含义 4.2.2 离散型分布 4.2.3 连续性分布

交通流理论-流体理论

交通流理论-流体理论

(5 - 8 )
在流量—密度相关曲线上, 在流量—密度相关曲线上,集 散波的波速就是割线的斜率、微弱波 散波的波速就是割线的斜率、 流量和密度非常接近) (流量和密度非常接近)的波速就是 切线的斜率。如图所示, 切线的斜率。如图所示,当车流从低 密度低流量的A 密度低流量的A状态转变的高密度高 流量的B状态时, 流量的B状态时,集散波的波速是正 的,即波沿道路前进。当车流从低流 即波沿道路前进。 量高密度的C 量高密度的C状态转变到高流量而密 度较低的B状态时, 度较低的B状态时,集散波的波速是 负的,即波沿道路后退。 负的,即波沿道路后退。从A状态到 状态的波是集结波。而从B状态到A B状态的波是集结波。而从B状态到A 状态的波是消散波,两者都是前进波。 状态的波是消散波,两者都是前进波。 状态到C状态的波是集结波, 从B状态到C状态的波是集结波,从C 状态到B状态的波为消散波, 状态到B状态的波为消散波,两者都 是后退波。 是后退波。
(5-3)
q = ku
∂k ∂ ( ku ) + = 0 ∂t ∂x
(5-4)
上式表明,当车流量随距离而降低时, 上式表明,当车流量随距离而降低时,车流密度则随 时间而增大。 时间而增大。
二、车流波动理论 交通车流和一般的流体一样, 交通车流和一般的流体一样,当道路具有瓶颈形 式路段,车流发生紊乱拥挤现象, 式路段,车流发生紊乱拥挤现象,会产生一种与车流 方向相反的波,好像声波碰到障碍物时的反射一样, 方向相反的波,好像声波碰到障碍物时的反射一样, 阻止车流前进,降低车速。如图5 阻止车流前进,降低车速。如图5-1。
第五节
交通流的流体力学模拟理论
2、车流连续性方程的建立 假设车辆顺次通过断面I II的时间间隔为 的时间间隔为Δ 假设车辆顺次通过断面I和II的时间间隔为Δt,两断 面的间距为Δ 面的间距为Δx。

5第五章 交通流理论

5第五章  交通流理论

损失制:顾客到达时,若所有服务台均被占,该
顾客就自动消失,永不再来。
等待制:顾客到达时,若所有服务台均被占,他
们就排成队伍,等待服务。服务次序有先到先服务
(FIFO)、先到后服务(LIFO)和优先权服务(SIRO)等多
种规则。
混合制:顾客到达时,若队伍长小于L,就排入
队伍;若队伍长等于L,顾客就离去,永不再来。
解:这里t 理解为车辆数的空间间隔,λ为车 辆平均分布率,m 为计数空间间隔内的平均 车辆数。 由λ=60/10 t=1 ,因此m =λt=6(辆) 这里m即为计数空间间隔内的平均车辆数。
P( 0 ) P( 2 ) P( 4 ) P( 6 ) m e e 0.0025 P(1) P( 0 ) 0.0149 1 m m P(1) 0.0446 P( 3 ) P( 2 ) 0.0892 2 3 m m P( 3 ) 0.1338 P( 5 ) P( 4 ) 0.1606 4 5 m P( 6 ) 0.1606 6
(1)一个周期内到达车辆不超过10辆的概率;
(2)求到达车辆不致两次排队的周期最大百分率。
2、二项分布
车辆比较拥挤、自由行驶机会不多的车流
基本公式
P k C p 1 p
n k k
n k
k 0,1,2,
式中: Pk—在计数间隔t内到达k辆车的概率; n—每个计数间隔持续的时间,正整数;
距分布来表述,这种分布属于连续型分布。
1、负指数分布
交通流到达服从泊松分布,则交通流到达的
车头时距服从负指数分布,概率分布密度函数为
dP t F t e dt
适用条件:车流密度不大,车辆随机到达,且 车流为连续,当流量小于500veh/h/车道时,用负指 数分布描述车头时距,通常是符合实际情况的。

4-4 交通流理论-流体理论

4-4 交通流理论-流体理论

车辆运行时间-空间轨迹图
14/27
又:
x B w1 (t A t s ) 2 w2 t s
解得:
ts 2 W1t A 2 2.5 0.167 0.186h W1 W2 2.5 (6)
所以:
t j t A ts 0.353h
车辆运行时间-空间轨迹图
集结波波速:
1950 3880 w2 7.283( Km / h) 33 298
22/27
根据时间-空间轨迹图可获得如下方程组:
t R (t E t R ) 1.69 t R (W1 ) (t E t R )V1 x R x F
将 W1 1.495, V1 50带入方程组,解得: t R 1.641小时,t E t R 0.049小时, x R x F t R (W1 ) 1.641 1.495 2.453Km
20/27
车辆运行时间-空间轨迹图
21/27
这是一后退波,表示居住区路段入口处向上游形成一列密 度为298 辆/Km的拥挤车流队列 。图中tF-tH=tE-t0=1.69,则 tE=1.69小时,OF为W1的轨迹。在F处高峰流消失,出现流量为 1950辆/小时,速度为59Km/h的低峰流。
1950 K3 33辆 / km 59
第四章 交通流理论
第五节 流体力学理论
1/27
一、引言
1、流体动力学理论建立 1955年,英国学者莱脱希尔和惠特汉将交通流比拟为一种流 体,对一条很长的公路隧道,研究了在车流密度高的情况下的 交通流规律,提出了流体动力学模拟理论。 该理论运用流体动力学的基本原理,模拟流体的连续性方 程,建立车流的连续性方程。把车流密度的变化,比拟成水波 的起伏而抽象为车流波。当车流因道路或交通状况的改变而引 起密度的改变时,在车流中产生车流波的传播,通过分析车流 波的传播速度,以寻求车流流量和密度、速度之间的关系,并 描述车流的拥挤—消散过程。因此,该理论又可称为车流波动 理论。

交通工程学 第4章 交通流理论


k
j 1
g
j
fj
k
j 1
g
j
fj
fj
N
式中:g——观测数据分组数; fj——计算间隔t内到达kj辆车(人)这一事件发生的次(频)数; kj——计数间隔t内的到达数或各组的中值; N——观测的总计间隔数。
(2)递推公式
P(0) e m P(k 1) P(k ) k 1
(3)应用条件
• 在第一个环节上,重点研究设计什么样的模型才能对所 关心的交通流现象有一个很好的描述,此环节的关键是 对系统的识别,也即对所研究对象的充分认识。这种认 识越深刻,所建立的模型就越符合实际; • 在第二个环节上,重点研究如何确定模型中的参数使模 型得以具体应用,参数的确定是一项非常具体、细致的 工作,其好坏直接决定了模型的应用效果。优秀的交通 流模型应该只包含若干个有现实的变量和参数,而且它 们是容易测量的。 • 此外,一个好的模型还应在理论上前后一致,便于进行 数值模拟且能做出新的预测,简单而言,优秀的交通流 模型必须有鲁棒性、现实性、一致性和简单性。 • 无论是模型结构的建立还是模型参数的标定,简单和适 用是第一原则 ,但随着计算手段的改善和交通工程技 术人员素质的提高,复杂交通流模型推广和应用的也日 益广泛了。
§4-2 概率统计模型
本节内容
• • • • 离散型分布特征、分布函数 排队论模型的基本概念 M/M/N与N个M/M/1的指标计算与比较 流体模拟理论及实例分析
问题的提出
一个实际问题及其解决方法的思路分析
1.某随机车流,求30秒内平均到达的车辆数(均值)、方差(参考p74 4-8 4-10 ) 2.假定该车流服从泊松分布,求没有车到达的概率、到达四辆车的概率、到达 大于四辆车的概率分别是多少 )

第3节---交通流理论

nT 1 q T h nL 1 k L s
1 h nT 1 s nL T hi nT i 1 L si nL i 1
nL nT
s vg h
3种观测方式
地点观测、移动观测、区间观测
x x x
t 地点观测
固定地点,一段时 间内进行的观测 连续时间 离散空间
t 移动观测
t
Time-Space Diagram
N t , x
N (t , x) :累积车辆台数
固定地点
t
x
:时间 :空间位置
t
交通流的流体力学理论基础(2)
流体力学的近似表现
1 维坐标空间 x:道路前进方向上的个地点的位置 到时刻 t 为止,通过道路某一横断面 x 的累积车辆台 数: N (t , x)
v2 v1 Qw 1 1 k 2 k1
1,2分别代表前后两种车流的状态,v代表车速,k代表 密度
3 种波速的比较
交通量q
空间平均速度
黑色
微弱波速度
绿色,红色
(q1 , k1 ) (q2 , k 2 )
集散波速度
浅蓝色
密度k q-k曲线
应用实例(Signal Control)(1)
qg k g vg
vs k g v g
g 1 n
1 n k g q g q kvs k g 1 g 1
n
Fundamental Diagram(q-k Curve)
交通流量不能超 过在临界密度所 对应的最大值 一个交通流量对 应两个状态
非拥挤区域和拥挤区域
城市道路与交通规划
第三节:交通流理论 3.1 交通流理论基本概念

交通流理论4流体力学模拟理论

车流波动理论。
交通工程电子教程
流体流与交通流的比较
第八章 交通流理论
物理意 义
离散元 素
运动方 向
连续体 形态
变量
流体特性
交通流特 物理意


流体特 性
交通流 特性
流体分子 一向性
车辆 单向
变量
流速v 车速v 压力P 流量Q
可压缩或 不可压缩
流体
不可压缩 交通流
动量
Mv
Kv
质量(密 度)m
密度K
状态方 程
• 当Q2<Q1 、K2<K1时,产生一个消散波,
w为正值,消散波在波动产生的那一点,沿
着与车流相同的方向,以相对路面为w的速
度移动。Q
(K1,Q1)
(K2,Q2)
K
• 当Q2>Q1 、K2>K1时,产生一个集结波,
w为正值,集结波在波动产生的那一点,沿
着与车流相同的方向,以相对路面为w的速
度移动。Q
dk dq 0 dt dx
车流连续 性方程
交通工程电子教程
第八章 交通流理论
车流波动理论
集结波 车流波由低密度状态向高密度状态转变的界面 移动,车流在交叉口遇红灯,车流通过瓶颈路段、桥梁 等都会产生集结波。
疏散波 车流波由高密度状态向低密度状态转变的界面 移动,交叉路口进口引道上红灯期间的排队车辆绿灯时 开始驶离,车流从瓶颈路段驶出等都会产生疏散波。
车流的波动:车流中两种不同密度部分的分界面经过一 辆辆 车向车队后部传播的现象。
波速:车流波动沿道路移动的速度。
交通工程电子教程
虚线代表车流密度变 化的分界线,虚线AB是 低密度状态向高密度状态 转变的分界,它体现的车 流波为集结波;而虚线 AC是高密度状态向低密 度状态转变的分界,它体 现的车流波为疏散波。虚 线的斜率就是波速。

6.交通流理论

第六章 交通流理论
一、交通流概述 二、交通流中各参数之间的关系 三、交通流统计分析特性 四、排队论及其应用 五、跟驰理论简介 六、流体力学模拟理论
一 交通流理论概述
交通流理论是使用物理学和数学的定律来描述交通特 性的一门边缘科学,是交通工程学的基础理论。 性的一门边缘科学,是交通工程学的基础理论。 概率论数理统计理论——微观的研究对各个车辆行驶 微观的研究对各个车辆行驶 概率论数理统计理论 微观 规律,找出交通流变化规律。 规律,找出交通流变化规律。 流体力学方法——宏观的研究整个交通流体的演变过 宏观的研究整个交通流体的演变过 流体力学方法 宏观 求出交通流拥挤状态的变化规律。 程,求出交通流拥挤状态的变化规律。 动力学跟踪理论——建立道路上行驶车辆流动线性微 动力学跟踪理论 建立道路上行驶车辆流动线性微 分方程式来分析跟驰车辆行驶情况和变化规律。 跟驰车辆行驶情况和变化规律 分方程式来分析跟驰车辆行驶情况和变化规律。
损失时间
启动损失时间:当信号灯变为绿灯时,车辆由停止状态开始运动, 启动损失时间:当信号灯变为绿灯时,车辆由停止状态开始运动,前几 辆车的车头时距是大于h 对于前几辆车,应增加其车头时距, 辆车的车头时距是大于ht 的,对于前几辆车,应增加其车头时距,从 而得到一个增量值,称为启动损失时间, 而得到一个增量值,称为启动损失时间,记为 l1
K=0 →V=Vf K=Kj→V=0 K=Km→V=Vm Q→Qmax
二、交通流中各参数之间的关系
1959年,格林柏(Greenberg)提出了用于密度很大时对数模 年 格林柏( ) 型:
V = Vm ln(
Kj K
)
格林柏模型 的适用范围
二、交通流中各参数之间的关系
1961年安德伍德(Underwood)提出了用于密度很小时的指数 年安德伍德( 年安德伍德 ) 模型: 模型:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

W dQ dk
(5-7)
集散波总是从前车向后车传播的,把单位时间内集散波所掠过的
车辆数称 1
k2 k1
(5-8)
在流量—密度相关曲线上,集 散波的波速就是割线的斜率、微弱波 (流量和密度非常接近)的波速就是 切线的斜率。如图所示,当车流从低 密度低流量的A状态转变的高密度高 流量的B状态时,集散波的波速是正 的,即波沿道路前进。当车流从低流 量高密度的C状态转变到高流量而密 度较低的B状态时,集散波的波速是 负的,即波沿道路后退。从A状态到 B状态的波是集结波。而从B状态到A 状态的波是消散波,两者都是前进波。 从B状态到C状态的波是集结波,从C 状态到B状态的波为消散波,两者都 是后退波。
失,出现流量为1950辆
/小时,速度为59Km/h
的低峰流。
K3
19503 59
3辆/k
m
集结波波速:
车辆运行时间-空间轨迹图
w 2139 3 2 3 59 8 0 8 8 7.208 (K3/m h)
它的轨迹为FG
根据时间-空间轨迹图可获得如下方程组:
tR(W t1R ) ((ttE E ttR R))V 11.6xR9xF
流体动力学模拟理论是一种宏观模型,它假定车流中各个 车辆的行驶状态与它前面的车辆完全一样,这与实际是不 相符的尽管如此,该理论在分析交通流流体状态比较明显 的场合,比如在分析瓶颈路段的车辆拥挤问题时,还比较 实用。
二、车流波动理论 交通车流和一般的流体一样,当道路具有瓶颈形 式路段,车流发生紊乱拥挤现象,会产生一种与车流 方向相反的波,好像声波碰到障碍物时的反射一样, 阻止车流前进,降低车速。如图5-1。
L=LAD=2Km 由于表示车辆行驶轨迹的各折线是分段等距平行的,不难得
知遭遇拥挤的那些辆车的延误构成等差级数,于是总延误D
的计算为:
D N tA tF 3 3 0 .1 5 6 2 /5 7 0 2.2 1 辆 7 h
2
2
例题2:一条单向道路的一端伸进学校与居住区中,在此路段
中车速限制为13Km/h,对应的通行能力为3880辆/小时,
高峰是从上游驶来的车流速度为50Km/h,流量为4200辆/
小时,高峰持续了1.69小时,然后上游车流量降到1950辆
/小时,速度为59Km/h。是估计此路段入口的上游拥挤长
度和拥挤持续时间。
解:高峰时上游车流密度:
K1
42008 50
4辆/k
m
居住区路段上的密度:
K2
388029辆 8/km 13
Vf Kj
K57.60.460K8
由已知条件,得:
tA4.81s0.013h 361
Qw1
V2 1
V1 1
0V1 1 1
k2 k1 kj k1
求式中的K1、V1: 由 QKfV (1K K j)及 Vf 4K Q jm 得
K K2
Q
4Qm ( K j
)
K
2 j
解得:K 1 0 .5 K j(1 1 Q Q m ) 0 .5 1(1 2 1 5 1 78 ) 2 1 0 0 .0 4 0 辆 8 /k8
车辆波动图
三、车流波动理论的应用 例1:知某快速干道上车流速度(KM/h)与密度(辆/KM) 具有:u0.10 31.547 0.002 K5之6 关系。现知一列 u1=50KM/h的车流中插入一u2=12KM/h的低速车,并不能超 车而集结形成速度为u2拥挤车流。此低速车在行驶2KM后 离去,拥挤车队随之离散形成具有速度u3=30KM/h的状态。 试求: 1.拥挤车队消散的时间ts; 2.拥挤车队持续的时间tj; 3.拥挤车队最长时的车辆数Nm; 4.拥挤车辆的总数N; 5.拥挤车辆所占用过的道路总长度L; 6.车流速度从Vl降低至V2而延误的总时间T。
车辆运行时间-空间轨迹图
tA
xA v2
2 0.167h 12
又: 解得: 所以:
x B w 1 (tA ts) 2 w 2 ts
ts
2W1tA W1W2
22.50.1670.18h6 2.5(6)
tj tAts 0.35h3
由图可知拥挤车队从A点开始消散,所以落在路段AC上的车数 就是拥挤车队最长时的车数Nm,它等于波wl在时段tc-t0内掠 过的车数,根据波流量公式,可得:
在这两股车流之间形成了一集结波其波速为: w 1K Q 2 2 Q K 1 1 482 4 2 3 09 8 0 8 8 1 .4 0( 9 K5 /h m )
这是一后退波,表示居
住区路段入口处向上游
形成一列密度为298 辆
/Km的拥挤车流队列 。
图中tF-tH=tE-t0=1.69, 则tE=1.69小时,OF为W1 的轨迹。在F处高峰流消
将W1 1.495,V1 50带入方程组,解得: tR 1.64小 1 时, tE tR 0.049小时, xR xF tR(W1) 1.6411.4952.453Km
即拥挤流向上游延长的距离为2.453km,共包含车辆为: 2.453×298=731辆。集结波W2推进到G的历时为: 则拥挤持ts 续t的G 时tR 间为xR :w 2xF7 2..2 48 50 3 3.33 小 7 时
折线所示。虚线OB的斜率等
于w1,虚线AB的斜率等于w2,
以xB、tB表示图中B点的空
间坐标和时间坐标,其它各
点亦然。从图看出,从t0到
tA,拥挤车队愈来愈长,最
长时占路长度等于xA-xc,
过了时刻tA,拥挤车队愈来
愈短,到时刻tB拥挤完全消
除,很自然应把时段tB-tA
称为消散时间ts.由于N条折 线的斜率表示车速,易得
解:把车流经历的疏散一密集一疏散这三个阶段的状态记为 状态l、2、3,相应的流量、速度、密度分别记为Qi,ui, Ki;i=1,2,3。则由已知车流模型可算出: Q1=1000,u1=50,K1=20 Q2=1200,u2=12,K2=100 Q3=1500,u3=30,K3=50
由状态1转变到状态2形成集结波,记其波速为wl
图5-1 交通流回波现象
第五节 交通流的流体力学模拟理论
1、集散波的定义 列队行驶的车辆在信号灯交叉口遇到红灯后,即陆 续停车排队而集结成密度高的队列;绿灯启亮后,排队 的车辆又陆续起动而疏散成一列具有适当密度的车队。 车流中密度经过了由低到高,再由高到低两个过程, 车流中两种不同密度部分的分界面经过一辆辆车向车队 后部传播的现象,称为车流的波动。车流波动沿道路移 动的速度,称为波速。
需时间为: t l2 l1 v2 v1
(5-5)
图5-3 车队前三辆车运行轨迹
又因 xtv1l1,于是有
波速:
W
x t
l1 t
v1
l1(v2 v1) l2 l1
v1
l2v1 l2
l1v2 l1
v1 v2
l1 l2 11
k1v1 k2v2 k1 k2
Q1 k1
Q2
k2(5-6)
l1 l2
如果车流前后两行驶状态的流量和密度非常接近,则:
LNtBQ W 1 (ts tA)Q W 1
Kj Kj
Kj
根据题设条件计算上式中各个量:
Q m36/2 01 08辆 0 /h0 Kj 10/0 80 12 辆 5 /km
则: V f 4 Q m /K j ( 4 1) 8 /10 2 5 .6 0 k 5 7 /h m
所以K-V关系为:
VVf
28.8 Qw2 1 1
360辆 0/h
12562.5
tsQ W t2 AQ W Q 1W 10.0 31 63 0 8 83 0 1 .41 .4 6 1 91 9 1 70 7 .003 h888
tB tS tA 0 .01 0 3 .03 0 6 3 0 .0 81 h 87 825
w 1K Q 2 2 Q K 1 1112 0 1 0 200 0 00 2.5 (0 K/m h)
由状态2转变到状态3形成消散波,记其波速为w2
w 2K Q 3 3 Q K 2 2155 0 1 1 00 2 0 0 0 6 (K 0/m h )
受拥挤的N辆车的时间—空
间运行轨迹线如图中的N条
即K2 K Q 0
K
2 j
Kj
4Qm
V 1 5 .6 7 0 .4K 6 1 5 0 .1 1 8 k1 /h m
则:
Qw1
55 .11 11
81.419辆 7/h
12514 .088
又:Q w 2
0 Vs 11
式中:Vs为饱和流量所对应的 车速,ks为对应密度。于是:
k j ks
V s 0 . 5 V f 2 . 8 k 8 /h , m K s 0 . 5 K j 6 . 5 辆 2 /h
第四章 交通流理论
第五节 交通流的流体力学模拟理论
第五节 交通流的流体力学模拟理论
一、引言 1、流体动力学理论建立 1955年,英国学者莱脱希尔和惠特汉将交通流比拟为一种 流体,对一条很长的公路隧道,研究了在车流密度高的情况下 的交通流规律,提出了流体动力学模拟理论。该理论运用流体 动力学的基本原理,模拟流体的连续性方程,建立车流的连续 性方程。把车流密度的变化,比拟成水波的起伏而抽象为车流 波。当车流因道路或交通状况的改变而引起密度的改变时,在 车流中产生车流波的传播,通过分析车流波的传播速度,以寻 求车流流量和密度、速度之间的关系,并描述车流的拥挤—消 散过程。因此,该理论又可称为车流波动理论。
拥挤过的车辆总数: NtBQW11辆 4
停车排队最远距离: LN140.11k2m 11m2 Kj 125
NmQw1(tc t0)Qw1tA
V2 1
V1 1
相关文档
最新文档