焊接冷裂纹
焊接冷裂纹

.
6
2、三大要素的作用 (1)氢的作用
❖ 氢是引起的冷裂纹具有延迟的特征,称为氢致裂纹。
❖ 氢在钢中分为残余的固溶氢和扩散氢,只有扩散氢 对钢的焊接冷裂纹起直接影响。
1)氢在焊缝中的溶解
❖ 从图4.9中可知,氢在铁中 的溶解度随温度变化很大, 并在凝固点发生突变。由于 熔池很快由液态凝固,多余 的氢来不及逸出,结果就以 过饱和状态存在于焊缝中. 。
二、冷裂纹的特征及产生机理
1、产生延迟裂纹的三个基本要素 ① 钢材的淬硬倾向
② 焊接接头中的氢含量及其分布
③ 焊接接头的拘束应力状态
❖ 产生延迟裂纹的孕育期:
决定于焊缝金属中扩散氢的含量与焊接接头 所处的应力状态的交互作用。
相应于某一应力状态,焊缝金属中含氢量愈 高,裂纹的孕育期愈短,裂纹倾向就愈大。
❖ 裂纹的起源多发生在具有缺口效应的焊接热影响区或物理 化学不均匀的氢聚集的局部地带;
❖ 裂纹的分布与最大应力方向有关。
.
2
2、分类
❖ 焊接生产中由于采用的钢种、焊接材料不同,结构 的类型、刚度以及施工的条件不同,大致分为: 1)淬硬脆化裂纹
❖ 一些淬硬倾向很大的钢种(焊接含碳较高的Ni-CrMo钢、马氏体不锈钢、工具钢,及异种钢等), 焊接时即使没有氢的诱发,仅在拘束应力作用下就 能导致开裂。
❖ 碱性焊条熔敷金属中的扩散氢含量比酸性焊条低, 所以碱性焊条的抗冷裂纹性能大大优于酸性焊条。
❖ 对于重要的低合金高强度钢结构的焊接,原则上 都应选用碱性焊条。
❖ 通常也是焊后立即产生,无延迟现象。
3)延迟裂纹
❖ 焊后不立即出现,有一定孕育期(又叫潜伏期),具 有延迟现象。
焊接裂纹-冷裂纹资料PPT教学课件

2020/10/16
3
二、冷裂纹的种类
延迟裂纹还可以进一步分类,常见的有以下三种。
(一)焊趾裂纹
这种裂纹起源于母材与焊缝交界处,并有明显应力 集中部位(如咬肉处)。裂纹的走向经常与焊道平 行,一般由焊趾表面开始向母材的深处扩展,如图 5-40中A所示。
氢是引起高强钢焊接冷裂纹重要因素之一,并且有 延迟的特征。高强钢焊接接头的含氢量越高,则裂 纹的敏感性越大,当局部地区的含氢量达到某一临 界值时,便开始出现裂纹,此值称为产生裂纹的临 界含氢量。
钢中的含氢量分为两部分,即残余氢量和扩散氢量。
扩散氢对冷裂的产生和扩展起了决定性作用。
在Ms点以下扩散氢才具有致裂的作用。这一部分 扩散氢可以称为“残余扩散氢”。
2020/10/16
10
当焊缝由奥氏体转变为铁素体、珠光体等组织时, 氢的溶解度突然下降,而氢在铁素体、珠光体中 的扩散速度很快,因此氢就很快的从焊缝越过熔 和线向尚未发生分解的奥氏体影响区扩散。
由于氢在奥氏体中的扩散速度较小,不能很快把 氢扩散到距熔合线较远的母材中去,因而在熔合 线附近就形成了富氢地带。
第三节 焊接冷裂纹
一、冷裂纹的危害性及其一般特征
(一)冷裂纹的危害性 建造结构由于焊接冷裂纹而带来的危害性十分严重
2020/10/16
1
(二)冷裂纹的一般特征
高强钢焊接冷裂纹一的,也有的要推迟 很久才产生。冷裂纹的起源多发生具有缺口效应的 焊接热影响区或有物理化学不均匀的氢聚集的局部 地带。冷裂纹的断裂行径,有时是沿晶界扩展,有 时是穿晶前进,这要由焊接接头的金相组织和应力 状态及氢的含量等而定。这一点不像热裂纹那样, 都是沿晶界开裂。
在焊接中什么是冷裂纹和热裂纹

在焊接中什么是冷裂纹和热裂纹低碳钢焊接性分析:(一)冷裂纹碳当量:钢材和熔敷金属的碳含量增加大桥焊条,焊接性变差;硅锰含量增加,焊接性变差;CE值增加,产生冷裂纹倾向增大,焊接性变差淬硬倾向:淬硬组织或马氏体组织越多,其硬度越高,焊缝和热影响区硬度越高,焊接性差。
冷却速度影响因素:(1)钢材厚度和接头几何形状,(2)焊接时母材的实际起始温度(3)焊接线能量大小。
拘束度和氢。
板厚增加,拘束度增加;焊接区被刚性固定,拘束度增加,提高氢致裂纹敏感性钢材成分一定,淬硬组织比例越高,冷裂所需临界氢含量越低,所需拘束应力也就越低,冷裂倾向越大。
组织氢含量一定时,拘束度越大,冷裂纹敏感性越大。
(二)热裂纹在焊接SP过高的碳钢时,一方面:在焊接热影响区的晶界上聚集的低熔点SP化物,引起热影响区熔合线附近的液化裂纹;若板厚较大,沿不同偏析带分布的碳化物等,在T形等接头中引起层状撕裂。
另一方面:当母材稀释率较高时,进入焊缝的SP也偏多,容易引起焊缝中热裂纹。
中碳钢焊接大多需要预热和控制层间温度,以降低焊缝金属和热影响区冷却速度,抑制马氏体形成,提高接头塑性,减小残余应力。
合金结构钢种类:低合金钢,中合金钢,高合金钢。
1强度用钢:热轧及正火钢,低碳调质钢,中碳调质钢。
2专用钢:珠光体耐热钢,低温钢,低合金耐蚀钢热轧钢:把钢锭加热到1300度左右,经热轧成板材,然后空冷。
正火钢:钢板轧制和冷却后,再加热到900度附近,然后在空气中冷却。
调质钢:900度附近加热后放入淬火设备中水淬,后在600度左右回火处理。
控轧:采用控制钢板温度和轧制工艺得到高强度,高韧性钢的方法。
热轧钢通常是铝镇静的细晶粒铁素体+珠光体组织。
正火钢是在固溶强化基础上,加入合金元素在正火条件下通过沉淀强化和细化晶粒来提高强度和保证韧性的。
热轧及正火钢焊接性分析:Q345(16Mn)裂纹脆化1冷裂纹淬硬组织是引起冷裂纹的决定性因素。
冷裂敏感性一般随强度提高而增加2热裂纹降低焊缝中碳含量和提高锰含量,解决了热裂纹问题。
焊接冷裂纹产生原因及防止措施

焊接冷裂纹产生原因及防止措施1.原因:1.1材料的选择不当:焊接材料的化学成分不合适,或者材料含有较高的残留应力,容易导致冷裂纹的生成。
1.2焊接过程中的热输入不合适:焊接过程中产生的热量和焊接速度不合理,容易造成焊缝和母材之间的温度差异,从而导致冷裂纹的生成。
1.3焊接残余应力:焊接后,热量的收缩导致焊缝和母材之间的残余应力,这些应力容易导致冷裂纹的生成。
1.4接缝设计不合理:接缝的形状和尺寸设计不合理,例如锯齿形的接头,容易导致应力集中,增加冷裂纹的风险。
1.5焊接过程中的不合理操作:焊接过程中出现的不合理操作,例如焊接速度太快或太慢,焊接温度不稳定,都会增加冷裂纹的发生风险。
2.防止措施:2.1合理选择焊接材料:选择合适的焊接材料,确保化学成分符合要求,并且没有过高的残余应力。
2.2控制热输入:控制焊接过程中的热输入,一方面要保证足够的热能输入,使焊缝和母材温度均匀,另一方面要避免过高的热输入,以免造成过大的残余应力。
2.3使用预热和后热处理:对于容易产生冷裂纹的材料和结构,可以采用预热和后热处理的方法来减少焊接过程中的残余应力。
2.4设计合理的焊缝:在设计焊缝时,应尽量避免锯齿形的接头,可以采用圆弧形或其他形状,以减少应力集中。
2.5严格控制焊接过程参数:焊接过程中应严格控制焊接速度、焊接压力和焊接温度等参数,确保稳定和合理的焊接条件。
2.6检测和治理裂纹:焊接后应对焊缝进行严格的裂纹检测,如超声波检测、磁粉检测等,一旦发现裂纹,应及时采取治理措施,包括打磨、退火或重新焊接等。
2.7人员培训和操作规范:通过人员培训,提高焊接人员的技术水平和操作规范,减少不合理操作的发生,从而减少冷裂纹的产生。
总结起来,焊接冷裂纹的产生主要是由材料的选择不当、焊接过程中的热输入不合适、焊接残余应力、接缝设计不合理和焊接过程中的不合理操作等原因造成的。
为了防止焊接冷裂纹的产生,应选择合适的焊接材料、控制热输入、使用预热和后热处理、设计合理的焊缝、严格控制焊接过程参数、检测和治理裂纹,并加强人员培训和操作规范。
常见焊接裂纹的解析

常见焊接裂纹的解析焊接裂纹,焊接件中最常见的一种严重缺陷。
在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏而形成的新界而所产生的缝隙。
它具有尖锐的缺口和大的长宽比的特征,按照形成的条件可分为热裂纹、冷裂纹、再热裂纹和层状撕裂等四帧一、冷裂纹冷裂纹是在焊接过程中或焊后,在较低的温度下,大约在钢的马氏体转变温度(即Ms 点)附近,或300〜200C以下(或TV0.5Tm, Tm为以绝对温度表示的熔点温度)的温度区间产生的,故称冷裂纹。
冷裂又可分为延迟裂纹、淬火裂纹和低塑性脆化裂纹。
(一)产生条件1.焊接接头形成淬硬组织。
由于钢的淬硬倾向较大,冷却过程中产生大量的脆、硬,而且体积很大的马氏体,形成很大的内应力。
接头的硬化倾向:碳的影响是关键,含碳和貉虽:越多、板越厚、截积越大、热输入量越小,硬化越严重。
2.钢材及焊缝中含扩散氢较多,氢原子在缺陷处(空穴、错位)聚积(浓集)形成氢分子,氢分子体积较氢原子大,不能继续扩散,不断聚积,产生巨大的氢分子压力,甚至会达到几万个大气压,使焊接接头开裂。
许多情况下,氢是诱发冷裂最活跃的因素。
3.焊接拉应力及拘朿应力较大(或应力集中)超过接头的强度极限时产生开裂。
(二)产生原因:可分为选材和焊接工艺两个方面。
1.选材方而(1)母材与焊材选择匹配不当,造成悬殊的强度差异;(2)材料中含碳、、铝、锐、硼等元素过髙,钢的淬硬敏感性增加。
2.焊接工艺方面(1)焊条没有充分烘干,药皮中存在着水分(游离水和结晶水):焊材及母材坡口上有油、锈、水、漆等:环境湿度过大(>90%);有雨、雪污染坡口。
以上的水分及有机物,在焊接电弧的作用下分解产生H,使焊缝中溶入过饱和的氢。
(2)环境温度太低:焊接速度太快;焊接线能量太少。
会使接头区域冷却过快,造成很大的内应力。
(3)焊接结构不当,产生很大的拘束应力。
(4)点焊处已产生裂纹,焊接时没有铲除掉;咬边等应力集中处引起焊趾裂纹:未焊透等应力集中处引起焊根裂纹;夹渣等应力集中处引起焊缝中裂纹。
焊接冷热裂纹知识

焊接热裂纹和冷裂纹知识
(1)产生的温度和时间不同
热裂纹:产生在焊缝结晶过程中,即由结晶开始一直到723度以前。
冷裂纹:产生在焊件冷却到200-300度以下,焊后数小时。
(2)产生的部位和方向不同
热裂纹:多数产生在焊缝金属中,少数延伸到基本金属中去,有纵向也有横向。
冷裂纹:多数产生在熔合线基本金属侧,大多数为纵向,少数为横向。
(3)外观特征不同
热裂纹:断面有明显的氧化色彩(发蓝黑)。
冷裂纹:断口发亮,为脆性断口,无氧化色彩。
(4)金相结构不同
热裂纹:沿晶界开裂。
冷裂纹:贯穿晶粒内部,即穿晶开裂。
(5)产生的原因不同
热裂纹:①焊缝金属中的低熔点共晶成分和杂质造成晶间偏析,形成液态间层。
②金属冷却过程中引起的拉应力使液态间层拉开而形成裂纹。
冷裂纹:①淬硬组织,热影响区产生马氏体组织,塑性下降,脆性增加。
②氢的作用,氢在结晶过程中向热影响区扩散,在空穴处氢原子结合成氢分子,造成很大压力。
③焊接应力作用。
焊接裂纹的分类

焊接裂纹的分类焊接裂纹是指在焊接过程中或焊接后,由于内部应力、冷却速度等因素的影响,导致焊接接头内部或表面产生的裂纹。
根据裂纹的产生原因和裂纹形态不同,可以将焊接裂纹分为不同的类型。
下面就几种常见的焊接裂纹进行分类和介绍。
1. 热裂纹热裂纹是由于焊缝热影响区的结构组织和化学成分发生变化而引起的。
热裂纹通常在焊接过程中或焊接后的短时间内出现。
根据裂纹出现的位置和形态,热裂纹可以分为几种不同的类型:(1) 固相转变裂纹:当金属处于固相转变的温度范围内,由于组织的变化和内部应力的影响,容易产生热裂纹。
这种裂纹通常直接出现在焊缝和热影响区的边缘。
(2) 晶粒边界裂纹:在焊接过程中,由于焊接区和热影响区的组织结构发生变化,晶粒边界处的脆性增大,容易形成裂纹。
这种裂纹通常呈线状,沿着晶粒边界方向延伸。
(3) 退火裂纹:由于焊接过程中产生的应力或变形,在焊接后的退火过程中,容易引起焊接接头的内部产生裂纹。
这种裂纹通常在焊缝和热影响区内部产生,对焊接接头的强度和韧性产生负面影响。
2. 冷裂纹冷裂纹是由于焊接后在室温条件下产生的裂纹。
冷裂纹通常是由于焊接接头内部的残余应力和变形引起的。
根据裂纹形态和位置的不同,冷裂纹可以分为以下几种类型:(1) 焊接残余应力裂纹:由于焊接接头的热变形以及冷却过程中产生的残余应力,容易导致焊接接头内部产生裂纹。
这种裂纹通常沿着焊缝或热影响区的方向延伸,严重影响焊接接头的力学性能。
(2) 氢致裂纹:在焊接过程中,如果焊接材料和焊接环境中存在水、油、脂肪等含氢物质,容易引起焊接接头内部产生氢致裂纹。
这种裂纹通常呈细小的网状分布,对焊接接头的韧性和可靠性产生严重影响。
3.应力腐蚀裂纹应力腐蚀裂纹是由于金属在受到应力和腐蚀介质的共同作用下产生的裂纹。
这种裂纹通常在金属制品长期使用过程中出现,对金属制品的可靠性和使用寿命产生严重影响。
根据裂纹产生的条件和形态不同,应力腐蚀裂纹可以分为以下几种类型:(1) 晶间腐蚀裂纹:当金属在受到腐蚀介质和应力的作用下,容易发生晶间腐蚀和产生裂纹。
焊接冷裂纹

焊接冷裂纹1.1焊接裂纹的简介焊接裂纹是指金属在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区金属原子结合力遭到破坏所产生的缝隙。
在焊接生产中由于钢种和结构的类型不同,可能出现各种裂纹,焊接裂纹产生的条件和原因各有不同。
有些裂纹在焊后立即产生,有些在焊后延续一段时间才发生,有的在一定外界条件诱发下才产生;裂纹既出现在焊缝和热影响区表面,也产生在其内部。
焊接裂纹对焊接结构的危害有:①减少了焊接接头的工作截面,因而降低了焊接结构的承载能力②构成了严重的应力集中。
裂纹是片状缺陷,其边缘构成了非常尖锐的切口应力集中,既降低结构的疲劳强度,又容易引发结构的脆性破坏。
③造成泄漏。
由于盛装或输送有毒且可燃的气体或液体的各种焊接储罐和管道,若有穿透性裂纹,必然发生泄漏。
④表面裂纹能藏污纳垢,容易造成或加速结构的腐蚀。
⑤留下隐患,使结构变得不可靠。
由于延迟裂纹产生具有不定期性,微裂纹和内部裂纹易于漏检,这些都增加了焊接结构在使用中的潜在危险。
焊接裂纹是焊接结构最严重的工艺缺陷,直接影响产品质量,甚至引起突发事故,例如,焊接桥梁坍塌,大型海轮断裂,各种类型压力容器爆炸等恶性事故。
随着现代钢铁、石油化工、船舶和电力等工业的发展,在焊接结构方面都趋向大型化、大容量和高参数方向发展,有的在低温、深冷或腐蚀介质下工作,都广泛采用各种低合金高强钢材料,而这些金属材料通常对裂纹十分敏感。
因此,从焊接裂纹的微观形态、起源与扩展及影响因素等进行深入分析,对防止焊接裂纹和保证工程结构的质量稳定性是十分重要的。
1.2焊接裂纹分类焊接裂纹按产生的机理可分为热裂纹、冷裂纹、再热裂纹、层状撕裂和应力腐蚀裂纹等。
(1)热裂纹焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区产生的裂纹,它的特征是沿原奥氏体晶界开裂。
根据所焊金属的材料不同,产生热裂纹的形态、温度区间和主要原因也不同。
一般把热裂纹分为结晶裂纹、液化裂纹和多边化裂纹三类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊接冷裂纹1.前言1.1焊接裂纹的简介焊接裂纹是指金属在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区金属原子结合力遭到破坏所产生的缝隙。
在焊接生产中由于钢种和结构的类型不同,可能出现各种裂纹,焊接裂纹产生的条件和原因各有不同。
有些裂纹在焊后立即产生,有些在焊后延续一段时间才发生,有的在一定外界条件诱发下才产生;裂纹既出现在焊缝和热影响区表面,也产生在其内部。
焊接裂纹对焊接结构的危害有:①减少了焊接接头的工作截面,因而降低了焊接结构的承载能力②构成了严重的应力集中。
裂纹是片状缺陷,其边缘构成了非常尖锐的切口应力集中,既降低结构的疲劳强度,又容易引发结构的脆性破坏。
③造成泄漏。
由于盛装或输送有毒且可燃的气体或液体的各种焊接储罐和管道,若有穿透性裂纹,必然发生泄漏。
④表面裂纹能藏污纳垢,容易造成或加速结构的腐蚀。
⑤留下隐患,使结构变得不可靠。
由于延迟裂纹产生具有不定期性,微裂纹和内部裂纹易于漏检,这些都增加了焊接结构在使用中的潜在危险。
焊接裂纹是焊接结构最严重的工艺缺陷,直接影响产品质量,甚至引起突发事故,例如,焊接桥梁坍塌,大型海轮断裂,各种类型压力容器爆炸等恶性事故。
随着现代钢铁、石油化工、船舶和电力等工业的发展,在焊接结构方面都趋向大型化、大容量和高参数方向发展,有的在低温、深冷或腐蚀介质下工作,都广泛采用各种低合金高强钢材料,而这些金属材料通常对裂纹十分敏感。
因此,从焊接裂纹的微观形态、起源与扩展及影响因素等进行深入分析,对防止焊接裂纹和保证工程结构的质量稳定性是十分重要的。
1.2焊接裂纹分类焊接裂纹按产生的机理可分为热裂纹、冷裂纹、再热裂纹、层状撕裂和应力腐蚀裂纹等。
(1)热裂纹焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区产生的裂纹,它的特征是沿原奥氏体晶界开裂。
根据所焊金属的材料不同,产生热裂纹的形态、温度区间和主要原因也不同。
一般把热裂纹分为结晶裂纹、液化裂纹和多边化裂纹三类。
①结晶裂纹(凝固裂纹):是在焊缝凝固过程的后期所形成的裂纹,所有结晶裂纹都是沿一次结晶的晶界分布,特别是沿柱状晶的晶界分布。
裂纹多呈纵向分布在焊缝中心,也有呈弧形分布在焊缝中心线两侧;通常纵向裂纹铰长、较深,而弧形裂纹较短、较浅。
弧坑裂纹也属结晶裂纹,它产生于焊缝收尾处。
多数结晶裂纹的断口上可以看到氧化色彩,表明它是在高温下产生的。
在扫描电镜下观察结晶裂纹的断口具有典型的沿晶开裂特征,断口晶粒表面光滑。
②液化裂纹:在母材近缝区或多层焊的前一焊道因受热作用而液化的晶界上形成的焊接裂纹。
液化裂纹多为微裂纹,尺寸很小,一般在0.5mm以下,个别达1mm。
主要出现在合金元素铰多的高合金钢、不锈钢和耐热合金的焊件中。
③多边化裂纹(高温低塑性裂纹):焊接时在金属多边化晶界上形成的一种热裂纹,由于在高温时塑性很低造成的,多发生在纯金属或单相奥氏体焊缝中,个别情况下出现在热影响区中。
(2)冷裂纹冷裂纹是焊接中最为普遍的一种裂纹,它是焊后冷至较低温度下产生的。
对于低合金高强钢来讲在Ms附近,是由拘束应力、淬硬组织和氢的共同作用而产生的。
冷裂纹主要发生在低合金钢、中合金钢、中碳和高碳钢的焊接热影响区,个别情况下,如焊接超高强钢或某些铁合金时,也出现在焊缝金属上。
冷裂纹的起源多发生在具有缺口效应的焊接热影响区或物理化学不均匀的氢聚集的局部地带。
冷裂纹有时沿晶界扩展,有时穿晶前进,较多的是沿晶为主兼有穿晶的混合型断裂。
裂纹的分布与最大应力方向有关,纵向应力大,出现横向冷裂纹,横向应力大,出现纵向裂纹。
冷裂纹大致可以分为三类:淬硬脆化裂纹纹、低塑性脆化裂纹和延迟裂纹。
(3)再热裂纹(消除应力裂纹)厚板焊接结构并含有某些沉淀强化合金元素的钢材,在进行消除应力热处理或在一定温度下服役的过程中,在焊接热影响区粗晶部位发生的裂纹称为再热裂纹。
由于这种裂纹是再次加热过程中产生的,故称为“再热裂纹”,简称SR裂纹。
再热裂纹多发生在低合金高强钢、珠光体耐热钢、典氏体不锈钢和某些镍基合金的焊接热影响区粗晶部位。
再热裂纹的敏感温度,视钢种的不同约在550-650℃。
这种裂纹具有沿晶开裂的特点,但在本质上与结晶裂纹不同。
(4)层状撕裂当焊接大型厚壁结构时,如果在钢板厚度方向受到较大的拉伸应力,就可能在钢板内部出现沿钢板轧制方向发展的具有阶梯状的裂纹,这种裂纹称为层状撕裂。
层状撕裂常出现在T形接头、角接接头和十字接头中,对接接头中很少出现,但当在焊趾和焊根处由于冷裂纹的诱导也会出现层状撕裂,层状撕裂不发生在焊缝上,只产生在焊接热影响区或母材金属的内部,一般在钢表面上难以发现;由焊趾或焊根冷裂纹诱发的层状撕裂,有可能在这些部位暴露于金属表面。
层状撕裂与钢种强度级别无关,主要与钢中夹杂物的数量及其分布状态有关,在撕裂平台上常发现不同种类的非金属夹杂物。
层状撕裂的危险在于它的隐蔽性,外观上没有任何迹象,现有的无损检测手段难以发现。
发生层状撕裂的结构多为大型厚壁的重要结构,如海洋采油平台、核反应堆压力容器、潜艇外壳等。
(5)应力腐蚀裂纹金属材料在一定温度下受腐蚀介质和拉伸应力共同作用而产生的裂纹称为应力腐蚀裂纹,简称SCC。
由应力腐蚀而引起的断裂没有明显的宏观变形、无任何征兆,破坏具有突发性,裂纹往往深入到金属内部,一旦发生很难修复。
从宏观形态看,应力腐蚀裂纹只产生在与腐蚀介质接触的金属表面,然后由表面向内部延伸,表面看呈多直线状、树枝状、龟裂状或放射状等多种形态,但都没有明显塑性变形,裂纹走向与所受拉应力垂直。
平焊缝上多为垂直焊缝的横向裂纹;而管材焊缝多为平行于焊缝的裂纹。
从微观形态看,深入金属内部的应力腐蚀裂纹呈干枯的树枝状,裂纹断口为典型的脆性断口。
一般情况下,低碳钢、低合金钢、铝合金等多为沿晶断裂。
2.焊接冷裂纹2.1冷裂纹的分类冷裂纹大致可以分为三类:淬硬脆化裂纹纹、低塑性脆化裂纹和延迟裂纹。
淬硬脆化裂纹(淬火裂纹) 。
一些淬硬倾向很大的钢种,焊接时即使没有氢的诱发,仅在拘束应力的作用下就能导致开裂。
它完全是由于冷却时发生马氏体相变而脆化所造成的,与氢的关系不大,基本上没有延迟现象。
焊后常立即出现,在热影响区和焊缝上都可发生。
焊接含碳量较高的Ni-Cr-Mo钢、马氏体不锈钢、工具钢,以及异种钢等都有可能出现这种裂纹。
低塑性脆化裂纹。
某些塑性较低的材料冷至低温时,由于收缩应变超过了材料本身所具有的塑性储备或材质变脆而产生的裂纹。
例如,铸铁补焊、堆焊硬质合金和焊接高铬合金时,就容易出现这类型纹。
通常也是焊后立即产生,无延迟现象。
延迟裂纹。
焊后不立即出现,有一定孕育期(又叫潜伏期),具有延迟现象,它是冷裂纹中较为常见的一种形态。
延迟现象决定于淬硬倾向、焊接接头的应力状态和熔敷金属中的扩散氢含量,其中扩散氢起着非常特殊的作用。
2.2冷裂纹的特征冷裂纹产生于有淬硬倾向的中碳、高碳钢及低合金高强度钢的焊接接头中,裂纹大多在热影响区,通常发源于熔合线附近,有时也出现在高强度钢或钛合金的焊缝中。
其出现的时间具有不确定性,有时出现在焊接过程中,但较多的是在焊后延迟一段时间后才产生,延迟的时间可能几秒钟、几分钟,也可能达数月之久。
从宏观上看冷裂纹的断口具有脆性断裂的特征,有金属光泽,呈人字形发展;从微观上看裂纹多起源于粗大奥氏体晶粒的晶界处,可以沿晶发展也可以穿晶发展,多是沿晶与穿晶断裂的混合。
根据焊接冷裂纹在焊接接头中发生和分布的特征,将焊接冷裂纹分为四种典型情况①焊道下裂纹:裂纹发生于距熔合线0.1-0.2mm的近缝区,这个部位常具有粗大的马氏体组织,裂纹走向与熔合线大体平行,而且一般不显露于焊缝表面。
②焊趾裂纹:即在应力集中的焊趾(焊缝表面与母材交界处)处形成的裂纹,裂纹一般向热影响区的粗晶区发展,有时也向焊缝中发展。
③根部裂纹:即沿应力集中的焊根处形成的裂纹,裂纹可能扩展到热影响区的粗晶区,也可能向焊缝中发展。
根部裂纹是高强钢焊接时最为常见的一种冷裂纹类型。
④横向裂纹:对于淬硬倾向大的合金钢,一般起源于熔合线,沿垂直于熔合线的方向向热影响区及焊缝扩展,常可显露于表面。
在厚板多层焊时,则多发生在距焊缝上表面有一小段距离的焊缝内部,为不显于表面的微裂纹形态,其方向大致垂直于焊缝轴线。
降低焊缝氢含量可以防止这种焊缝横裂纹。
2.2冷裂纹产生的原因焊接接头中的氢含量、钢种的淬硬倾向、焊接接头的拘束应力是形成冷裂纹的三大要素,通常称为生成冷裂纹的三要素。
三大因素之间相互联系、相互依赖,不同条件下起主要作用的因素不同,它们对焊接冷裂纹产生的影响都有各自的内在规律。
2.2.1焊接接头中的氢含量氢在钢中以扩散氢和残余氢两种形式存在。
实验证明,只有扩散氢才会导致焊接冷裂纹,随着焊缝金属中扩散氢含量的增加,冷裂纹率提高。
另外,扩散氢还影响延迟裂纹延时的长短,扩散氢含量越高,延时越短。
焊缝金属二次结晶时要发生金属的相变,金属相变时,氢的溶解度会发生急剧变化。
因为氢在奥氏体中的溶解度大,在铁素体中的溶解度小,当焊缝金属由奥氏体向铁素体转变时,氢的溶解度会突然下降,与此同时,氢的扩散速度突然增加。
氢在铁素体、珠光体中的扩散速度较大,氢很快从焊缝穿过熔合区向未发生分解的奥氏体热影响区中扩散。
氢在奥氏体中的扩散速度小,来不及扩散到距离熔合区较远的母材中,在熔合区附近形成富氢地带。
当滞后相变的热影响区发生奥氏体向马氏体转变时,氢以过饱和状态残存于马氏体中。
如果热影响区存在微观缺陷(显微杂质和微孔等),氢会在这些原有微观缺陷的地方不断扩展,直至形成宏观裂纹。
氢由溶解、扩散、聚集、产生应力以至开裂需要时间,因此具有延迟性。
焊接热影响区中氢的浓度足够高时,能使具有马氏体组织的热影响区进一步脆化,形成焊道下裂纹;氢的浓度稍低时,仅在有应力集中的部位出现裂纹,容易形成焊趾裂纹和焊根2.2.2钢种的淬硬倾向。
焊接时钢种的淬硬倾向越大,就意味着得到更多的马氏体组织,从而越容易产生冷裂纹。
马氏体是碳在α-铁中的过饱和固溶体,是一种脆硬组织,在一定的应变条件下,马氏体由于变形能力低而容易发生脆性断裂形成裂纹。
焊接接头的淬硬倾向主要取决于钢种的化学成分、焊接工艺、结构板厚度及冷却条件等。
2.2.3焊接接头的拘束应力。
焊接时产生和影响拘束应力的主要因素有①焊缝和热影响区在不均匀加热和冷却过程中的热应力;②金属相变时由于体积的变化而引起的组织应力;③结构在拘束条件下产生的应力:结构形式、焊接位置、施焊顺序及方向等都会使焊接接头承受不同的应力。
2.3防止冷裂纹的措施主要是对影响冷裂纹产生的三大要素进行控制,如改善焊接接头组织、消除一切氢的来源和尽可能降低焊接应力。
常用措施主要有控制母材的化学成分,合理选用焊接材料和严格控制焊接工艺,必要时采用焊后热处理等。