(完整版)《实数》复习课教案

合集下载

初中实数复习课教案

初中实数复习课教案

初中实数复习课教案1. 理解实数的意义,掌握实数的分类,了解实数与数轴的关系。

2. 掌握有理数、无理数的概念,理解有理数与无理数的区别。

3. 理解相反数、绝对值的概念,掌握相反数和绝对值的性质。

4. 掌握实数的四则运算,包括加、减、乘、除、乘方及开方运算。

5. 能运用实数的概念和性质解决实际问题。

二、教学重难点1. 实数的分类和实数与数轴的关系。

2. 相反数和绝对值的性质。

3. 实数的四则运算。

三、教学方法采用讲解、示范、练习、讨论、小组合作等教学方法,引导学生通过自主学习、合作交流,掌握实数的知识和技能。

四、教学过程1. 导入新课通过数轴引入实数的概念,引导学生回顾数轴上的点与实数的关系,为新课的学习打下基础。

2. 知识讲解(1)实数的分类讲解实数的分类,包括有理数和无理数。

通过实例让学生了解有理数和无理数的特点,引导学生掌握有理数与无理数的区别。

(2)实数与数轴讲解实数与数轴的关系,引导学生理解每一个实数都在数轴上有一个对应的点,反之亦然。

(3)相反数和绝对值讲解相反数和绝对值的概念,引导学生掌握相反数和绝对值的性质。

3. 课堂练习布置一些有关实数的分类、实数与数轴、相反数和绝对值等方面的练习题,让学生在课堂上完成,及时巩固所学知识。

4. 小组合作组织学生进行小组合作,探讨实数的四则运算,引导学生掌握实数的运算规律。

5. 课堂小结对本节课的内容进行课堂小结,帮助学生梳理实数的知识和技能。

五、课后作业布置一些有关实数的练习题,让学生课后巩固所学知识,提高解题能力。

六、教学反思在课后对教学效果进行反思,针对学生的掌握情况,调整教学策略,为下一步的教学做好准备。

通过以上教学设计,希望能帮助学生全面掌握实数的知识和技能,提高他们的数学素养。

实数复习教案-北峰中学-张建栋

实数复习教案-北峰中学-张建栋

给出实数分类 的示意图,让学生 通过具体的实例来 体会有理数和无理 数的定义后,请学 生自己找找无理 数,让学生在寻找 的过程中,体会无 理数的基本特征.
第 2 页,共 5 页
牛刀二试 填空:将下列各数分别填入下列的集合括号中
应该让学生 自己小结得出结 论:判断一个数是 有理数还是无理 数,并作出归纳总 结.
另一方面,每个实数都可以用数轴上的一个点来 表示;反过来,数轴上的每一个点都表示一个实数.
即实数和数轴上点是一一对应的.
第 3 页,共 5 页
牛刀三试 填一填
(1) 5 的相反数是_____,绝对值是_____;没有倒
数的实数是______;
(2) 3 2 的相反数是_______;绝对值是_________
开平方:求一个数的平方根的运算,叫做开平方。 开立方:求一个数的立方根的运算,叫做开立方。
2、算术平方根、平方根、立方根的比较:
表示方法
a 的取值
正数
性 质
0
负数
开方
运算得本身
算术平方根
a
a ≥0
平方根
±a
a ≥0
立方根
3a
a 是任何数
正数(一个) 互为相反数(两个) 正数(一个)
0
0
0
没有
没有
负数(一个)
立方根
铺垫.
2、基本运算:开平方、开立方、绝对值
3、基本运用:求算术平方根、求平方根、求立
知识回顾
方根、求绝对值、解二次方程、解三次方程、解绝对 值方程、比较大小、化简、估算、应用题(面积、体
积)
三、知识点的分解: 1、平方根与立方根 平方根:一般地,如果一个数的平方等于 a,这 个数叫做 a 的平方根(也叫二次方根)。

实数(单元复习)标准教案

实数(单元复习)标准教案

实数(单元复习)标准教案一、教学目标:1. 理解实数的定义及分类,掌握有理数和无理数的特点。

2. 掌握实数的运算规则,包括加、减、乘、除、乘方和开方等。

3. 能够运用实数解决实际问题,提高运用数学知识解决问题的能力。

二、教学内容:1. 实数的定义及分类2. 有理数和无理数的特点3. 实数的运算规则4. 实数在实际问题中的应用三、教学重点与难点:1. 教学重点:实数的定义及分类,实数的运算规则,实数在实际问题中的应用。

2. 教学难点:实数的运算规则,特别是乘方和开方运算。

四、教学方法:1. 采用讲授法,讲解实数的定义、分类和运算规则。

2. 运用案例分析法,分析实数在实际问题中的应用。

3. 组织学生进行小组讨论,培养学生的合作意识。

4. 利用信息技术手段,如PPT、网络资源等,辅助教学。

五、教学过程:1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。

2. 讲解实数的运算规则,通过例题展示运算过程,让学生熟练掌握。

3. 开展小组讨论:让学生运用实数解决实际问题,分享解题心得。

4. 总结课堂内容:回顾本节课所学,强调实数的重要性。

5. 布置作业:设计适量作业,巩固课堂所学。

6. 课后反思:根据学生作业完成情况,总结教学效果,调整教学策略。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业评价:检查学生作业的完成质量,评估学生对实数运算规则的掌握程度。

3. 测试评价:组织单元测试,评估学生对实数知识的整体掌握情况。

七、教学资源:1. 教材:实数相关章节教材,用于引导学生学习。

2. PPT:制作精美PPT,辅助讲解实数概念和运算规则。

3. 网络资源:收集相关实数应用案例,供学生课后拓展学习。

4. 练习题库:准备各类实数练习题,巩固学生所学知识。

八、教学进度安排:1. 第1-2课时:讲解实数的定义及分类。

2. 第3-4课时:讲解实数的运算规则。

实数复习教案

实数复习教案

实数复习教案教案标题:实数复习教案教学目标:1. 复习实数的基本概念和性质;2. 强化学生对实数运算规则的理解和应用能力;3. 提高学生解决实际问题时运用实数的能力。

教学内容:1. 实数的基本概念回顾:a. 整数、有理数和无理数的定义;b. 实数的分类和表示方法;c. 实数在数轴上的位置表示。

2. 实数的性质复习:a. 实数的比较和大小关系;b. 实数的加法、减法、乘法和除法规则;c. 实数的绝对值和相反数的性质;d. 实数的乘方和开方运算。

3. 实数运算的应用:a. 实际问题的建模和解决方法;b. 利用实数进行计算和推理;c. 实数在几何问题中的应用。

教学步骤:Step 1: 概念回顾和讲解(约10分钟)a. 复习整数、有理数和无理数的定义;b. 引导学生回顾实数的分类和表示方法;c. 通过示例,帮助学生理解实数在数轴上的位置表示。

Step 2: 性质复习和讲解(约15分钟)a. 复习实数的比较和大小关系,引导学生掌握比较运算的规则;b. 强化实数的加法、减法、乘法和除法规则,通过练习题提高学生的运算能力;c. 复习实数的绝对值和相反数的性质,帮助学生理解和应用;d. 复习实数的乘方和开方运算,解释运算规则和性质。

Step 3: 实数运算的应用(约20分钟)a. 引导学生分析实际问题,建立数学模型;b. 通过例题和练习题,让学生应用实数进行计算和推理;c. 引导学生将实数运用于几何问题,加深对实数在几何中的理解。

Step 4: 练习与巩固(约15分钟)a. 给学生一些练习题,巩固所学的实数知识和运算规则;b. 鼓励学生解答问题时进行思考和讨论;c. 对学生的答案进行讲解和指导。

Step 5: 总结与反思(约5分钟)a. 总结本节课的重点内容和要点;b. 鼓励学生提出问题和疑惑;c. 引导学生思考如何将实数知识应用到实际生活中。

教学资源:1. 实数的定义和性质的讲解材料;2. 数轴和实数的图示工具;3. 实际问题的应用练习题。

《实数》复习课

《实数》复习课
2
多一份睿智 少一份嬉戏 展一份风采
第 2 页 共 2 页
审核人:
复核人:
C. 4 个 D.±5 D. 6 3 D. 3 a ) . D.5 个
A.2 个 B .3 个 2.25 的算术平方根是( ) . A. 5 B.5 C.-5 3. 6 3 的相反数是( ) .
1 16
⑵ (81) 2 2 3 83 解:原式=
解:原式=
A. 6 3 B. 6 3 C. 6 3 4.如果 a 是实数,则下列各式中一定有意义的是( ) . A. a 2008 B. ( a ) 2 C. b D. 2a b C. a a
仪陇县大罗乡小学校
初中七年级(下)数学
导学案
制作人:吴春伶
组别:初中数学组
制作时间:2014-3-1
课题: 《实数》复习课(1) 第一课时 平方根、立方根、实数 学习目标: 1.归纳和整理本章知识点,形成系统知识 2.强化对平方根、算术平方根、立方根、实数等相关概念的理解 3.能够进行简单的实数相关运算 学习重点: 1、强化对本章所有概念的理解 2、能够熟练地进行相关的实数运算 学习难点:实数大小的比较 一、复习内容 1.平方根: _; 平方根的性质:①________________ ② ; ③ ; 平方根与算术平方根的关系: 2.算术平方根的定义:___________________________________________________________________。 a 的双重非负性的理解: a ≥0 (a≥0) 3.立方根的定义:__________________________________________________________________。 ___; 立方根的性质:①___________________ __ ______________________ ② ; __________; ③__________ 4.无理数:______ _____________________; 实数:_____________________________________________. 实数性质:_____________与数轴上的点是一一对应的,有理数的运算法则、运算律等在实数范围内同样适用。 二、专题复习 【专题一:平方根与算术平方根】 错误!未指定书签。 .(1)16 的平方根是 ,算术平方根是____________________. (2) 16 的平方根是 ,算术平方根是____________________. 2.下列说法正确的是( ) A.1 的平方根是 1 B.1 是 1 的平方根 C. (2) 2 的平方根是 2 D.0 没有算术平方根 3.化简: (2)2

人教版七年级数学下册复习课优秀教学案例:6.3实数

人教版七年级数学下册复习课优秀教学案例:6.3实数
(三)小组合作
我鼓励学生进行小组合作,共同探讨和解决问题。在教学过程中,我设计了多个小组讨论的活动,让学生在小组内交流自己的想法和理解,共同探讨实数的分类和实数与数轴的关系。
例如,在讲解实数的分类时,我让学生在小组内讨论并总结实数的分类,每个小组成员都能发表自己的观点,共同得出实数的分类结果。通过小组合作,学生能够互相学习、互相启发,提高他们的合作能力和团队精神。
在教学过程中,我采用了“问题驱动”的教学方法,通过设置一系列具有启发性的问题,引导学生主动思考、探究和交流。同时,我还运用了数形结合的方法,让学生直观地理解实数与数轴的关系。
本节课结束后,学生对实数的认识得到了加深,他们在实数的分类、实数与数轴的关系等方面的理解更加清晰。此外,通过本节课的学习,学生的数学思维能力得到了锻炼,他们能更好地运用实数解决实际问题。总体来说,本节课达到了预期的教学目标,取得了较好的教学效果。
然后,我组织学生进行小组讨论,让他们共同探讨和解决问题。我提出了与实数相关的问题,引导学生进行思考和交流,培养他们的合作能力和团队精神。
在总结归纳环节,我将学生的小组讨论结果进行总结和归纳,突出实数的重要性和应用。我通过总结归纳,帮助学生形成系统的知识结构,提高他们的理解和记忆能力。
最后,我布置作业小结,让学生在课后进行自主学习和复习。我设计了相关的练习题和思考题,使学生能够巩固所学知识,提高他们的实际应用能力。
在课程开始之前,我通过调查了解到学生对实数的认识存在一定的模糊地带,特别是在实数的分类、实数与数轴的关系等方面。因此,我决定以这些问题为切入点,引导学生进行自主探究,从而提高他们的数学素养。
针对这一章节的内容,我设计了以下教学目标:一是使学生掌握实数的分类,理解有理数和无理数的概念;二是让学生了解实数与数轴的关系,能正确地在数轴上表示实数;三是培养学生运用实数解决问题的能力,提高他们的数学思维品质。

《实数》复习课教案

《实数》复习课教案

《实数》期末复习教案二中苏元实验学校 陈颍【教学分析】《实数》一章概念较多,且比较抽象,主要是学生对于无理数的认知还缺乏实际经验的积累,算术平方根和平方根概念混淆。

本节为复习课,学生有一定的知识储备,但是预计因理解不到位容易出错,所以这节课定位在:帮助学生构筑知识体系,通过学生自主学习和合作学习暴露学习中的知识性问题,加强理解,归纳典型问题的方法,领会数学思想在解决问题中的作用。

【复习目标】1. 进一步巩固算术平方根,平方根,立方根和实数的的相关概念及性质2. 熟练用根号表示并求数的平方根,立方根3. 能进行实数的简单四则运算,对实数的大小进行比较4. 掌握估算的方法,加强估算能力的培养5. 领会分类思想、类比迁移、数形结合等数学思想方法的运用【教学重点】平方根、算术平方根、立方根及实数的概念与性质,以及实数的运算,大小比较【教学难点】平方根和实数的概念,对符号的认识【教学准备】学案【教学过程】环节一:引导回顾,构筑知识框架师:在《实数》这一章,我们认识了哪些关于数的新知识?学生回忆,师生共同构筑知识线:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ ⎩⎨⎧无理数有理数实数 (设计意图:本节概念较多,先建立知识框架,后面以题带点覆盖知识点)环节二:强化基础,巩固拓展,完善知识框架题组(一):基本概念过关先让学生独立思考完成,老师巡视发现问题,然后学生小组讨论交流,找出易错点,消化部分呈现问题,接着先请每个小组派代表展示错点,归纳总结易错点,师生一起归纳和完善知识体系。

1. 16的算术平方根是______________.2. 2)9(-的平方根是x , 64的立方根是y ,则y x +=________.3. 式子1-x 在实数范围内有意义,则x 的取值范围是________.4. 下列计算中:①2)7(-=-7;②2)2(2=-;③196=±14;④39-=-3;⑤25425=--;⑥2581-=59-;⑦)21)21(33±=,⑧5)5(2±=,正确的是 .(填序号即可) 5. 已知一个正数的平方根分别是13+a 和11+a ,则a 的值是_______.6. 下列实数:4-,3,113,2π,•7.1,38-,0.3737737773…(相邻两个3之间的7的个数逐次加1),其中属于无理数的是_____________________________________________________.7. 数轴上的点与______一一对应。

人教版七年级数学下册第六章《实数》单元复习教案设计

人教版七年级数学下册第六章《实数》单元复习教案设计

⼈教版七年级数学下册第六章《实数》单元复习教案设计⼈教版七年级下册《实数》单元复习教案教学⽬标:【知识与技能】掌握本章基本概念与运算,能⽤本章知识解决实际问题.【过程与⽅法】梳理本章知识点,挖掘知识点间的联系,并应⽤于实际解题中.【情感态度】领悟分类讨论思想,学会类⽐学习的⽅法.【教学重点】本章知识梳理及掌握基本知识点.【教学难点】应⽤本章知识解决实际与综合问题.【教学⽅法】演⽰法、类⽐法教学过程:⼀、作业回顾,提出错点【教学说明】将前⼀天的作业问题进⾏反馈,及时化解存在的问题。

⼆、课前⼩测,竞争⿎励1.下列说法正确的是()A.1的平⽅根是1B.1是1的算术平⽅根C. 22)(- 的平⽅根是2 D.0没有算术平⽅根 2.下列运算正确的是() A.31-=-31- B. 31-= 31 C. 31-= 31- D.31-=-313.化简:2242)()(-+-= . 4.6-的相反数是,倒数是,绝对值是 .5.绝对值⼩于7的正数有,它们的和是 .【教学说明】1.通过简单知识⼩测,让学⽣体会成就感的同时回顾本章知识.2.利⽤⼩组竞争提⾼学⽣的数学学习兴趣.三、知识要点,整体把握【教学说明】1.通过构建框图,帮助学⽣回忆本节所有基本概念和基本⽅法.2.帮助学⽣找出知识间联系,如平⽅与开平⽅,平⽅根与⽴⽅根,有理数与实数等等.四、类⽐精讲,释疑解惑【教学说明】在例题的分析讲解后,学⽣马上进⾏相关练习训练,通过师⽣互动形式,达到学以致⽤的效果。

例1.在实数21,3-,-3.14,0,π,2.161161161…,316中,⽆理数有() A.1个 B.2个 C.3个 D.4个分析:准确地进⾏实数的分类,能将各个数落相应类别的位置上.类⽐精练1.下列实数中,⽆理数是() A.4 B.2π C.2.161161116 D. 722 例2.若(a+1)2+02-b =,则a ,b 的值为 .【教学说明】本题由两个⾮负数的和为0,得到两个⾮负数为0,求出a,b 的值. 类⽐精练2.若x,y 为实数,且︱x+2︱+2-y =0,则2017)(y x 的值为() A.1 B.-1 C.2 D. -2 例3.计算(1)328163+-)((2)361535-++-【教学说明】实数的有关运算律及运算顺序、相反数、绝对值等与有理数的运算基本相同.有理数的运算律及运算顺序对实数同样适⽤.在进⾏实数混合运算时,⾸先要观察算式的特点,选择合适的⽅法进⾏计算.⼀般按照先乘⽅,后乘除,再加减的顺序计算,另外还要注意符号.类⽐精练3.(1)2325276)()(-+- (2)32274123-++-)(五、随堂练习,巩固要点4.下列等式正确的是()A. 13169±=B.552--=)(C. 327-D.1251253=--5.在10,3,325,-4中,最⼤的⼀个是()A. 10B.3C. 325D.-46.设a 为整数,若a 在数轴上的对应点如图所⽰,则a 的取值范围是()A.2﹤a ﹤3B. 4﹤a ﹤9C. -2﹤a ﹤3D. -4﹤a ﹤97.若1.1001.102=,则±0201.1=8.若10的纯⼩数是a ,则a =9.若a a --332=)(,则a 与3的⼤⼩关系是 .11.如果⼀个数的两个平⽅根分别是 2a-3和a+9,求这个数.【教学说明】结合中考考点,有针对性地进⾏训练,提⾼学⽣解题能⼒.六、拓展训练,能⼒提升14.已知a,b,c 为实数,且它们在数轴上的对应点位置如图所⽰:化简:a c a c b a b 2)(222---++-)(【教学说明】多块知识点相关结合,为中等能⼒的学⽣提升知识运⽤能⼒.七、作业布置:1.布置作业:课本P61 3.8.92.完成优化设计的课时的练习.教学反思:1.本课时教学可应⽤不同形式的练习引导学⽣认识相关的基本概念,强化对基本概念的理解以利于进⾏运算与判断.2.注重分类思想的认识与理解,强调实数计算能⼒的训练,打下坚实的运算能⼒的基础.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《实数》复习课教案
一、教学目标
1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;
2.会用计算器进行数的加、减、乘、除、乘方及开方运算;
3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;
4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.
二、教学重难点
1.平方根和算术平方根的概念、性质,无理数与实数的意义;
2.算术平方根的意义及实数的性质.
三、教学准备
课件、计算器.
四、教学过程
一、知识疏理,形成体系(课前要求学生对本章知识进行总结)
师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.
生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.
开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:
()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算
________ 师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗? 生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立
方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.
生:我们是这样总结的:
1.分类
⎪⎪⎪⎩
⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数0
2.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.
师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示.
二、强化基础,巩固拓展.(也可以由学生提出典型薄弱题型进行讲解) 1.求下列各数的平方根:
(1)972;(2)25;(3)2
52⎪⎭
⎫ ⎝⎛-. 师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根. 生:(1)是求9
25的平方根;
(2)是求5的平方根;
(3)是求25
4的平方根. 由学生独立完成.
2.x 取何值时,下列各式有意义.
(1)x -2; (2)12+x .
师:a 在什么情况下有意义?
生:对于a ,必须满足a ≥0,它才有意义,所以被开方数必须是非负数. (1)2-x ≥0;
(2)x 2+1≥0.
师:如何求出x 的范围呢?
生:我们讨论后,得出如下结论:
(1)x ≤2;
(2)不论x 取什么实数,x 2≥0,x 2+1>0,即x 的取值范围是:x 为全体实数.
3.求下列各数的值:
(1)()23π-;
(2)122+-x x (x ≥1).
师:如何化简2a 呢?
生:我们认为首先应考虑2a 中a 的范围.
(1)当a ≥0时,2a =a ;
(2)当a <0时,2a =-a .
师:求下列各数的值,必须先确定a 的范围.
生:因为3-π<0,所以()23π-=-(3-π)=π-3.
师:如何化简122+-x x 呢?
生:将122+-x x 化为2a 的形式,
即()22112-=+-x x x
再考虑x -1的范围,由学生独立完成.
4.已知:|x -2|+3-y =0,求:x +y 的值.
师:认真审题,考虑一下所给的这些数有什么特点.
生:|x -2|和3-y 都是非负数.
师:两个非负数的和可能是0吗?
生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0. 由学生独立完成.
师:哪些数为非负数呢?
生:实数a 的绝对值,表示为|a |,|a |是非负数;实数a 的平方,表示为a 2,a 2是非负数;非负实数a 的算术平方根表示为a ,a 是非负数.
师:非负数有什么特点?
生:(1)几个非负数的和仍为非负数;
(2)若几个非负数的和为0,则每一个非负数都必须为0.
师:绝对值、平方数、算术平方根都是非负数,解题时要注意这一隐含条件,不可把0漏掉.
5.计算:327
25-+(精确到0.01). 师:无理数是开方开不尽的数,那么如何计算呢?
生:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.
因为精确到0.01,所以在计算过程中可用2.236代替、5,1.732代替3. 由学生独立完成.
6.在实数2-、13.0 、3π、7
1、0.80108中,无理数的个数为_______个. 师:如何判断一个数是无理数?
生:一个无理数不能表示成分数形式,或者说成数位无限,且不循环. 7.|x |<2π,x 为整数,求x
师:|x |=2π,x 的值是多少?
生:当x =2π,x =-2π时,|x |=2π,
所以|x |<2π时,x =±2π.
师:|x |=2π的含义?
生:实数x在数轴上所对应点到原点的距离等于2π.
师:|x|<2π的含义呢?
生:实数x在数轴上所对应点到原点的距离小于2π.
师:结合数轴,你能说出满足|x|<2π这一条件的点在数轴的什么位置上吗?
生:

在如图所示的范围内,因为x为整数,
所以x=6、5、4、3、2、1、0、-1、-2、-3、-4、-5、-6.
师:非常好!
三、查缺补漏,归纳提升.
1.通过今天的探究学习,你们有哪些收获?
2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零.此性质在解题时经常会被用到.
3.对于本章的内容你还有那些疑问?
四、作业
1.教科书第19页复习题A组
五、板书设计
第6章实数
1.知识疏理2.巩固训练3.归纳提升
六、教学反思(略)
七、课堂小卷
(1)填一填:
1.16的平方根记作_______,等于________.
16________.
3.31-2
-
3(1)
_______.
5
5.两个无理数的和为有理数,这两个无理数可以是______和_______.
6.若│x 2-则x=_______,y=_______.
7.已知x 的平方根是±8,则x 的立方根是________.
(2)选一选:
8.4的平方根是( )
A.2
B.-2
C.±2
9.下列各式中,无意义的是( )
B. 10.下列各组数中,互为相反数的一组是( )
A.-2与
B.-2
C.-2与-12
D.│-2│与2 11. 下列说法正确的是 ( )
A.1的平方根是1;
B.1的算术平方根是1;
C.-2是2的平方根;
D.-1的平方根是-1
(3)做一做:
12. 求下列各数的平方根:(1)81;(2)
1625
;(3)1.44;(4)214; (5
13. 求下列各式中的x:①x 2=1.21; ②27(x+1)3+64=0.
14. a≥0a 的算术平方根.由此你会求下列各式有意义时x 的取值范围吗?试试看:
(1 (2; (3 (4
15.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b 的平方根.。

相关文档
最新文档