非参数统计方法简介

合集下载

非参数统计方法介绍

非参数统计方法介绍

非参数统计方法介绍非参数统计方法是一种不依赖于总体分布形态的统计方法,它不对总体分布做出任何假设,而是直接利用样本数据进行统计推断。

非参数统计方法的优势在于适用范围广,可以处理各种类型的数据,不受总体分布形态的限制。

本文将介绍非参数统计方法的基本原理和常用的方法。

一、非参数统计方法的基本原理非参数统计方法是基于样本数据进行统计推断的方法,不对总体分布形态做出任何假设。

其基本原理是通过对样本数据的排序、排名或计数等操作,来获得总体的统计特征。

非参数统计方法主要包括秩和检验、分布自由度检验和重抽样方法等。

二、秩和检验秩和检验是一种常用的非参数统计方法,它主要用于比较两个独立样本的差异。

秩和检验的基本思想是将两个样本合并后,对样本数据进行排序,然后根据排序结果计算秩和统计量,再通过对比临界值来判断两个样本是否存在显著差异。

三、分布自由度检验分布自由度检验是一种用于检验总体分布是否符合某种特定分布的非参数统计方法。

它不依赖于总体分布形态的假设,而是通过对样本数据的排序、排名或计数等操作,来获得总体的统计特征。

常见的分布自由度检验方法包括Kolmogorov-Smirnov检验、Anderson-Darling检验和Cramér-von Mises检验等。

四、重抽样方法重抽样方法是一种通过对样本数据进行有放回抽样来获得总体统计特征的非参数统计方法。

重抽样方法的基本思想是通过对样本数据的重复抽样,来模拟总体分布,并通过对模拟样本数据的分析,得到总体的统计特征。

常见的重抽样方法包括自助法、Jackknife法和Bootstrap法等。

五、非参数统计方法的应用领域非参数统计方法广泛应用于各个领域的数据分析中。

在生物医学领域,非参数统计方法常用于比较不同治疗方法的疗效、评估药物的副作用等。

在金融领域,非参数统计方法常用于风险评估、投资组合优化等。

在环境科学领域,非参数统计方法常用于分析环境污染物的浓度分布、评估环境质量等。

非参数统计方法概览

非参数统计方法概览

非参数统计方法概览非参数统计方法是一种不依赖于总体分布形态的统计方法,它不对总体分布做出任何假设,而是通过对样本数据的排序、计数和排名等操作,来进行统计推断和假设检验。

非参数统计方法在实际应用中具有广泛的适用性和灵活性,能够处理各种类型的数据,包括连续型数据、离散型数据和顺序型数据等。

本文将对非参数统计方法进行概览,介绍其基本原理和常用方法。

一、基本原理非参数统计方法的基本原理是通过对样本数据的排序和计算,来推断总体的统计特征。

与参数统计方法相比,非参数统计方法不需要对总体分布形态做出任何假设,因此更加灵活和适用于各种情况。

非参数统计方法主要基于样本的秩次信息,通过比较和计算秩次差异来进行统计推断和假设检验。

二、常用方法1. Wilcoxon符号秩检验Wilcoxon符号秩检验是一种非参数的假设检验方法,用于比较两个相关样本的差异。

它基于样本的秩次信息,通过计算秩次差异的总和来判断两个样本是否存在显著差异。

Wilcoxon符号秩检验适用于小样本和非正态分布的情况。

2. Mann-Whitney U检验Mann-Whitney U检验是一种非参数的假设检验方法,用于比较两个独立样本的差异。

它基于样本的秩次信息,通过计算秩次和来判断两个样本是否存在显著差异。

Mann-Whitney U检验适用于小样本和非正态分布的情况。

3. Kruskal-Wallis单因素方差分析Kruskal-Wallis单因素方差分析是一种非参数的假设检验方法,用于比较多个独立样本的差异。

它基于样本的秩次信息,通过计算秩次和来判断多个样本是否存在显著差异。

Kruskal-Wallis单因素方差分析适用于小样本和非正态分布的情况。

4. Friedman多因素方差分析Friedman多因素方差分析是一种非参数的假设检验方法,用于比较多个相关样本的差异。

它基于样本的秩次信息,通过计算秩次和来判断多个样本是否存在显著差异。

Friedman多因素方差分析适用于小样本和非正态分布的情况。

非参数统计的方法与应用

非参数统计的方法与应用

非参数统计的方法与应用非参数统计是指一类不依赖于任何参数假设的统计方法,特别是不依赖于任何分布假设的统计方法。

相较于参数统计,非参数统计具有更广泛的适用范围和更强的鲁棒性,适用于数据形式和规模不确定的情况。

本文将介绍非参数统计的方法和应用,希望读者可以对此有更深刻的认识。

一、非参数统计的基础非参数统计的基础是经验分布函数、核密度估计和分位数等概念。

经验分布函数是指样本分布函数,它给出了样本观测值小于等于某个值的概率。

核密度估计是将样本的实际观测值拟合为一个概率密度函数,通过选择核函数和带宽大小来控制拟合的平滑程度。

分位数是一种描述样本分布位置的指标,例如中位数、分位数和分位点。

在实际应用中,非参数统计方法可以用于拟合和检验数据的分布、比较两个或多个数据集之间的差异,以及探究变量之间的关系等。

因为它不需要假设特定的分布结构,因此可以在数据形式、规模和质量方面具有更大的灵活性。

二、非参数统计方法的分类根据数据类型和假设类型,非参数统计方法可以划分为不同的类型。

常用的非参数统计方法主要包括:1. 秩和检验:适用于从两个或多个独立样本中检验两个或多个总体的中位数是否相等。

2. Wilcoxon符号秩检验:适用于从两个独立样本中检验两个总体的中位数是否相等。

3. Kruskal-Wallis单因素方差分析:适用于从两个或多个独立样本中比较几个相互独立的总体的中位数是否相等。

4. Mann-Whitney U检验:适用于从两个独立样本中检验两个总体的分布是否相等。

这是一个非参数的等价于t检验的方法。

5. Kolmogorov-Smirnov检验:适用于从两个或多个样本中检验两个总体的分布是否相等。

6. Anderson-Darling检验:适用于从一个样本中检验给定某一个分布类型的数据是否符合该分布。

例如,我们可以使用这个检验来检验数据是否服从正态分布。

7. 卡方检验:适用于检验两个或多个与分类变量相关的样本间比例差异是否存在显著差异。

非参数统计方法与排序分析

非参数统计方法与排序分析

非参数统计方法与排序分析在统计学中,非参数统计方法和排序分析是两种常见的数据分析技术。

非参数统计方法是指不依赖于数据分布假设的一类统计方法,它们主要利用样本数据中的秩次信息进行分析。

而排序分析是一种基于数据排序的方法,用于比较和评估不同样本之间的差异或关联性。

本文将介绍非参数统计方法和排序分析的基本概念、应用领域和步骤。

一、非参数统计方法非参数统计方法是一组方法,对数据的分布形态并不作出具体的假设,不要求数据满足特定的概率分布。

与参数统计方法相比,非参数统计方法更加灵活,适用于更广泛的数据情况。

1.1 秩次统计秩次统计是一种常见的非参数统计方法,它将数据转化为秩次,并利用秩次信息进行推断。

秩次统计的一个常见应用是配对样本的非参数假设检验。

例如,在医学研究中,我们常常需要比较两种治疗方法的疗效。

通过为每个病人记录治疗前后的秩次,可以使用秩次统计方法来评估两种治疗方法之间的差异。

1.2 二项分布检验二项分布检验是一种非参数假设检验方法,用于比较两个二项分布之间的差异。

例如,在市场调研中,我们可以使用二项分布检验来比较两个不同广告策略的点击率。

通过计算置信区间和p值,我们可以判断两种广告策略的效果是否具有统计显著性。

1.3 无参数回归无参数回归是一种在没有具体函数形式假设的情况下进行回归分析的方法。

它主要通过局部加权回归来拟合数据,并预测因变量的取值。

无参数回归在处理非线性关系和异常值时往往更加鲁棒,因此在实际应用中具有重要意义。

二、排序分析排序分析是一种基于数据排序的方法,用于比较和评估不同样本之间的差异或关联性。

2.1 排名相关系数排名相关系数是一种衡量两个变量之间关联性的指标,常用于排序分析。

最常见的排名相关系数是斯皮尔曼相关系数,它基于变量的秩次进行计算,不受数据分布的影响。

排名相关系数的取值范围在-1到1之间,值越接近1或-1表示两个变量之间的相关性越强。

2.2 先验概率排序先验概率排序是一种基于排序的方法,用于根据样本的排序信息进行决策分析。

非参数统计方法简介

非参数统计方法简介

非参数统计方法简介随着数据科学和统计学领域的不断发展,非参数统计方法作为一种灵活且强大的工具被广泛运用在各种领域中。

与参数统计方法相比,非参数统计方法不依赖于总体参数的具体分布,因此在数据分布未知或偏离常规分布时表现得更为优越。

本文将对非参数统计方法进行简要介绍,包括其基本原理、常用方法以及在实际应用中的一些典型场景。

基本原理非参数统计方法是一种基于数据本身特征进行推断的统计分析方法,不对总体参数作出具体的假设。

其核心思想是利用数据的排序、排名等非参数化的特征进行分析,从而得出统计推断结论。

以Wilcoxon秩和检验为例,该检验是一种常用的非参数假设检验方法,适用于样本数据不满足正态分布假设的情况。

它基于样本数据的秩次比较来判断两个总体的位置差异是否显著。

通过对数据进行排序、赋予秩次并计算秩和统计量,可以在不依赖于具体分布假设的情况下进行假设检验。

常用方法除了Wilcoxon秩和检验外,非参数统计方法还包括Mann-Whitney U检验、Kruskal-Wallis检验、Spearman相关性分析等多种常用方法。

这些方法在实际应用中具有广泛的适用性,能够有效应对不同数据类型和分布形态下的统计推断问题。

Mann-Whitney U检验适用于独立两样本的位置差异检验,Kruskal-Wallis检验则扩展至多样本情形。

Spearman相关性分析是一种用于衡量两变量之间非线性相关性的方法,通过秩次的计算来评估两变量的相关性程度。

实际应用非参数统计方法在各行业和领域中都有着重要的应用价值。

在医学领域,由于很多指标的分布并不服从正态分布假设,非参数统计方法成为临床研究中常用的工具之一。

在金融领域,对于涉及风险评估和收益分析的数据,非参数统计方法能够更准确地捕捉数据背后的规律,提供有效的决策支持。

总的来说,非参数统计方法以其灵活性和适用性在数据分析中发挥着重要的作用。

在实际应用中,了解不同非参数方法的原理和适用条件,能够更好地进行数据分析和推断,提高统计分析的准确性和效率。

非参数统计方法及其应用领域

非参数统计方法及其应用领域

非参数统计方法及其应用领域统计学是一门研究收集、整理、分析和解释数据的学科。

在统计学中,参数统计方法和非参数统计方法是两种常用的分析工具。

本文将重点介绍非参数统计方法及其应用领域。

一、非参数统计方法的概念非参数统计方法是指在进行统计推断时,不对总体的概率分布做出任何假设的方法。

与参数统计方法相比,非参数统计方法更加灵活,适用于数据分布未知或非正态分布的情况。

非参数统计方法不依赖于总体的参数,而是基于样本的秩次或分布来进行推断。

二、非参数统计方法的基本原理非参数统计方法的基本原理是通过对数据的秩次或分布进行分析,从而得出总体的统计推断。

常用的非参数统计方法包括秩和检验、秩次相关分析、K-S检验等。

这些方法不依赖于总体的参数,而是根据样本数据的排序或分布情况进行分析。

三、非参数统计方法的应用领域1. 生态学研究生态学研究中常常需要对生物群落的多样性进行评估。

非参数统计方法可以用来比较不同生物群落的物种多样性,例如使用Shannon指数和Simpson指数等进行比较分析。

非参数统计方法还可以用来研究生物群落的相似性和差异性,通过计算样本的秩次或分布来进行推断。

2. 医学研究医学研究中常常需要比较不同治疗方法的疗效。

非参数统计方法可以用来比较两个治疗组之间的差异,例如使用Wilcoxon秩和检验或Mann-Whitney U检验等。

非参数统计方法还可以用来研究药物的剂量反应关系,通过计算样本的秩次或分布来进行推断。

3. 金融风险管理金融风险管理中需要对资产收益率的分布进行建模和分析。

非参数统计方法可以用来拟合资产收益率的分布,例如使用核密度估计方法或分位数回归方法等。

非参数统计方法还可以用来研究资产收益率的尾部风险,通过计算样本的秩次或分布来进行推断。

4. 社会科学研究社会科学研究中常常需要对调查数据进行分析。

非参数统计方法可以用来比较不同群体之间的差异,例如使用Kruskal-Wallis检验或Friedman检验等。

非参数统计方法的介绍

非参数统计方法的介绍

非参数统计方法的介绍统计学是一门研究数据收集、分析和解释的学科,为了更好地理解和解释数据,统计学家们发展了各种各样的统计方法。

其中一类重要的方法就是非参数统计方法。

与参数统计方法相对,非参数统计方法不依赖于对总体分布的假设,更加灵活和广泛适用于各种情况。

一、非参数统计方法的概述非参数统计方法是基于数据的排序和秩次的分析方法,不需要对总体参数进行假设。

它的主要特点是:不依赖于总体的分布形式,适用于任意类型的数据;不需要对总体参数进行估计,不需要检验参数值;能够处理非连续型变量和偏态数据。

二、秩次统计法秩次统计法是非参数统计方法中的一种重要方法,主要用于比较两组数据的差异或相关性检验。

这种方法将原始数据转化成秩次或秩次差来进行统计分析,具有较好的稳健性和非正态分布数据的适应性。

三、Wilcoxon秩和检验Wilcoxon秩和检验是秩次统计法的一种常见应用,常用于比较两个相关样本或配对样本的差异。

它主要通过将配对观测值的差异转化为秩次,来判断两个总体是否存在差异。

四、Mann-Whitney U检验Mann-Whitney U检验是另一种常见的秩次统计方法,主要用于比较两个独立样本的差异。

该方法不依赖于总体分布的假设,适用于非正态分布和偏态数据。

它通过比较两个样本的秩次和来判断两个总体是否存在差异。

五、Kruskal-Wallis检验Kruskal-Wallis检验是一种非参数多样本比较方法,适用于三个以上独立样本的差异性检验。

该方法通过将原始数据转化为秩次和来判断不同样本组之间是否存在显著差异。

六、Friedman检验Friedman检验是非参数的配对多样本差异比较方法,用于比较同一组样本在不同条件下的差异。

该方法是将样本各组的观测值转化为秩次,再计算秩次和进行统计推断。

七、Bootstrap法Bootstrap法是一种利用从原始数据中随机抽样的方差估计方法,适用于样本较小或者未知分布的情况。

它通过有放回的抽样来生成多个样本,从而对样本的分布进行估计,并得出对总体参数的估计值。

非参数统计方法

非参数统计方法

非参数统计方法非参数统计方法是一种统计学中常用的方法,它不依赖于对总体分布的特定假设,而是基于数据自身的性质进行分析。

与参数统计方法相比,非参数统计方法更加灵活,适用范围更广。

本文将介绍非参数统计方法的基本概念、应用领域以及与参数统计方法的比较。

一、基本概念非参数统计方法是一种基于观测数据的统计分析方法,它不对总体的概率分布做出具体的假设。

它的基本思想是从样本数据本身获取统计信息,并利用这些统计信息进行总体参数的推断。

与参数统计方法相比,非参数统计方法更加自由,可以适应更广泛的情景。

二、应用领域非参数统计方法在各个领域中都有广泛的应用。

下面介绍一些常见的应用领域。

1. 生态学研究:非参数统计方法可以用于对生物种群的数量、分布和相互关系进行分析。

例如,可以利用非参数统计方法评估不同环境因素对生物多样性的影响。

2. 医学研究:非参数统计方法在医学研究中也起到了重要的作用。

例如,在临床试验中,可以使用非参数方法对不同治疗方案的效果进行比较。

3. 金融分析:非参数统计方法也常被用于金融行业中。

例如,可以利用非参数方法对股票价格的波动性进行建模,进而进行风险管理和投资决策。

4. 社会科学研究:非参数统计方法也广泛应用于社会科学领域。

例如,在问卷调查中,可以使用非参数方法进行数据的分析和解释。

三、与参数统计方法的比较非参数统计方法相对于参数统计方法有一些优点。

1. 不依赖于分布假设:非参数统计方法不需要事先对总体分布做出特定的假设,更加灵活适用于各种分布类型。

2. 更广泛的适用性:非参数统计方法可以适用于各种数据类型和样本量。

而参数统计方法对数据类型和样本量有一定的要求。

4. 不受异常值的影响:非参数统计方法对异常值不敏感,即使存在异常值,也不会对结果造成较大的影响。

然而,非参数统计方法也存在一些限制。

1. 需要较大的样本量:非参数统计方法通常需要较大的样本量才能获得准确的结果。

2. 计算复杂度高:非参数统计方法的计算复杂度较高,在处理大规模数据时可能会面临一些挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非参数统计方法简介
廖海仁 2011.3.17
提纲
统计的稳健性 参数统计 vs 非参数统计 单总体位置参数的检验
1)中位数的符号检验 2)符号秩和检验
分布的一致性检验: χ2检验 两总体的比较与检验 多总体的比较与检验
统计之都论坛的一个帖子
标题:心理统计求教,方差分析还是T检验呢?
内容: 问题是这样的:对我校4个年级的大学生适应心理进 行分析,每个年级得出50组数据,现在要比较不同年 级之间适应性的差异性,到底要用什么检验,用spss 这样操作呢?小妹在此求教求真理,谢谢各位大哥 了~!!
大样本理论占重要位置
所谓大样本统计方法是指根据统计量的极限性质而得出的统计方法 大样本理论依赖于概率论的极限理论
从数据本身获取信息
具有良好的稳健性
基本概念
秩(Rank):
把样本X1,X2,…,Xn按大小排列为X(1) <= X(2) <=…<= X(n), 若Xi=X (Ri) ,则称Ri为Xi的秩, 全部n个秩构成秩统计量。秩统计量是非参数统计的一个主要工具。
总区间数可选5-10个)
R: chisq.test
chisq.test(x, y = NULL, correct = TRUE, p = rep(1/length(x), length(x)), rescale.p = FALSE, simulate.p.value = FALSE, B = 2000)
Shapiro-Wilk Normality test(正态分布检验)(适合小样本 N<2000) R: shapiro.test(x)
Kolmogorov-Smironov test (K-S分布检验) (适合大样本) ks.test(x, "pnorm", mean = mean(x), sd = sqrt(var(x)))
缺点:(1)X1+X2的中位数与X1,X2的中位数缺乏简单联系,数学上处理复杂且不方便 (2)中位数可能不唯一,对于离散型,定义可能不理想 (3)实际计算的复杂度远大于均值计算的复杂度
样本数据分析的一般步骤
数据探查
R: plot, hist, boxplot
分布的检验
使用QQ图 R:qqnorm, qqline
若性能与总体的正态性有较强的依赖关系者,如F检验,其稳健性较差;而与总 体均值相关的统计方法,如t检验之类,其稳健性相对较好。
(2)对异常数据的稳健性
典型例子:样本均值估计总体均值,受异常数据影响较大,相对中位数与截断均 值更不稳健。 获得对异常数据稳健性的途径:a) 设计有效的方法发现并剔除异常值;b) 设计对 个别异常数据不敏感的统计方法
r x c 列联表
一般,若总体中的个体可按两个属性A与B分类,A有r个等级 A1,A2,…,Ar;B有с个等级B1,B2,…,Bc,从总体中抽取大小为n的样 本设其中有nij个属于等级Ai和Bj,nij称为频数,将r×с个 nij(i=1,2,…,r; j=1,2,…,с)排列为一个r行с列的二维列联表(表2), 简称r ×с表。
两总体独立性的χ2检验
统计量
的渐近分布是自由度为 (r-1)(с-1) 的χ2分布,式中Eij= ni·n·j/n 称为期望频数。 假设: H0(零假设): 对任意的i, j, 事件“一个观测值在行i”与事件”同样 的观测在列j”是独立性。 H1(备择假设): 行与列不独立
R: wilcox.test
假设检验:+1:)/2记)2R11, R12, …, R1m为X的观察值在混合样本中的秩, M =
R: mood.test(x, y, alternative = c("two.sided", "less", "greater"), ...)
Fisher精确检验
χ2检验只允许20%以下的个子的期望频数小于5,如果不满足此条件,则 应该使用Fisher精确检验
基本思想:固定各边缘和的条件下,根据超几何分布,可以计算观测频 数出现任一种特定排列的条件概率。把实际出现的观测频数排列以及比 它呈现更多关联迹象的所有可能排列的条件概率算出来并相加,若所得 结果小于给定的显著水平,则判定所考虑的两个属性存在关联,从而拒 绝H0。
参数统计 vs 非参数统计
参数统计
假设总体分布函数已知(大多数基于正态假设)或只带有一些未 知参数
非参数统计
如果在一个统计问题中,如果其总体分布不能用有限个实数来刻 画,只能对它做一些分布连续、有密度、具有某些矩等一般性的 假定,则称为非参数统计问题。
非参数方法的特点
方法的适用面广而效率可能较低
回答一: 一般与人的行为相关的数据都是偏态的分布,方差分 析和t-test就不适用了吧
统计的稳健性
指统计的一种性质:当真实模型与理论模型有不大的 偏离时,统计方法仍能维持较为良好的性质,至少不 致变得太坏。
实际应用中总体的分布的假定的分布常略有偏离;大 量的观测数据中常存在部分异常数据。
(1)对总体分布的稳健性
R实现:无直接函数,自己借用binom.test(s, n, p=0.5, …)
符号秩和检验
符号检验不足:不考察值的大小,不能检验出偏度非常大的分布(实例 中的值明显偏大于6064,却没有检验出来)。
符号秩和检验(又称Wilcoxon符号秩检验)基本思想:考察 假定总体是连续的,且对其中位数是对称的,则
|xi-M0|
的秩,
W+ = ∑Ri(+) 服从中点为n(n+1)/4的对称分布。
符号秩和检验一般比符号检验更有效(强势)
R: wilcox.test()可用来进行符号秩和检验
wilcox.test(x, y = NULL, alternative = c("two.sided", "less", "greater"), mu = 0, paired = FALSE, exact = NULL, correct = TRUE, conf.int = FALSE, conf.level = 0.95, ...)
《Statistical Methods Based on Rank》E.L. Lehmann 《Order Statistics》 H.A. David
中位数(Median) 均值(Mean)
优点:(1)有时比数学期望更有代表性; (2)受少数异常值的影响很小 (3)理论上总是存在
性质:设X有概率密度函数f(x), 另h(a)=E|X-a|, 当a为X的中位数m时,h(a)达到最小值。
注意:做检验时必须保证两样本中值相等!
两样本尺度参数的Ansari-Bradley检验
检验两样本方差是否相等(相当于F检验)
R: ansari.test(x, y, alternative = c("two.sided", "less", "greater"), exact = NULL, conf.int = FALSE, conf.level = 0.95, ...)
多样本方差相同的检验
R: fligner.test(x, g, ...)
Thanks!
fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE, control = list(), or = 1, alternative = "two.sided", conf.int = TRUE, conf.level = 0.95, simulate.p.value = FALSE, B = 2000)
使用具体的假设检验方法:方差分析、T检验、非参数 方法等
中位数的符号检验
在总体分布为正态分布时,要检验其均值是否为μ,使用t检验: T= (X- μ) / (s/sqrt(n)) ~ t(n-1)。当分布未知时,此方法可能有风险
中位数检验:检验其中位数是否为M0 H0: M=M0 H1: M ≠ M0 (双边假设检验) 符号检验检验统计量: S+ = #{Xi: Xi-M0 > 0, i=1,2,3,…,n} 将其转化为二项分布检验: S+ ~ binom(n, ½)
两样本Wilcoxon秩和检验
在正态总体的假定下,两样本的均值检验通常使用t检验,但t检验 并不稳健
基本思想:将样本X1,X2,…,Xm和Y1,Y2,…,Yn混合起来,并把 N=(m+n)个观测值从小到大排列起来每一个观察在混合排列中都有 自己的秩。计算X与Y样本的秩和Wx与Wy.
假设检验(检验两样本中值是否相等):H0: Mx=My H1: Mx ≠ My
分布的一致性检验:χ2检验
用来检验数据分布是否与假设分布是否一致(拟合优度检验)
H0: X具有分布F H1: X不具有分布F
理论(Pearson定理):若F(x)完全已知,则
K = ∑m(ni- npi)2 / npi ~ χ2(m-1)
其中n= ∑ni, pi是第i个区间的理论概率, m为区间数。 (区间的选择:不宜太大,也不宜太小,每个区间一般至少要有5个数据,
R: wilcox.test
两样本尺度参数的Mood检验
两独立样本方差之比的F检验对于总体非正态或数据有严重污染时不一定 适用。
设两连续总体X与Y独立,样本X1, X2, … ,Xm~F(x-θ1/σ1) Y平1,移Y来2, 使…它, Y们m~相F(等x-)θ2/σ2) , 而且F(0)=1/2, θ1 = θ2 (若不相等,可以通过
多样本位置参数的Kruskal-Wallis秩和检验
基本思想:将k个样本混合起来,算出所有数据在混合样本中的秩, 对每一个样本的观察值的秩求和后得到它们在每组中的平均值Ri。 如果这些值很不一样,就可以怀疑原假设。
相关文档
最新文档