交通流理论4流体力学模拟理论

合集下载

第四章 交通流

第四章  交通流
2
[
]
从S与m的比值看,用泊松分布或负二项分布拟合可能是合适的. 若用泊松分布拟合,起分布参数m=5.254 若用负二项分布拟合,它的两个分布参数计算如下: p=m/ S=5.254/6.753=0.78 β= m/( S-m)=5.254 /(6.753-5.254)=18.4
P (0) = e m m P (k ) P ( k + 1) = k +1
1 N 1 g 2 S = (ki m ) = (k j m )2 f j ∑ ∑ N 1 i =1 N 1 j =1
2
应用举例
例题1 : 设60辆汽车随机分布在4km长的道路上,服从泊松分 60辆汽车随机分布在 辆汽车随机分布在4km长的道路上 长的道路上,
布,求任意400m路段上有4辆及4辆以上汽车的概率. 求任意400m路段上有 辆及4辆以上汽车的概率. 路段上有4
∑k
m=
j =1
g
j
fj =
N
1 × (0 × 2 + 1 × 15 + 2 × 20 + ......12 × 2) = 5.254 232
1 g 1 2 2 2 2 S = ( k j m )2 f j = × 2 × (0 5.254) + 15 × (1 5.254) + 20 × (2 5.254) + ... + 2 × (12 5.254) = 6.753 ∑ N 1 j =1 232 1
车辆到达数kj 包含kj的间隔出现次数 <3 3 4 5 6 7 8 9 10 11 12 >12 1 1 0
0 3 0 8 10 11 10 11 9
表4-1
上午高峰期间以15s间隔观测车辆到达的数据 上午高峰期间以 间隔观测车辆到达的数据

8章 交通流理论

8章  交通流理论
X n (t ) ——在t时刻,第n号车的速度; X n1 (t ) ——在t时刻,第n+1号车的速度。

跟驰车辆的加速度与两车相对速度呈线性关系。
线性模型的稳定性
1. 局部稳定
C T 反应摆动特性
指前后两车之间距离的变化反应。
例如两车车距的摆动,如摆动大则不稳定,摆 动愈小则愈稳定,这称为局部稳定。(图8-4) 2. 渐近稳定 是引导车向后面各车传播速度变化。
算例8-1:
例8-2:
P(H<t)=1-e-λt
练习:
1.在一条8km的公路上随意(机)地分布有80辆汽车,试求任 意1km路段内有5辆车的概率。
2.某交叉口信号灯周期长40s,一个方向的车流量为450辆/ 小时。试求设计上具有95%置信度的每一个周期的来车数。
3.已知某公路q=720辆/小时,试求某断面2秒时间段内完全 没有车辆通过的概率及其出现次数。
P(H<t)=1-e-λt 若Q表示每小时的交通量,则λ=Q/3600(辆/s),前式可以写 成: P(H≥t)=e-Qt/3600 负指数分布的均值 : E(H)=3600/Q=1/λ 负指数分布的方差为:
Var( H )
1
2
用样本的均值m,样本的方差S2 可算出负指数分布的参数λ。
(2)适用条件
T——每个计数间隔持续的时间ቤተ መጻሕፍቲ ባይዱs)或距离(m);
对于二项分布,其: 均值 E(X)=np 方差 Var(X)=np(1-p) 因此,当用二项分布拟合观测数据时,根据参数p、n与方
差、均值的关系式,用样本的均值m、方差S2代替,p、n
可按下列关系式估算:
ˆ (m S 2 ) / m p ˆ n m / p m2 /(m S 2 )(取整数 )

交通流理论(4)

交通流理论(4)
第4章 交通流理论
The theory of traffic flow
2009年3月 年 月
4.6 车流波理论
车流波理论运用流体动力学的基本原理,模拟流体的连续性方程, 车流波理论运用流体动力学的基本原理,模拟流体的连续性方程, 建立车流的连续性方程。 建立车流的连续性方程。该理论把车流密度的疏密变化比拟成水波的 起伏而抽象成车流波。 起伏而抽象成车流波。当车流因道路或交通状况的改变而引起密度的 改变时,在车流中产生车流波的传播。该理论通过分析车流波的传播 改变时,在车流中产生车流波的传播。该理论通过分析车流波的传播 速度来得到流量、速度、密度三者之间的关系。 速度来得到流量、速度、密度三者之间的关系。 来得到流量
二、 车流中的波
流量密度曲线上的车流波分析
Q B
A C 0 Kj K
二、 车流中的波
车辆运行时间-空间轨迹图 车辆运行时间 空间轨迹图
X
Ⅲ G C Ⅱ D B E 1 2 3 4 F Ⅰ 5 6 t A
内容提要: 内容提要: 车流连续性方程 车流波 车流波的应用
一、车流连续性方程
q
k
q+dq
k -dk


由质量守恒定律可知:流入量-流出量 数量上的变化 由质量守恒定律可知:流入量-流出量=数量上的变化 (dk/ dt)+( dq / dx)=0 上述的守恒等式表明: 上述的守恒等式表明: 当流量随距离降低时,密度则随着时间而增大。 当流量随距车流中的波
波速公式
Vw V1 K1 A K2 X S B V2
波速公式:
VW=(q1-q2)/(K1-K2).
二、 车流中的波
集结波与疏散波 由低密度状态向高密度状态转变时所形成的车流波叫集结波; 由低密度状态向高密度状态转变时所形成的车流波叫集结波; 由高密度状态向低密度状态转变时所形成的车流波叫疏散波。 由高密度状态向低密度状态转变时所形成的车流波叫疏散波。 前进波与后退波 当车流波的波速> 时 我们称为前进波; 当车流波的波速>0时,我们称为前进波; 当车流波的波速< 时 我们称为后退波。 当车流波的波速<0时,我们称为后退波。

交通流理论-流体理论

交通流理论-流体理论

(5 - 8 )
在流量—密度相关曲线上, 在流量—密度相关曲线上,集 散波的波速就是割线的斜率、微弱波 散波的波速就是割线的斜率、 流量和密度非常接近) (流量和密度非常接近)的波速就是 切线的斜率。如图所示, 切线的斜率。如图所示,当车流从低 密度低流量的A 密度低流量的A状态转变的高密度高 流量的B状态时, 流量的B状态时,集散波的波速是正 的,即波沿道路前进。当车流从低流 即波沿道路前进。 量高密度的C 量高密度的C状态转变到高流量而密 度较低的B状态时, 度较低的B状态时,集散波的波速是 负的,即波沿道路后退。 负的,即波沿道路后退。从A状态到 状态的波是集结波。而从B状态到A B状态的波是集结波。而从B状态到A 状态的波是消散波,两者都是前进波。 状态的波是消散波,两者都是前进波。 状态到C状态的波是集结波, 从B状态到C状态的波是集结波,从C 状态到B状态的波为消散波, 状态到B状态的波为消散波,两者都 是后退波。 是后退波。
(5-3)
q = ku
∂k ∂ ( ku ) + = 0 ∂t ∂x
(5-4)
上式表明,当车流量随距离而降低时, 上式表明,当车流量随距离而降低时,车流密度则随 时间而增大。 时间而增大。
二、车流波动理论 交通车流和一般的流体一样, 交通车流和一般的流体一样,当道路具有瓶颈形 式路段,车流发生紊乱拥挤现象, 式路段,车流发生紊乱拥挤现象,会产生一种与车流 方向相反的波,好像声波碰到障碍物时的反射一样, 方向相反的波,好像声波碰到障碍物时的反射一样, 阻止车流前进,降低车速。如图5 阻止车流前进,降低车速。如图5-1。
第五节
交通流的流体力学模拟理论
2、车流连续性方程的建立 假设车辆顺次通过断面I II的时间间隔为 的时间间隔为Δ 假设车辆顺次通过断面I和II的时间间隔为Δt,两断 面的间距为Δ 面的间距为Δx。

5第五章 交通流理论

5第五章  交通流理论

损失制:顾客到达时,若所有服务台均被占,该
顾客就自动消失,永不再来。
等待制:顾客到达时,若所有服务台均被占,他
们就排成队伍,等待服务。服务次序有先到先服务
(FIFO)、先到后服务(LIFO)和优先权服务(SIRO)等多
种规则。
混合制:顾客到达时,若队伍长小于L,就排入
队伍;若队伍长等于L,顾客就离去,永不再来。
解:这里t 理解为车辆数的空间间隔,λ为车 辆平均分布率,m 为计数空间间隔内的平均 车辆数。 由λ=60/10 t=1 ,因此m =λt=6(辆) 这里m即为计数空间间隔内的平均车辆数。
P( 0 ) P( 2 ) P( 4 ) P( 6 ) m e e 0.0025 P(1) P( 0 ) 0.0149 1 m m P(1) 0.0446 P( 3 ) P( 2 ) 0.0892 2 3 m m P( 3 ) 0.1338 P( 5 ) P( 4 ) 0.1606 4 5 m P( 6 ) 0.1606 6
(1)一个周期内到达车辆不超过10辆的概率;
(2)求到达车辆不致两次排队的周期最大百分率。
2、二项分布
车辆比较拥挤、自由行驶机会不多的车流
基本公式
P k C p 1 p
n k k
n k
k 0,1,2,
式中: Pk—在计数间隔t内到达k辆车的概率; n—每个计数间隔持续的时间,正整数;
距分布来表述,这种分布属于连续型分布。
1、负指数分布
交通流到达服从泊松分布,则交通流到达的
车头时距服从负指数分布,概率分布密度函数为
dP t F t e dt
适用条件:车流密度不大,车辆随机到达,且 车流为连续,当流量小于500veh/h/车道时,用负指 数分布描述车头时距,通常是符合实际情况的。

[工学]交通流理论

[工学]交通流理论
Fi 为理论上观测数值出现在第i组的频数。
且有:∑fi =N,∑Fi =N
3、确定统计量的临界值χ2a
χ2a值与置信水平α和自由度DF有关,α通常取0.05 。
DF=g-q-1,式中,q为约束数,指原假设中需确定的未知数的个 数,对泊松分布q=1(只有m需确定),对二项分布和负二项分布 q=2(需确定P、n两个参数)。
N1=λ·P(h≥a1)= λe-λa1 主要道路车流中车头时距大于a2的数目:N2= λe-λa2
…… 则,主要道路车流中允许一辆车穿过的车头间隔数目为:N1-N2
主要道路车流中允许二辆车穿过的车头间隔数目为:N2-N3 主要道路车流中允许三辆车穿过的车头间隔数目为:N3N4
……
15
∴到达率为λ的车流允许穿越的车辆数总和为: Q次=1(N1-N2)+2(N2-N3)+3(N3-N4)+… =N1+N2+N3+N4+…=λ[e-λa1 + e-λa2 + e-λa3 +…] =λ[e-λa + e-λ(a+a0) + e-λ(a+2a0) +…]
P(h≥t) =e-λ(t-τ) t≥τ 其概率密度函数为: λe-λ(t-τ) t≥τ
P(t) =
0
t<τ
1
1
移位负指数分布的均值M= +τ ,方差D= 2
用样本的均值(平均车头时距)m和方差S2代替M、D,即可求
得λ和τ。
17
2、适用条件 用于描述不能超车的单列车流和车流量低的车流的车头时距分布。 3、移位负指数分布的局限性
2
第一节 离散型概率统计模型
我们在观测交通量或车辆的车头时距时,会发现在固定的计 数时间间隔内,每个间隔内查到的车辆数是变化的,所观测到 的连续车头时距也是不同的,这说明车辆的到达是有一定随即 性的,为了描述这种随机性而采用的概率统计方法可分为两种: 离散型和连续型。

4-4 交通流理论-流体理论

4-4 交通流理论-流体理论

车辆运行时间-空间轨迹图
14/27
又:
x B w1 (t A t s ) 2 w2 t s
解得:
ts 2 W1t A 2 2.5 0.167 0.186h W1 W2 2.5 (6)
所以:
t j t A ts 0.353h
车辆运行时间-空间轨迹图
集结波波速:
1950 3880 w2 7.283( Km / h) 33 298
22/27
根据时间-空间轨迹图可获得如下方程组:
t R (t E t R ) 1.69 t R (W1 ) (t E t R )V1 x R x F
将 W1 1.495, V1 50带入方程组,解得: t R 1.641小时,t E t R 0.049小时, x R x F t R (W1 ) 1.641 1.495 2.453Km
20/27
车辆运行时间-空间轨迹图
21/27
这是一后退波,表示居住区路段入口处向上游形成一列密 度为298 辆/Km的拥挤车流队列 。图中tF-tH=tE-t0=1.69,则 tE=1.69小时,OF为W1的轨迹。在F处高峰流消失,出现流量为 1950辆/小时,速度为59Km/h的低峰流。
1950 K3 33辆 / km 59
第四章 交通流理论
第五节 流体力学理论
1/27
一、引言
1、流体动力学理论建立 1955年,英国学者莱脱希尔和惠特汉将交通流比拟为一种流 体,对一条很长的公路隧道,研究了在车流密度高的情况下的 交通流规律,提出了流体动力学模拟理论。 该理论运用流体动力学的基本原理,模拟流体的连续性方 程,建立车流的连续性方程。把车流密度的变化,比拟成水波 的起伏而抽象为车流波。当车流因道路或交通状况的改变而引 起密度的改变时,在车流中产生车流波的传播,通过分析车流 波的传播速度,以寻求车流流量和密度、速度之间的关系,并 描述车流的拥挤—消散过程。因此,该理论又可称为车流波动 理论。

交通工程学 第4章 交通流理论

交通工程学 第4章 交通流理论

k
j 1
g
j
fj
k
j 1
g
j
fj
fj
N
式中:g——观测数据分组数; fj——计算间隔t内到达kj辆车(人)这一事件发生的次(频)数; kj——计数间隔t内的到达数或各组的中值; N——观测的总计间隔数。
(2)递推公式
P(0) e m P(k 1) P(k ) k 1
(3)应用条件
• 在第一个环节上,重点研究设计什么样的模型才能对所 关心的交通流现象有一个很好的描述,此环节的关键是 对系统的识别,也即对所研究对象的充分认识。这种认 识越深刻,所建立的模型就越符合实际; • 在第二个环节上,重点研究如何确定模型中的参数使模 型得以具体应用,参数的确定是一项非常具体、细致的 工作,其好坏直接决定了模型的应用效果。优秀的交通 流模型应该只包含若干个有现实的变量和参数,而且它 们是容易测量的。 • 此外,一个好的模型还应在理论上前后一致,便于进行 数值模拟且能做出新的预测,简单而言,优秀的交通流 模型必须有鲁棒性、现实性、一致性和简单性。 • 无论是模型结构的建立还是模型参数的标定,简单和适 用是第一原则 ,但随着计算手段的改善和交通工程技 术人员素质的提高,复杂交通流模型推广和应用的也日 益广泛了。
§4-2 概率统计模型
本节内容
• • • • 离散型分布特征、分布函数 排队论模型的基本概念 M/M/N与N个M/M/1的指标计算与比较 流体模拟理论及实例分析
问题的提出
一个实际问题及其解决方法的思路分析
1.某随机车流,求30秒内平均到达的车辆数(均值)、方差(参考p74 4-8 4-10 ) 2.假定该车流服从泊松分布,求没有车到达的概率、到达四辆车的概率、到达 大于四辆车的概率分别是多少 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
车流波动理论。
交通工程电子教程
流体流与交通流的比较
第八章 交通流理论
物理意 义
离散元 素
运动方 向
连续体 形态
变量
流体特性
交通流特 物理意


流体特 性
交通流 特性
流体分子 一向性
车辆 单向
变量
流速v 车速v 压力P 流量Q
可压缩或 不可压缩
流体
不可压缩 交通流
动量
Mv
Kv
质量(密 度)m
密度K
状态方 程
• 当Q2<Q1 、K2<K1时,产生一个消散波,
w为正值,消散波在波动产生的那一点,沿
着与车流相同的方向,以相对路面为w的速
度移动。Q
(K1,Q1)
(K2,Q2)
K
• 当Q2>Q1 、K2>K1时,产生一个集结波,
w为正值,集结波在波动产生的那一点,沿
着与车流相同的方向,以相对路面为w的速
度移动。Q
dk dq 0 dt dx
车流连续 性方程
交通工程电子教程
第八章 交通流理论
车流波动理论
集结波 车流波由低密度状态向高密度状态转变的界面 移动,车流在交叉口遇红灯,车流通过瓶颈路段、桥梁 等都会产生集结波。
疏散波 车流波由高密度状态向低密度状态转变的界面 移动,交叉路口进口引道上红灯期间的排队车辆绿灯时 开始驶离,车流从瓶颈路段驶出等都会产生疏散波。
车流的波动:车流中两种不同密度部分的分界面经过一 辆辆 车向车队后部传播的现象。
波速:车流波动沿道路移动的速度。
交通工程电子教程
虚线代表车流密度变 化的分界线,虚线AB是 低密度状态向高密度状态 转变的分界,它体现的车 流波为集结波;而虚线 AC是高密度状态向低密 度状态转变的分界,它体 现的车流波为疏散波。虚 线的斜率就是波速。
交通工程电子教程
第八章 交通流理论
1955年,英国学者Lighthill和Whitham将交通流比拟为流 体流,对一条很长的公路隧道,研究了在车流密度高的情况 下的交通流规律,提出了流体动力学模拟理论。
该理论运用流体力学的基本原理,模拟流体的连续性方 程来建立车流的连续性方程。把车流密度的疏密变化比拟成 水波的起伏而抽象为车流波。当车流因道路或交通状况的改 变而引起密度的改变时,在车流中产生车流波的传播,通过 分析波的传播速度,以寻求车流流量和密度、速度之间的关 系,并描述车流的拥挤一消散边程。因此,该理论又可称为
2)整个过程的阻塞时间。
解:1)桥前高峰时车流量为4200辆/h,与通行能力的比值(V/C) 约为0.72,交通流能够保持畅通行驶。因此桥前来车的交通流密度 k1为:
k1

q1 v1

4200 80
53veh / km
交通工程电子教程
第八章 交通流理论
在过渡段只能通过1940X2=3880辆/h,过渡段的交通密度k2为:
交通工程电子教程
第八章 交通流理论
2)计算阻塞时间 阻塞时间应为排队形成时间与排队消散时间之和。 排队消散时间t:已知高峰后的车流量为q3=1956辆/h<3880辆/h, 表明通行能力已有富裕,排队开始消散. 排队车辆数为: (q1- q2)x1.69=(4200-3880)x1.69=541辆 疏散车辆数为: q2- q3=3880 - 1956=1924辆/h
P=cmT
Q=Kv
交通工程电子教程
第八章 交通流理论
一、车流连续性方程的建立
假设车流依次通过断面Ⅰ和断面Ⅱ的时间间隔为dt,两 断面的间距为dx。车流在断面Ⅰ的流入量为q,密度为k; 车流在断面Ⅱ的流出量为(q+dq),密度为(k-dk)。
根据质量守恒定律: 流入量-流出量=dx内车辆数的变化
即: q q dqdt k k dkdx
交通工程电子教程
第八章 交通流理论
例1:车流在一条6车道的公路上畅通行驶,其速度V为80km/h。路上 有4车道的桥,每车道的通行能力为1940辆/h,高峰时车流量为4200 辆/h(单向)。在过渡段的车速降至22km/h,这样持续了1.69h,然 后车流量减到1956辆/h(单向)。
试估计:1)1.69h内桥前的车辆平均排队长度;
度移动。Q
(K2,Q2)
(K1,Q1)
K
• 当Q2=Q1 、K2>K1时,产生一个集结波, w=0,集结波在波动产生的那一点原地集结。
Q (K1,Q1)
(K2,Q2)
K
• 当Q2=Q1 、K2<K1时,产生一个消散波, w=0,消散波在波动产生的那一点原地消散。
Q (K2,Q2)
(K1,Q1)
K
第八章 交通流理论
图1 车队运行状态变化图
交通工程电子教程
第八章 交通流理论
波速公式的推导:
假设一分界线S将交通流分割为A、B两段。A段的车 流速度为v1,密度为k1; B段的车流速度为v2,密度为k2; 分界线S的移动速度为W,如图2所示。
在时间t内横穿S分界线 的车辆数N为:
N k1v1 W t k2v2 W t
(K2,Q2)
(K1,Q1)
K
• 当Q2<Q1 、K2>K1时,产生一个集结波,
w为负值,集结波在波动产生的那一点,沿
着与车流相反的方向,以相对路面为w的速
度移动。Q
(K1,Q1)
(K2,Q2)
K
• 当Q2>Q1 、K2<K1时,产生一个消散波,
w为负值,集结波在波动产生的那一点,沿
着与车流相反的方向,以相对路面为w的速
SW
V1,k1
V2,k2
x
A
B
图2 两种密度的车流运行状况
交通工程电子教程
化简得:
W v1k1 v2k2 k1 k2
根据宏观交通流模型:
Q kv
得波速公式:
W Q1 Q2 k1 k2
第八章 交通流理论
SW
V1,k1
V2,k2
x
图2 两种密度的车流运行状况

二、车流波动状态讨论
k2

q2 v2

3880 22
177 veh / km
w q1 q2 4200 3880 2.58km / h k1 k2 53 177
表明此处为排队反向波,波速为2.58km/h,因距离为速度与时 间的乘积,整个过程中排队长度均匀变化,故平均排队长度为:
L 0 1.69 2.581.69 2.18km 2
则排队消散时间为:
t q1 q2 1.69 541 0.28h
q2 q3
1924
阻塞时间为:
相关文档
最新文档