立体几何中的建系设点教学提纲
立体几何建系描点专题讲义

立体几何建系设点专题考点分析:引入空间向量坐标运算,使解立体几何问题防止了传统方法进展繁琐的空间分析,只需建立空间直角坐标系进展向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系〞,一般应使尽量多的点在数轴上或便于计算。
一、熟悉几个补形建系的技巧根本模型:长方体 ;〔1〕三棱锥P ABC -,其中,2PA ABC ABC π⊥∠=.特点:BC PAB ⊥面;四个面均为直角三角形。
建系方法:〔2〕四棱锥P-ABCD,其中,PA ABCD ⊥面ABCD 为矩形。
建系方法:〔3〕正四面体A-BCD 建系方法:〔4〕两个面互相垂直建系方法二、建立空间直角坐标系的三条途径途径一、利用图形中的对称关系建立坐标系:图形中虽没有明显交于一点的三条直线,但有一定对称关系〔如正三棱柱、正四棱柱等〕,利用自身对称性可建立空间直角坐标系.例1、两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4. 〔1〕证明:PQ ⊥平面ABCD ; 〔2〕求异面直线AQ 与PB 所成的角; 〔3〕求点P 到平面QAD 的距离.途径二、利用面面垂直的性质建立坐标系:图形中有两个互相垂直的平面,可以利用面面垂直的性质定理,作出互相垂直且交于一点的三条直线,建立坐标系. 例2、在直三棱柱111ABC A B C -中,AB =BC ,D 、E 分别为11BB AC ,的中点. 〔1〕证明:ED 为异面直线1BB 与1AC 的公垂线;〔2〕设12AA AC AB ==,求二面角11A AD C --的大小. 练习题:如图,平面PAC ⊥平面ABC ,ABC ∆是以AC 为斜边的等腰直角三角形,,,E F O 分别为PA ,PB ,AC 的中点,16AC =,10PA PC ==. 〔I 〕设G 是OC 的中点,证明://FG 平面BOE ;〔II 〕证明:在ABO ∆存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离. 途径三、利用图形中现成的垂直关系建立坐标系:当图形中有明显互相垂直且交于一点的三条直线,可以利用这三条直线直接建系.PA BCABCDP例3.如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点。
高中数学《立体几何解答题的建系高点问题》基础知识解析

高中数学《立体几何解答题的建系高点问题》基础知识解析在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。
一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:(1)尽可能的让底面上更多的点位于,x y 轴上(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件(3)找对称关系:寻找底面上的点能否存在轴对称特点 3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标,x y 轴时要注意。
4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。
但是通过坐标所得到的结论(位置关系,角)是一致的。
5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直+底面两条线垂直),这个过程不能省略。
6、与垂直相关的定理与结论: (1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直 ② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直):① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直④ 勾股定理逆定理:若222AB AC BC +=,则AB AC ⊥(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点(1) 坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下:x 轴:(),0,0x y 轴:()0,,0y z 轴:()0,0,z规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例: 则可快速写出,H I 点的坐标,位置关系清晰明了111,,0,,1,022H I ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2、空间中在底面投影为特殊位置的点:如果()'11,,A x y z 在底面的投影为()22,,0A x y ,那么1212,x x y y ==(即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。
(完整版)立体几何解答题的建系设点问题

立体几何解答题的建系设点问题一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、轴的选取往往是比较容易的,依据的是线面垂直,即轴要与坐标平面z z 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即xOy 为轴与底面的交点z 2、轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:,x y (1)尽可能的让底面上更多的点位于轴上,x y (2)找角:轴要相互垂直,所以要利用好底面中的垂直条件,x y (3)找对称关系:寻找底面上的点能否存在轴对称特点解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直底面两条线垂直),+这个过程不能省略。
3、与垂直相关的定理与结论:(1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直④ 直棱柱:侧棱与底面垂直(2)线线垂直(相交垂直):① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一)③ 菱形的对角线相互垂直④ 勾股定理逆定理:若,则222AB AC BC +=AB AC ⊥(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类1、能够直接写出坐标的点(1) 坐标轴上的点,规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为,即竖坐标,由于底面在作立体图时往往失真,所以要快速正确写出(),,0x y 0z =坐标,强烈建议在旁边作出底面的平面图进行参考2、空间中在底面投影为特殊位置的点:如果在底面的投影为,那么(即点与投影点的横纵坐标相同)()'11,,A x y z ()22,,0A x y 1212,x x y y == 由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。
高中数学讲义:立体几何中的建系设点问题

⽴体⼏何解答题的建系设点问题在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。
一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:(1)尽可能的让底面上更多的点位于,x y 轴上(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件(3)找对称关系:寻找底面上的点能否存在轴对称特点3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标,x y 轴时要注意。
4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。
但是通过坐标所得到的结论(位置关系,角)是一致的。
5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直+底面两条线垂直),这个过程不能省略。
6、与垂直相关的定理与结论:(1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直④ 直棱柱:侧棱与底面垂直(2)线线垂直(相交垂直):① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一)③ 菱形的对角线相互垂直④ 勾股定理逆定理:若222AB AC BC +=,则AB AC^(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类1、能够直接写出坐标的点(1) 坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下:x 轴:(),0,0x y 轴:()0,,0y z 轴:()0,0,z规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例:则可快速写出,H I 点的坐标,位置关系清晰明了111,,0,,1,022H I æöæöç÷ç÷èøèø2、空间中在底面投影为特殊位置的点:如果()'11,,A x y z 在底面的投影为()22,,0A x y ,那么1212,x x y y ==(即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。
(完整版)立体几何解答题的建系设点问题

立体几何解答题的建系设点问题一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考: (1)尽可能的让底面上更多的点位于,x y 轴上(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件 (3)找对称关系:寻找底面上的点能否存在轴对称特点解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直+底面两条线垂直),这个过程不能省略。
3、与垂直相关的定理与结论: (1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直 ② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直):① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直④ 勾股定理逆定理:若222AB AC BC +=,则AB AC ⊥ (二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点(1) 坐标轴上的点,规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考 2、空间中在底面投影为特殊位置的点:如果()'11,,A x y z 在底面的投影为()22,,0A x y ,那么1212,x x y y ==(即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。
空间立体几何建系教学设计

教学设计《向量法解决几何问题的综合应用》教材分析:向量法的好处在于克服传统立体几何以纯几何解决问题带来的高度的技巧性和随机性.向量法可操作性强.运算过程程序化,公式化,有效地突破了立体几何教学和学习中的难点,是解决立体几何问题的重要工具,充分体现出向量法的优越性.本节课的主要内容是在已给的条件下准确建系,之后正确求角。
学情分析:本节课之前,学生已经掌握了利用向量法求空间中各种角的基本方法,但在没有已知的三垂直下建系会存在一定的困难教学重点:准确建系教学难点: 建系前的证明教学过程:引入:前面几节课我们以向量作为工具研究了空间中各种角的求法。
其基本步骤可分为哪几步?(生: 分为三步: 一建系,写坐标 二.进行向量运算. 三将向量运算的结果翻译成几何意义)如果我们认为向量法的前提是“向量运算”,那前提就是“建系”而建系的条件是三垂直。
之前,我们给的题目都有明显的三垂直,目的是让大家掌握求角的方法,所以容易建系。
现在我们可以再上一个台阶。
请看练习:例一:如图,在四棱锥ABCD P -中,平面PAD ⊥平面 ABCD ,AB=AD ,∠BAD=60°,F 是AD 的中点.提问1 :如果给出线段长,之后让求角。
那需要我们作什么工作? 建系提问2:有现成的三垂直吗?引导:如果我们完成这两个证明之后,能否建系呢?求证:(1)BF ⊥平面PAD ;(2)若PA=PD,求证: 平面PF ⊥平面ABCD补充(3)若PA=AB=2,在(2)的条件下建系,写出P 、A 、B 、D 四点的坐标变式:如图,在四棱锥ABCD P -中,平面PAD ⊥平面 ABCD ,若PA=PD ,FC BF ⊥, F 是AD 的中点,试建立恰当的坐标系。
(不用写坐标)设计意图: 1.若题目给出面面垂,必然由此得到线面垂,强化面面垂直的性质定理,并明确书写的规范程度。
2.明确建系的条件: (1) α⊥l (2)垂面α内b a ⊥3变式使学生明确: 若底面内有两个线线垂,则其交点一般为建系的原点. 面的垂线可平移至该点.练习: 四棱锥中,侧面SAD ⊥ABCD,三角形SAD 是边长为2的等边三角形,四边形ABCD 是矩形,且AB=4. k 为BC 中点.求(1) 直线SK 与AD 的成角;(2)SK 与面SDC 所成的角;(3)二面角A-SB-C 的大小 K C DAB S设计意图: 在例一的基础上,强化建系写坐标,其中求各角的过程课后完成.例2:如图,直四棱柱的高为3,底面是边长为2的菱形,060=∠DAB .求二面角A-BB ’-C 余弦值的大小 C'D'B'A'CDAB 设计意图: 当底面是菱形时,可以其对角线的交点为原点,面的垂线可平移至该点练习(2011北京理16) 如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2,60AB BAD =∠=.(Ⅰ)求证:BD ⊥平面;PAC(Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.设计意图: 强化建系和求角.课堂小结: 1.建系的前提:三垂直一般简化为线面垂和面内的线线垂2. 题目中给面面垂直的意图: 得到线面垂课后反思:优点: 本节课重点突出,例习题配备合理不足:1.总体不足:目标达成度不高.建系前的证线面垂熟练.2.为何线面垂和面内的线线垂就满足三垂直,学生不够明确,应该说明线面垂包含两个线线垂,并佐以图示.3.课堂反馈练习强度不够.应精讲多练。
立体几何中的建系设点问题
全国名校高考数学复习优质学案专题汇编(附详解)立体几何解答题的建系设点问题在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段: 建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、z轴的选取往往是比较容易的,依据的是线面垂直,即z轴要与坐标平面xOy垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z轴与底面的交点2、x,y轴的选取:此为坐标是否易于写出的关键, 有这么几个原则值”曰 G得参考:(1)尽可能的让底面上更多的点位于x,y轴上(2)找角:x,y轴要相互垂直,所以要利用好底面中的垂直条件(3)找对称关系:寻找底面上的点能否存在轴对称特点3、常用的空间直角坐标系满足x,y,z轴成右手系,所以在标x,y轴时要注意。
全国名校高考数学复习优质学案专题汇编(附详解)4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。
但是通过坐标所得到的结论(位置关系,角)是一致的。
5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直+底面两条线垂直),这个过程不能省略。
6、与垂直相关的定理与结论:(1)线面垂直: ①如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直②两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直③两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂④直棱柱:侧棱与底面垂直(2 )线线垂直(相交垂直):等腰三角形底边上的中线与底边垂直(三线合一)菱形的对角线相互垂直勾股定理逆定理:若AB2+AC2=BC2,则AB丄AC(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类1、能够直接写出坐标的点(1)坐标轴上的点,例如在正方体(长度为1)中的A,C,D'点,坐标全国名校高考数学复习优质学案专题汇编(附详解)特点如下:X轴:(X,0,0) y 轴:(0,y,0) z轴:(0,0,z)规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为(x,y,0 ),即竖坐标z = 0,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例: 则可快速写出H,l点的坐标,位置关系清晰明f 1 )H l1,2,0J I U,1,02、空间中在底面投影为特殊位置的点:如果A(X1,y1,z )在底面的投影为A(X2,y2,0 ),那么为=%2,% = 丫2 (即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。
高中数学讲义微专题63 立体几何中的建系设点问题
微专题63 立体几何解答题的建系设点问题在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。
一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:(1)尽可能的让底面上更多的点位于,x y 轴上(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件(3)找对称关系:寻找底面上的点能否存在轴对称特点 3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标,x y 轴时要注意。
4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。
但是通过坐标所得到的结论(位置关系,角)是一致的。
5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直+底面两条线垂直),这个过程不能省略。
6、与垂直相关的定理与结论: (1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直): ① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直④ 勾股定理逆定理:若222AB AC BC +=,则AB AC ⊥(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点(1) 坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下:x 轴:(),0,0x y 轴:()0,,0y z 轴:()0,0,z规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例: 则可快速写出,H I 点的坐标,位置关系清晰明了111,,0,,1,022H I ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2、空间中在底面投影为特殊位置的点:如果()'11,,A x y z 在底面的投影为()22,,0A x y ,那么1212,x x y y ==(即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。
立体几何(向量法)—建系讲义
立体几何(向量法)—建系引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。
一、利用共顶点的互相垂直的三条线构建直角坐标系例1(2012高考真题重庆理19)(本小题满分12分 如图,在直三棱柱111C B A ABC - 中,AB=4,AC=BC=3,D 为AB 的中点(Ⅰ)求点C 到平面11ABB A 的距离;(Ⅱ)若11AB A C ⊥求二面角 的平面角的余弦值.【答案】解:(1)由AC =BC ,D 为AB 的中点,得CD ⊥AB 。
又CD ⊥AA 1,故CD ⊥面A 1ABB 1,所以点C 到平面A 1ABB 1的距离为CD =错误!=错误!.(2)解法一:如图,取D 1为A 1B 1的中点,连结DD 1,则DD 1∥AA 1∥CC 1。
又由(1)知CD ⊥面A 1ABB 1,故CD ⊥A 1D ,CD ⊥DD 1,所以∠A 1DD 1为所求的二面角A 1-CD -C 1的平面角.因A 1D 为A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1、∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A .因此错误!=错误!,即AA 错误!=AD ·A 1B 1=8,得AA 1=2错误!.从而A1D=错误!=2错误!。
所以,在Rt△A1DD1中,cos∠A1DD1=错误!=错误!=错误!。
解法二:如图,过D作DD1∥AA1交A1B1于点D1,在直三棱柱中,易知DB,DC,DD1两两垂直.以D为原点,射线DB,DC,DD1分别为x轴、y轴、z轴的正半轴建立空间直角坐标系D-xyz.设直三棱柱的高为h,则A(-2,0,0),A1(-2,0,h),B1(2,0,h),C(0,错误!,0),C1(0,错误!,h),从而错误!=(4,0,h),错误!=(2,错误!,-h).由错误!⊥错误!,有8-h2=0,h=2错误!。
立体几何—建系讲义
立体几何(向量法)—建系引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。
一、利用共顶点的互相垂直的三条线构建直角坐标系例1(2012高考真题重庆理19)(本小题满分12分 如图,在直三棱柱111C B A ABC - 中,AB=4,AC=BC=3,D 为AB 的中点(Ⅰ)求点C 到平面11ABB A 的距离;(Ⅱ)若11AB A C ⊥求二面角 的平面角的余弦值.【答案】解:(1)由AC =BC ,D 为AB 的中点,得CD ⊥AB .又CD ⊥AA 1,故CD ⊥面A 1ABB 1,所以点C 到平面A 1ABB 1的距离为CD =BC 2-BD 2= 5.(2)解法一:如图,取D 1为A 1B 1的中点,连结DD 1,则DD 1∥AA 1∥CC 1.又由(1)知CD ⊥面A 1ABB 1,故CD ⊥A 1D ,CD ⊥DD 1,所以∠A 1DD 1为所求的二面角A 1-CD -C 1的平面角.因A 1D 为A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1、∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A .因此AA 1AD =A 1B 1AA 1,即AA 21=AD ·A 1B 1=8,得AA 1=2 2.从而A 1D =AA 21+AD 2=2 3.所以,在Rt △A 1DD 1中, cos ∠A 1DD 1=DD 1A 1D =AA 1A 1D =63.解法二:如图,过D 作DD 1∥AA 1交A 1B 1于点D 1,在直三棱柱中,易知DB ,DC ,DD 1两两垂直.以D 为原点,射线DB ,DC ,DD 1分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .设直三棱柱的高为h ,则A (-2,0,0),A 1(-2,0,h ),B 1(2,0,h ),C (0,5,0),C 1(0,5,h ),从而AB 1→=(4,0,h ),A 1C →=(2,5,-h ).由AB 1→⊥A 1C →,有8-h 2=0,h =2 2. 故DA 1→=(-2,0,22),CC 1→=(0,0,22),DC →= (0,5,0).设平面A 1CD 的法向量为m =(x 1,y 1,z 1),则m ⊥DC →,m ⊥DA 1→,即 ⎩⎨⎧5y 1=0,-2x 1+22z 1=0,取z 1=1,得m =(2,0,1),设平面C 1CD 的法向量为n =(x 2,y 2,z 2),则n ⊥DC →,n ⊥CC 1→,即⎩⎨⎧5y 2=0,22z 2=0, 取x 2=1,得n =(1,0,0),所以 cos 〈m ,n 〉=m·n |m ||n |=22+1·1=63. 所以二面角A 1-CD -C 1的平面角的余弦值为63.二、利用线面垂直关系构建直角坐标系例 2.如图所示,AF 、DE 分别是圆O 、圆1O 的直径,AD 与两圆所在的平面均垂直,8AD =.BC 是圆O 的直径,6AB AC ==,//OE AD .(I)求二面角B AD F --的大小; (II)求直线BD 与EF 所成的角的余弦值. 19.解:(Ⅰ)∵AD 与两圆所在的平面均垂直,∴AD⊥AB, AD⊥AF,故∠BAD 是二面角B —AD —F 的平面角, 依题意可知,ABCD 是正方形,所以∠BAD=450. 即二面角B —AD —F 的大小为450;(Ⅱ)以O 为原点,BC 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,23-,0),B (23,0,0),D (0,23-,8),E (0,0,8),F (0,23,0)所以,)8,23,0(),8,23,23(-=--=FE BD10828210064180||||,cos =⨯++=•>=<FE BD FE BD EF BD 设异面直线BD 与EF 所成角为α,则1082|,cos |cos =><=EF BD α直线BD 与EF 所成的角为余弦值为8210.三、利用图形中的对称关系建立坐标系例3(2013年重庆数学(理))如图,四棱锥P ABCD -中,PA ABCD ⊥底面,2,4,3BC CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥.(1)求PA 的长; (2)求二面角B AF D --的正弦值.【答案】解:(1)如图,联结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB →,OC →,AP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1,而AC =4,得AO =AC -OC =3.又OD =CD sinπ3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因P A ⊥底面ABCD ,可设P (0,-3,z ),由F 为PC 边中点,得F ⎝⎛⎭⎫0,-1,z 2,又AF →=⎝⎛⎭⎫0,2,z 2,PB →=(3,3,-z ),因AF ⊥PB ,故AF →·PB →=0,即6-z 22=0,z =23(舍去-23),所以|P A →|=2 3.(2)由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面F AD 的法向量为1=(x 1,y 1,z 1),平面F AB 的法向量为2=(x 2,y 2,z 2).由1·AD →=0,1·AF →=0,得⎩⎨⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取1=(3,3,-2). 由2·AB →=0,2·AF →=0,得⎩⎨⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取2=(3,-3,2). 从而向量1,2的夹角的余弦值为 cos 〈1,2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为378.四、利用正棱锥的中心与高所在直线,投影构建直角坐标系 例4-1(2013大纲版数学(理))如图,四棱锥P ABCD -中,902,ABC BAD BC AD PAB ∠=∠==∆,与PAD ∆都是等边三角形.(I)证明:;PB CD ⊥ (II)求二面角A PD C --的余弦值.【答案】解:(1)取BC 的中点E ,联结DE ,则四边形ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O . 联结OA ,OB ,OD ,OE .由△P AB 和△P AD 都是等边三角形知P A =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P , 故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD .取PD 的中点F ,PC 的中点G ,连FG . 则FG ∥CD ,FG ⊥PD .联结AF ,由△APD 为等边三角形可得AF ⊥PD . 所以∠AFG 为二面角A -PD -C 的平面角. 联结AG ,EG ,则EG ∥PB . 又PB ⊥AE ,所以EG ⊥AE .设AB =2,则AE =22,EG =12PB =1,故AG =AE 2+EG 2=3,在△AFG 中,FG =12CD =2,AF =3,AG =3.所以cos ∠AFG =FG 2+AF 2-AG 22·FG ·AF =-63.解法二:由(1)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE →的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .设|AB →|=2,则A (-2,0,0),D (0,-2,0), C (22,-2,0),P (0,0,2),PC →=(22,-2,-2),PD →=(0,-2,-2), AP →=(2,0,2),AD →=(2,-2,0). 设平面PCD 的法向量为1=(x ,y ,z ),则 1·PC →=(x ,y ,z )·(22,-2,-2)=0,1·PD →=(x ,y ,z )·(0,-2,-2)=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故1=(0,-1,1). 设平面P AD 的法向量为2=(m ,p ,q ),则 2·AP →=(m ,p ,q )·(2,0,2)=0, 2·AD →=(m ,p ,q )·(2,-2,0)=0,可得m +q =0,m -p =0.取m =1,得p =1,q =-1,故2=(1,1,-1). 于是cos 〈,2〉=n 1·n 2|n 1||n 2|=-63. 例4-2如图1-5,在三棱柱ABC -A 1B 1C 1中,已知AB =AC =AA 1=5,BC =4,点A 1在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长; (2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值.图1-5【答案】解:(1)证明:连接AO ,在△AOA 1中,作OE ⊥AA 1 于点E ,因为AA 1∥BB 1,所以OE ⊥BB 1.因为A 1O ⊥平面ABC ,所以A 1O ⊥BC . 因为AB =AC ,OB =OC ,所以AO ⊥BC , 所以BC ⊥平面AA 1O . 所以BC ⊥OE ,所以OE ⊥平面BB 1C 1C ,又AO =AB 2-BO 2=1,AA 1=5, 得AE =AO 2AA 1=55.(2)如图,分别以OA ,OB ,OA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则A (1,0,0),B (0,2,0),C (0,-2,0),A 1(0,0,2),由AE →=15AA 1→得点E 的坐标是⎝ ⎛⎭⎪⎫45,0,25, 由(1)得平面BB 1C 1C 的法向量是OE→=⎝ ⎛⎭⎪⎫45,0,25,设平面A 1B 1C 的法向量=(x ,y ,z ),由⎩⎪⎨⎪⎧·AB →=0,n ·A 1C →=0得⎩⎨⎧-x +2y =0,y +z =0,令y =1,得x =2,z =-1,即=(2,1,-1),所以 cos 〈OE →,〉=OE →·n |OE →|·|n |=3010.即平面BB 1C 1C 与平面A 1B 1C 的夹角的余弦值是3010三、利用面面垂直关系构建直角坐标系 例5(2012高考真题安徽理18)(本小题满分12分)平面图形ABB 1A 1C 1C 如图1-4(1)所示,其中BB 1C 1C 是矩形,BC =2,BB 1=4,AB=AC=2,A1B1=A1C1= 5.图1-4现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A1A,A1B,A1C,得到如图1-4(2)所示的空间图形.对此空间图形解答下列问题.(1)证明:AA1⊥BC;(2)求AA1的长;(3)求二面角A-BC-A1的余弦值.【答案】解:(向量法):(1)证明:取BCB1C1的中点分别为D和D1,连接A1D1,DD1,AD.由BB1C1C为矩形知,DD1⊥B1C1,因为平面BB1C1C⊥平面A1B1C1,所以DD1⊥平面A1B1C1,又由A1B1=A1C1知,A1D1⊥B1C1.故以D1为坐标原点,可建立如图所示的空间直角坐标系D1-xyz.由题设,可得A1D1=2,AD=1.由以上可知AD⊥平面BB1C1C,A1D1⊥平面BB1C1C,于是AD∥A1D1.所以A (0,-1,4),B (1,0,4),A 1(0,2,0),C (-1,0,4),D (0,0,4). 故AA 1→=(0,3,-4),BC →=(-2,0,0),AA 1→·BC →=0, 因此AA 1→⊥BC →,即AA 1⊥BC . (2)因为AA 1→=(0,3,-4), 所以||AA 1→=5,即AA 1=5. (3)连接A 1D ,由BC ⊥AD ,BC ⊥AA 1,可知BC ⊥平面A 1AD ,BC ⊥A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角.因为DA →=(0,-1,0),DA 1→=(0,2,-4),所以 cos 〈DA →,DA 1→〉=-21×22+(-4)2=-55. 即二面角A -BC -A 1的余弦值为-55.(综合法)(1)证明:取BC ,B 1C 1的中点分别为D 和D 1,连接A 1D 1,DD 1,AD ,A 1D .由条件可知,BC ⊥AD ,B 1C 1⊥A 1D 1, 由上可得AD ⊥面BB 1C 1C ,A 1D 1⊥面BB 1C 1C . 因此AD ∥A 1D 1,即AD ,A 1D 1确定平面AD 1A 1D . 又因为DD 1∥BB 1,BB 1⊥BC ,所以DD 1⊥BC . 又考虑到AD ⊥BC ,所以BC ⊥平面AD 1A 1D , 故BC ⊥AA 1.(2)延长A 1D 1到G 点,使GD 1=AD ,连接AG . 因为AD 綊GD 1,所以AG 綊DD 1綊BB 1. 由于BB 1⊥平面A 1B 1C 1,所以AG ⊥A 1G .由条件可知,A 1G =A 1D 1+D 1G =3,AG =4, 所以AA 1=5.(3)因为BC ⊥平面AD 1A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角. 在Rt △A 1DD 1中,DD 1=4,A 1D 1=2,解得 sin ∠D 1DA 1=55,cos ∠ADA 1=cos ⎝ ⎛⎭⎪⎫π2+∠D 1DA 1=-55.即二面角A -BC -A 1的余弦值为-55.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何解答题的建系设点问题
在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。
一、基础知识:
(一)建立直角坐标系的原则:如何选取坐标轴
1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点
2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:
(1)尽可能的让底面上更多的点位于,x y 轴上
(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件 (3)找对称关系:寻找底面上的点能否存在轴对称特点 3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标
,x y 轴时要注意。
4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。
但是通过坐标所得到的结论(位置关系,角)是一致的。
5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直 底面两条线垂直),这个过程不能省略。
6、与垂直相关的定理与结论: (1)线面垂直:
① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直 ② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直):
① 正方形,矩形,直角梯形
② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直
④ 勾股定理逆定理:若2
2
2
AB AC BC +=,则AB AC ⊥
(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点
(1) 坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下:
x 轴:(),0,0x y 轴:()0,,0y z 轴:()0,0,z
规律:在哪个轴上,那个位置就有坐标,其余均为0
(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例: 则可快速写出,H I 点的坐标,位置关系清晰明了
111,,0,,1,022H I ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭
2、空间中在底面投影为特殊位置的点:
如果()'
11,,A x y z 在底面的投影为()22,,0A x y ,那么
1212,x x y y ==(即点与投影点的横纵坐标相同)
由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。
如果可以则直接确定了横纵坐标,而竖坐标为该点到底面的距离。
例如:正方体中的'
B 点,其投影为B ,而()1,1,0B 所以()'
1,1,B z ,而其到底面的距离为1,故坐标为()'
1,1,1B
以上两个类型已经可以囊括大多数几何体中的点,但总还有一些特殊点,那么就要用到第三个方法: 3、需要计算的点
① 中点坐标公式:()()111222,,,,,A x y z B x y z ,则AB 中点121212,,222x x y y z z M +++⎛⎫
⎪⎝⎭
,图中的,,,H I E F 等中点坐标均可计算
② 利用向量关系进行计算(先设再求):向量坐标化后,向量的关系也可转化为坐标的关系,
进而可以求出一些位置不好的点的坐标,方法通常是先设出所求点的坐标,再选取向量,利用向量关系解出变量的值,例如:求'A 点的坐标,如果使用向量计算,则设()',,A x y z ,
可直接写出()()()'
1,0,0,1,1,0,1,1,1A B B ,观察向量''
AB A B =u u u u r u u u r ,而()0,1,0AB =u u u r ,
()''1,1,1A B x y z =---u u u u r 101110101x x y y z z -==⎧⎧⎪⎪
∴-=⇒=⎨⎨⎪⎪-==⎩⎩
()'1,0,1A ∴
二、典型例题:
例1:在三棱锥P ABC -中,PA ⊥平面ABC ,BAC ∠=棱,,AB BC CD 的中点,1,2AB AC PA ===坐标系并确定各点坐标
例2:在长方体1111ABCD A B C D -中,,E F 分别是棱1,BC CC 上的点,2CF AB CE ==,1::1:2:4AB AD AA =,建立适当的直角坐标系并写出点的坐标。
例3:如图,在等腰梯形ABCD 中,AB CD ∥,
1,60AD DC CB ABC ===∠=o ,CF ⊥ 平面ABCD ,
且1CF =,建立适当的直角坐标系并确定各点坐标。
小炼:建立坐标系的最重要的条件就是线面垂直(即z 轴),对于,x y 轴的选取,如果没有已知线段,可以以垂足所在的
某一条直线为坐标轴,然后作这条轴的垂线来确定另一条轴。
B
B
1
D
例4:已知四边形ABCD 满足1
,2
AD BC BA AD DC BC a ===
=∥,E 是BC 中点,将BAE V 翻折成1B AE V ,使得平面1B AE ⊥平面AECD ,F 为1B D 中点
思路:在处理翻折问题时,首先要确定在翻折的过程中哪些量与位置关系不变,这些都是作为已知条件使用的。
例5:如图,已知四棱锥P ABCD -的底面是菱形,对角线,AC BD 交于点,4,3,4O OA OB OP ===,且OP ⊥平面ABCD ,点M 为PC 的三等分点(靠近P ),建立适当的直角坐标系并求各点坐标 小炼:(1)底面是菱形时要注意对角线相互垂直的性质
(2)对于一条线段上的某点分线段成比例,可以利用向量关系将该点坐标计算出来
A
B
E
D
C
F
E
D。