非参数统计

合集下载

七章节非参数统计

七章节非参数统计

检验环节
1.拟定配对样本,分别计算差别正与负旳数目,无差 别则记为0,将它从样本中剔除,并相应地降低样本容 量n,把正负号数目之和视为样本总个数(n) 。
2.
H0: p=0.5 ; H1:p≠0.5
3.观察样本容量,假如n≤25,则作为二项分布处理
假如n>25,则作为正态近似处理。
Z
ˆ P 0.5
计算检验统计量
2 k ( foi fei )2
i 1
f ei
抽样并对样本资料编成频 数分布,形成k个互斥旳类 型组。 (f0)
以“原假设H0为真”导出 一组期望频数(fe)
比较χ2值与临界值 作出检验判断
2
2 (k 1m)
自由度(df)=k-1-m。
其中k为组数。(各组理论频数不得不大于5,如不足5 ,可合并相邻旳组,如需合并,则k为合并后旳组数)
拒绝域 现检验统计量(-)=3 (即3个负号),0.073>0.05 所以,原假设H0:P=0.5在5%明显性水平上不能被 拒绝。也即不能以为职员在观看影片前后旳认识有 明显提升。
例2:随机抽取60名消费者对甲、乙两种品牌旳饮料评 分,甲 、乙得分之差为“+”号者35个,“-”号15 个,“0”号10个 。以明显性水平α=0.05检验两种饮料是否同等受欢迎。 解:H0:P=0.5, H1:P≠0.5
检验环节 将样本数据配对并计算各对正负差值
将差数取绝对值按从小到大顺序排列并编上等级, 即拟定顺序号1、2、3等。对于相等旳值,则取其位 序旳平均数为等级
建立假设:H0:T+= T- ; H1 : T+ ≠T-(双侧) H1 :T+>T-或T+<T-(单侧)
计算检验统计量: 当n>25时 Z T n(n 1) / 4

非参数统计讲义通用课件

非参数统计讲义通用课件

假设检验方法
总结词
假设检验方法用于检验一个关于总体 参数的假设是否成立。
详细描述
假设检验方法包括提出假设、构造检 验统计量、确定临界值和做出决策等 步骤。常见的假设检验方法有t检验、 卡方检验、F检验等,用于判断样本数 据是否支持假设。
关联性分析方法
总结词
关联性分析方法用于研究变量之间的相关性。
02
非参数统计方法
描述性统计方法
总结词
描述性统计方法用于收集、整理、描述数据,并从数据中提取有意义的信息。
详细描述
描述性统计方法包括数据的收集、整理、描述和可视化,例如均值、中位数、 众数、标准差等统计量,以及直方图、箱线图等图形化表示。这些方法可以帮 助我们了解数据的分布、中心趋势和离散程度。
非数统计与机器学习算法的结 合将有助于解决复杂的数据分析 问题。
02
与大数据技术的融 合
非参数统计将借助大数据技术处 理海量数据,挖掘数据背后的规 律和模式。
03
与社会科学研究的 互动
非参数统计方法将为社会科学研 究提供更有效的研究工具和方法 。
决策树分析方法
总结词
决策树分析方法是一种基于树形结构的非参 数统计学习方法。
详细描述
决策树分析方法通过递归地将数据集划分为 更小的子集,构建出一棵决策树。决策树的 每个节点表示一个特征属性上的判断条件, 每个分支代表一个可能的属性值,每个叶子 节点表示一个分类结果。决策树分析可以帮 助我们进行分类、预测和特征选择等任务。
非参数统计的发展趋势
多元化发展
非参数统计将不断拓展其应用领域,从传统的医学、生物 、经济领域向金融、环境、社会学等领域延伸。
01
算法优化
随着计算能力的提升,非参数统计的算 法将进一步优化,提高计算效率和准确 性。

非参数统计方法及其应用领域

非参数统计方法及其应用领域

非参数统计方法及其应用领域统计学是一门研究收集、整理、分析和解释数据的学科。

在统计学中,参数统计方法和非参数统计方法是两种常用的分析工具。

本文将重点介绍非参数统计方法及其应用领域。

一、非参数统计方法的概念非参数统计方法是指在进行统计推断时,不对总体的概率分布做出任何假设的方法。

与参数统计方法相比,非参数统计方法更加灵活,适用于数据分布未知或非正态分布的情况。

非参数统计方法不依赖于总体的参数,而是基于样本的秩次或分布来进行推断。

二、非参数统计方法的基本原理非参数统计方法的基本原理是通过对数据的秩次或分布进行分析,从而得出总体的统计推断。

常用的非参数统计方法包括秩和检验、秩次相关分析、K-S检验等。

这些方法不依赖于总体的参数,而是根据样本数据的排序或分布情况进行分析。

三、非参数统计方法的应用领域1. 生态学研究生态学研究中常常需要对生物群落的多样性进行评估。

非参数统计方法可以用来比较不同生物群落的物种多样性,例如使用Shannon指数和Simpson指数等进行比较分析。

非参数统计方法还可以用来研究生物群落的相似性和差异性,通过计算样本的秩次或分布来进行推断。

2. 医学研究医学研究中常常需要比较不同治疗方法的疗效。

非参数统计方法可以用来比较两个治疗组之间的差异,例如使用Wilcoxon秩和检验或Mann-Whitney U检验等。

非参数统计方法还可以用来研究药物的剂量反应关系,通过计算样本的秩次或分布来进行推断。

3. 金融风险管理金融风险管理中需要对资产收益率的分布进行建模和分析。

非参数统计方法可以用来拟合资产收益率的分布,例如使用核密度估计方法或分位数回归方法等。

非参数统计方法还可以用来研究资产收益率的尾部风险,通过计算样本的秩次或分布来进行推断。

4. 社会科学研究社会科学研究中常常需要对调查数据进行分析。

非参数统计方法可以用来比较不同群体之间的差异,例如使用Kruskal-Wallis检验或Friedman检验等。

非参数统计方法

非参数统计方法

非参数统计方法非参数统计方法是一种统计学中常用的方法,它不依赖于对总体分布的特定假设,而是基于数据自身的性质进行分析。

与参数统计方法相比,非参数统计方法更加灵活,适用范围更广。

本文将介绍非参数统计方法的基本概念、应用领域以及与参数统计方法的比较。

一、基本概念非参数统计方法是一种基于观测数据的统计分析方法,它不对总体的概率分布做出具体的假设。

它的基本思想是从样本数据本身获取统计信息,并利用这些统计信息进行总体参数的推断。

与参数统计方法相比,非参数统计方法更加自由,可以适应更广泛的情景。

二、应用领域非参数统计方法在各个领域中都有广泛的应用。

下面介绍一些常见的应用领域。

1. 生态学研究:非参数统计方法可以用于对生物种群的数量、分布和相互关系进行分析。

例如,可以利用非参数统计方法评估不同环境因素对生物多样性的影响。

2. 医学研究:非参数统计方法在医学研究中也起到了重要的作用。

例如,在临床试验中,可以使用非参数方法对不同治疗方案的效果进行比较。

3. 金融分析:非参数统计方法也常被用于金融行业中。

例如,可以利用非参数方法对股票价格的波动性进行建模,进而进行风险管理和投资决策。

4. 社会科学研究:非参数统计方法也广泛应用于社会科学领域。

例如,在问卷调查中,可以使用非参数方法进行数据的分析和解释。

三、与参数统计方法的比较非参数统计方法相对于参数统计方法有一些优点。

1. 不依赖于分布假设:非参数统计方法不需要事先对总体分布做出特定的假设,更加灵活适用于各种分布类型。

2. 更广泛的适用性:非参数统计方法可以适用于各种数据类型和样本量。

而参数统计方法对数据类型和样本量有一定的要求。

4. 不受异常值的影响:非参数统计方法对异常值不敏感,即使存在异常值,也不会对结果造成较大的影响。

然而,非参数统计方法也存在一些限制。

1. 需要较大的样本量:非参数统计方法通常需要较大的样本量才能获得准确的结果。

2. 计算复杂度高:非参数统计方法的计算复杂度较高,在处理大规模数据时可能会面临一些挑战。

非参数统计(non-parametricstatistics)又称任意分布检验(

非参数统计(non-parametricstatistics)又称任意分布检验(

例11.6(P195)。
(一)建立检验假设
H0:某中药治疗四种病型 的疗效总体分布相同 H1:四个总体的分布不同 或不全同
0.05
(二)计算统计量H值 (1)编秩:a、计算各等级的合计人数 b、确定秩次范围 c、计算平均秩次 (2)求各组秩和
R1 65(139.5) 18(304.0) 30(397.5) 13(504.5)
血浆总皮质醇含量有差别(不同或不全同)。
若还希望分析具体哪些组之间有差别,需进一步两两组 间比较。方法见《卫生统计学》第五版P196,《医学统计学》 第二版P183等。
当相同秩次较多(超过25%)时,需进行如下校正。
例11.4(P193),见表11-4。
(一)建立检验假设
H0:接种三种不同菌型伤 寒杆菌存活日数总体分 布相同 H1:三个总体的位置不同 或不全同
适用于完全随机设计分组的多个样本比较(即不满足参
数统计条件的),目的在于判断多个总体分布是否相同。
例11.3(P192),见表11-3。
(一)建立检验假设
H
:血浆总皮质醇含量的
0
三个总体分布相同
H1:血浆总皮质醇含量的 三个总体分布不同或不 全同
0.05
(二)计算统计量H值
1、编秩
先将各组数据分别由小到大排列,统一编秩,不同组的
注意:等级资料对程度的比较不应选检验。
例11.5(P194)。
(一)建立检验假设
H
:吸烟工人和不吸烟工
0
人的HbCO%含量总体分布位置相

H1:吸烟工人的HbCO%含量高于不吸烟工人 的HbCO%含量
0.0(5 单侧)
(二)计算统计量u值
(1)编秩:a、计算各等级的合计人数

非参数统计讲义通用课件

非参数统计讲义通用课件
案例分析
通过实际案例展示如何使用Python进行非 参数统计,包括分布拟合、假设检验和模 型选择等步骤。
SPSS实现
SPSS简介
SPSS(Statistical Package for the Social Sciences) 是一款流行的社会科学统计 软件。
操作界面
SPSS的非参数统计功能通常 在“分析”菜单下的“非参 数检验”选项中,用户可以 通过直观的界面进行操作。
聚类分析方法在数据挖掘、 市场细分等领域有广泛应用, 可以帮助我们发现数据的内 在结构和模式。
异常值检测方法
• 异常值检测方法用于识别和剔除数据中的异常值,提高数据分析的准确性和可靠性。
• 常见的异常值检测方法包括基于统计的方法、基于距离的方法、基于密度的方等。 • 基于统计的方法利用统计学原理,如z分数、IQR等,判断数据是否为异常值;基于距离的方法通过计算对象与其它对象的距离来判断是否为异常值;基于密度的方法则根据对象周围的密度变化来判断是否
解释性较差
相对于参数统计,非参数统计结果通 常较为抽象,难以直接解释其具体含 义。
假设检验能力较弱
非参数统计在假设检验方面的能力相 对较弱,对于确定性的结论和预测不 如参数统计准确。
如何克服非参数统计的局限性
01
02
03
04
利用高效计算方法
采用并行计算、分布式计算等 高效计算方法,提高非参数统
计的计算效率和准确性。
描述性统计方法在数据分析中起到基 础作用,为后续的统计推断提供数据 基础和初步分析结果。
假设检验方法
假设检验方法是一种统计推断 方法,通过提出假设并对其进
行检验,判断假设是否成立。
假设检验方法包括参数检验和 非参数检验,其中非参数检验 不依赖于总体分布的具体形式,

非参数统计的理解

非参数统计的理解

非参数统计的理解非参数统计是一种统计方法,它不依赖于总体的分布形式,而是通过对样本数据的排序、计数和排名来进行推断和分析。

与参数统计不同,非参数统计不需要对总体分布做出任何假设,因此更加灵活和普适。

非参数统计的一个重要应用是在样本较小或总体分布未知的情况下进行推断和比较。

在这种情况下,传统的参数统计方法可能不适用或失效,而非参数统计方法则提供了一种有效的替代方案。

在以下几个方面,非参数统计的特点体现了其在实际应用中的重要性。

非参数统计方法广泛应用于实证研究中,特别是当研究对象的总体分布未知或不满足常见的假设时。

例如,在社会科学研究中,人们常常面临着无法确定总体分布形式的问题,如调查问卷中的评分数据或一些主观指标的测量。

非参数统计方法可以帮助研究人员对这些数据进行比较、推断和分析,从而得出有关总体的结论。

非参数统计方法在样本较小的情况下具有较好的稳健性和有效性。

在参数统计方法中,对总体分布的假设往往是必要的前提,然而当样本较小或总体分布未知时,这些假设可能无法满足。

与之相比,非参数统计方法不需要对总体分布做出假设,因此更加稳健和灵活。

它可以通过对样本数据的排序、计数和排名进行推断和分析,从而避免了对总体分布的依赖。

非参数统计方法还可以用于比较两个或多个总体之间的差异或关联。

在传统的参数统计方法中,通常需要对总体分布的均值、方差等参数进行比较或检验。

然而,在一些实际问题中,总体分布可能不满足正态分布假设,或者样本量较小,这时传统的参数统计方法可能不适用。

非参数统计方法提供了一种基于排序和排名的比较方法,可以在这些情况下进行有效的推断和分析。

非参数统计方法还具有较好的适应性和灵活性。

在实际应用中,总体分布的形式往往未知或复杂,传统的参数统计方法可能无法准确描述总体的特征。

非参数统计方法不依赖于总体分布的形式,因此可以适应各种类型的数据和分布。

它可以通过对样本数据的排序、计数和排名来进行推断和分析,从而得到对总体的有效描述和结论。

非参数统计方法

非参数统计方法

非参数统计方法非参数统计方法是一种统计学中的重要概念,它不依赖于总体的具体分布形式,而是利用样本数据进行推断和分析。

与参数统计方法相比,非参数统计方法更加灵活和广泛适用,并且不需要对总体进行特定的假设。

本文将介绍非参数统计方法的原理、常用的方法和应用领域。

一、非参数统计方法的原理非参数统计方法的核心思想是基于样本数据来进行推断,而不需要对总体的分布形式做出先验假设。

非参数统计方法主要利用统计排序和秩次来进行推断分析,因此非参数统计方法也常被称为秩次统计方法或分布自由方法。

非参数统计方法的基本原理包括以下几个方面:1. 统计排序:对样本数据进行排序,将每个观测值按照大小进行排列,得到一系列秩次。

2. 秩次:将每个观测值与排序后的位置相对应,得到每个观测值的秩次。

3. 检验统计量:通过计算秩次之间的差异来判断总体分布是否存在差异。

4. 非参数假设检验:通过计算检验统计量的概率分布,判断总体分布是否符合我们的假设。

二、常用的非参数统计方法1. 秩和检验(Mann-Whitney U检验):用于比较两个独立样本是否来自同一总体。

2. 秩和差检验(Wilcoxon符号秩检验):用于比较两个相关样本是否来自同一总体。

3. 克鲁斯卡尔-瓦里斯检验:用于比较三个或更多独立样本是否来自同一总体。

4. 费希尔精确检验:用于比较两个分类变量之间的关联性。

5. 秩和相关检验(Spearman等级相关系数):用于比较两个变量之间的相关性。

三、非参数统计方法的应用领域非参数统计方法在各个领域都有广泛的应用,以下列举几个常见的应用领域:1. 医学研究:非参数统计方法可以用于比较两种治疗方法的效果,判断是否存在显著差异。

2. 经济学研究:非参数统计方法可以用于分析收入差距、失业率等经济指标的差异。

3. 生态学研究:非参数统计方法可以用于比较不同区域的生物多样性指标,评估生态系统的稳定性。

4. 社会科学研究:非参数统计方法可以用于分析社会调查数据,比较不同群体的行为差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国海洋大学本科生课程大纲
课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修
一、课程介绍
1.课程描述:
非参数统计是数理统计学的一个分支,它是针对参数统计而言的。

所谓参数统计,简
单地说就是建立在总体具有明确分布形式,通常多为正态分布形式的假定基础之上,所建立
的统计理论和统计方法。

而非参数统计是在不假定总体分布形式或在较弱条件下,例如总体
分布形式完全未知或分布形式是对称的,诸如这样一些宽泛条件下,尽量从数据本身获
得的信息,建立对总体相关统计特征进行分析和推断的理论、方法。

2.设计思路:
本课程是在已学数理统计基础上,通过非参数统计的学习,引导数学专业学生进一步增强对一般总体分析、推断的能力并加深对相关理论和方法的理解。

课程内容着重于基本知识点的理解,避免难度较大或较长定理的证明。

目的是使学生对理论有一个基本的理解和在应用能力上的提高。

课程内容包括以下四个方面:
(1).非参数统计的基本概念:非参数统计方法的主要特点,次序统计量及其分布,U统计量,
秩统计量的概念,一些统计量的近似分布。

(2).非参数估计的方法:总体分位数的估计,对称中心的估计,位置差的估计。

(3).非参数检验的方法:总体p分位数的检验,总体均值检验,两样本的比较,随机性与
独立性检验,多总体的比较。

- 1 -
(4).总体分布类型的估计与检验:分布函数的估计与检验,概率密度估计。

3. 课程与其他课程的关系:
先修课程:《概率论》,《数理统计》,《多元统计分析》;并行课程:《应用回归分析》;后置课程:《统计软件》。

非参数统计是应用数学专业、信息与计算科学专业的选修课程,但对于今后从事统计研究和统计应用工作的学生来讲可以作为专业必修课学习。

二、课程目标
非参数统计具有应用性广,稳健性好等特点。

通过本课程学习,要求学生了解或理解非参数统计的一些基本理论和方法,注重利用理论和方法、借助计算机解决问题的能力。

开课学期结束时,要求学生能够做到:
(1)理解非参数统计方法的主要特点及与参数统计方法的区别。

掌握次序统计量及其分布;理解并掌握U统计量秩统计量的概念;理解一些常用统计量的近似分布。

重点是次序统计量及其分布; U统计量构造,秩统计量;
(2)掌握总体分位数估计、对称中心的估计、位置差估计的方法。

(3)理解各种检验的基本思想,掌握检验的一般步骤,掌握检验统计及其拒绝域。

难点在于检验统计量的选取及概率分布。

(4)理解分布函数估计及检验的基步骤和过程。

(5)为更深入学习非参数统计学理论打下初步的基础。

也为学习专业统计软件的作好准备。

三、学习要求
要完成所有的课程任务,学生必须:
(1)按时上课,认真听讲,认真完成作业。

其中有一些作业需要学生自编程序用机器完成。

(2)按时完成并按时提交书面形式的作业。

延期提交作业需要得到任课教师的许可。

(3)完成一定量的阅读文献和背景资料,可以以小组的形式讨论学习,促进同学间的心得交
- 2 -
流、加深理论和应用方面的认识。

四、参考教材与主要参考书
1. 选用教材:《非参数统计方法》,李裕奇赵联文王沁唐家银编著,西南交通大学出版社, 2010年8月出版。

2. 主要参考书:
《非参数统计方法》,吴喜之,王兆军编著,高等教育出版社,1996。

《非参数统计——方法与应用》,易丹辉编著,中国统计出版社,1996年3月第1版。

《非参数统计》,王星编著,清华大学出版社,2009年3月第1版。

《非参数统计教程》,陈希孺,柴根象编著,华东师范大学出版社,1993。

五、进度安排
- 3 -
六、成绩评定
(一)考核方式 A :A.闭卷考试 B.开卷考试 C.论文 D.考查 E.其他(二)成绩综合评分体系:
课程考核成绩由课下作业、平时测验成绩和期末考试成绩构成。

附:作业和平时表现评分标准
平时作业评分标准:
- 4 -
七、学术诚信
学习成果不能造假,如考试作弊、出勤弄虚作假、抄袭作业等,均属造假行为。

本课程如有发现上述不良行为,将按学校有关规定取消本课程的学习成绩。

八、大纲审核
教学院长:院学术委员会签章:
- 5 -。

相关文档
最新文档