2018年材料阅读题及答案
2018年高考语文北京卷‘答案

绝密★启用前 2018年普通高等学校招生全国统一考试(北京卷)语 文(满分:150分,考试时间:150分钟)一、本大题共7小题,共23分。
阅读下面的材料,完成1~7题。
材料一当年,科学技术的巨大进步推动了人工智能的迅猛发展,人工智能成了全球产业界、学术界的高频词。
有研究者将人工智能定义为:对一种通过计算机实现人脑思维结果,能从环境中获取感知并执行行动的智能体的描述和构建。
人工智能并不是新鲜事物。
20世纪中叶,“机器思维”就已出现在这个世界上。
1936年,英国数学家阿兰·麦席森·图灵从模拟人类思考和证明的过程入手,提出利用机器执行逻辑代码来模拟人类的各种计算和逻辑思维过程的设想。
1950年,他发表了《计算机器与智能》一文,提出了判断机器是否具有智能的标准,即“图灵测试”。
“图灵测试”是指一台机器如果能在5分钟内回答由人类测试者提出的一系列问题,且超过30%的回答让测试者误认为是人类所答,那么就可以认为这机器具有智能。
20世纪80年代,美国哲学家约翰·希尔勒教授用“中文房间”的思维实验,表达了对“智能”的不同思考。
一个不懂中文只会说英语的人被关在一个封闭的房间里,他只有铅笔、纸张和一大本指导手册,不时会有画着陌生符号的纸张被递进来。
被测试者只能通过阅读指导手册找寻对应指令来分析这些符号。
之后,他向屋外的人交出一份同样写满符号的答卷。
被测试者全程都不知道,其实这些纸上用来记录问题和答案的符号是中文。
他完全不懂中文,但他的回答是完全正确的。
上述过程中,被测试者代表计算机,他所经历的也正是计算机的工作内容,即遵循规则,操控符号。
“中文房间”实验说明,看起来完全智能的计算机程序其实根本不理解自身处理的各种信息。
希尔勒认为,如果机器有“智能”,就意味着它具有理解能力。
既然机器没有理解能力,那么所谓的“让机器拥有人类智能”的说法就是无稽之谈了。
在人工智能研究领域中,不同学派的科学家对“何为智能”的理解不尽相同。
2018年高考真题信息提取类 Word版含解析

命题角度2信息提取类高考真题体验·对方向1.(2018全国Ⅰ·42)(12分)阅读材料,完成下列要求。
材料英国作家笛福创作的小说《鲁滨逊漂流记》出版于1719年,其中许多情节反映了世界近代早期的重大历史现象。
小说梗概如下:鲁滨逊出生于英国一个生活优裕的商人家庭,渴望航海冒险。
他在巴西开办了种植园,看到当地缺少劳动力,转而去非洲贩卖黑奴。
在一次航海途中,鲁滨逊遇险漂流到一座荒岛上。
他凭借自己的智慧和力量,制造工具,种植谷物,驯养动物,经过十多年,生活居然“过得很富裕”。
宗教信仰是支撑鲁滨逊的重要力量,且是“在没有别人的帮助和教导下,通过自己阅读《圣经》无师自通的”。
后来,鲁滨逊救出一个濒临被杀的“野人”,岛上居民也有所增加,整个小岛都是他的个人财产。
鲁滨逊获救回国后,还去“视察”过他的领地。
结合世界近代史的所学知识,从上述梗概中提取一个情节,指出它所反映的近代早期重大历史现象,并概述和评价该历史现象。
(要求:简要写出所提取的小说情节及历史现象,对历史现象的概述和评价准确全面。
)评分标准:示例:情节:鲁滨逊遇险漂流到海岛上,在那里建立了自己的领地。
历史现象:这一情节反映出近代早期的西欧殖民扩张。
概述和评价:近代西方殖民扩张始于新航路开辟,在亚非拉地区依靠武力等方式强占殖民地,掠夺财富,进行移民,开展贸易。
殖民扩张掠夺的大量财富流入西欧,为资本主义提供了资本原始积累,给遭受侵略的地区和人民造成极大灾难,客观上带动了世界市场的形成。
”只作评卷参考,不作为唯一标准答案:。
),指出它所反映的历史现象,并概述和评价该现象。
答题时可从小说中任意提取情节,关键是要以小见大,上升到殖民扩张、奴隶贸易、宗教改革等重大历史事件,再结合所学知识概括、评价这一历史事件即可。
2.(2018全国Ⅲ·42)(12分)阅读材料,完成下列要求。
材料东汉史学家班固所撰《汉书·古今人表》中的部分人物及相应等级根据材料并结合所学中国古代史知识,对上表的内容提出自己的看法,并予以说明。
45.阅读材料,运用所学知识回答问题(12分)2018年10

45.阅读材料,运用所学知识回答问题(12分)2018年10【题目】阅读材料,综合运用所学知识回答问题。
材料一:15世纪到17世纪,欧洲的船队出现在世界各处的海洋上,寻找着新的贸易路线和贸易伙伴,以发展欧洲新生的资本主义。
伴随着新航路的开辟,东西方之间的文化、贸易交流开始大量增加,殖民主义与自由贸易主义也开始出现。
欧洲这个时期的快速发展奠定了其超过亚洲繁荣的基础。
对除欧洲以外的国家和民族而言,地理大发现带来的影响则是复杂而矛盾的,除了物资交流外,带给原生居民的常是死亡和占领,可以说是一部大侵略史。
材料二: 18世纪60年代,工业革命从英国先后扩展到法、德、美等许多国家。
工业革命导致了社会生产力的提高,促使资本主义工业国到世界各地抢占商品市场和原料产地,把许多殖民地国家和半殖民地国家和地区卷入资本主义世界体系,使之成为经济附庸,世界市场体系初步形成。
19世纪70年代后,工业革命进入新的时期,造成社会生产力进一步提高,资本主义各国争先恐后地争夺殖民地,划分势力范围,以便为本国经济发展获得更多的市场,20世纪初世界差不多被瓜分完毕,世界市场最终形成。
材料三:“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称。
推进“一带一路”建设既是中国扩大和深化对外开放的需要,也是加强和亚欧非及世界各国互利合作的需要,中国愿意在力所能及的范围内承担更多责任义务,为人类和平发展作出更大的贡献。
推进“一带一路”建设将充分依靠中国与有关国家既有的双多边机制,借助既有的、行之有效的区域合作平台,高举和平发展的旗帜,积极发展与沿线国家的经济合作伙伴关系,共同打造政治互信、经济融合、文化包容的利益共同体、命运共同体和责任共同体。
(1)根据材料一、二反映了世界经济发展的趋势是什么?据材料和所学知识归纳推动这一趋势发展的因素有哪些?(2)材料三体现了我国的那一国策?(3)据材料三和所学概括指出,如何推进“一带一路”建设。
2018高考全国卷2语文真题及参考答案

绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅱ)语文注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
所谓“被遗忘权”,即数据主体有权要求数据控制者永久删除有关数据主体的个人数据,有权被互联网遗忘,除非数据的保留有合法的理由。
在大数据时代,数字化、廉价的存储器,易于提取,全球性覆盖作为数字化记忆发展的四大驱动力,改变了记忆的经济学,使得海量的数字化记忆不仅唾手可得,甚至比选择性删除所耗费的成本更低。
记忆和遗忘的平衡反转,往事正像刺青一样刻在我们的数字肌肤上;遗忘变得困难,而记忆却成了常态。
“被遗忘权”的出现,意在改变数据主体难以“被遗忘”的格局,赋予数据主体对信息进行自决控制的权利,并且有着更深的调节,修复大数据时代数字化记忆伦理的意义。
首先,“被遗忘权”不是消极地预御自己的隐私不受侵犯,而是主体能动地控制个人信息,并界定个人隐私的边界,进一步说,是主体争取主动建构个人数字化记忆与遗忘的权利,与纯粹的“隐私权”不同,“被遗忘权”更是一项主动性的权利,其权利主体可自主决定是否行使该项权利对网络上已经被公开的有关个人信息进行删除。
是数据主体对自己的个人信息所享有的排除他人非法利用的权利。
其次,在数据快速流转且难以被遗忘的大数据时代,“被遗忘权”对调和人类记忆与遗忘的平衡具有重要的意义。
如果在大数据时代不能“被遗忘”,那意味着人们容易被囚禁在数字化记忆的监狱之中,不论是个人的遗忘还是社会的遗忘,在某种程度上都是一种个人及社会修复和更新的机制,让我们能够从过去经验中吸取教训,面对现实,想象未来,而不仅仅被过去的记忆所束缚。
2018年中考语文试题分项版解析汇编第03期专题06扩展压缩句式修辞标点含解析

专题06 扩展、压缩、句式、修辞、标点1.【2018年中考广西梧州卷】阅读下列材料,按要求答题。
材料一:有专家认为,“20世纪人类最糟糕的发明就是塑料的发明”。
塑料垃圾最大的特征就是难以降解。
塑料瓶子、塑料盒和塑料袋等,人们使用过后,它们的降解至少需要几百年。
材料二:某机构透露,仅某家跨国软饮料企业每年生产的塑料瓶就超过1100亿只。
另据统计,按照每个订单平均使用两个餐盒估算,目前国内互联网订餐平台一天使用的塑料餐盒量约达4000万个。
快递行业一年需要120亿个塑料袋、247亿米的封箱胶带。
材料三:目前,美国加州大学芭芭拉分校的工业生态学家罗兰博士及其同事在《科学进展》杂志上发表了一篇论文,计算出人类迄今为止生产的所有塑料为83亿吨。
其中约63亿吨如今成为塑料垃圾,这些垃圾有7%被填入垃圾填埋场或置于自然环境中。
统计表明,现在全球每年消耗2.45亿吨塑料,全球范围内,只有14%的塑料包装被回收,1/3的包装完全没有被收集,直接污染着环境,己经进入海洋食物链的每个层级,甚至回到我们的餐来上。
(1)请用一句话概括以上三则材料的主要内容。
______________________________(2)请你针对塑料污染问题拟出两条具体可行的措施。
______________________________【答案】(1)塑料制品使用量大,难降解,已成为人类生态的最大潜在威胁。
(2)(2)示例:应该制定专门的法规,强制减少或不使用塑料制品;鼓励市民垃圾分类,增大塑料制品回收利用的规模。
【解析】(1)此题考查提取材料信息。
对于解答材料的整合与探究这类题目一定要将几则材料内容都2.【2018年中考贵州铜仁卷】下列句子标点符号使用错误的一项是()A.“四书”之一的《大学》里这样说:一个人教育的出发点是“格物”和“致知”。
B.罗布泊还能重现往日的生机吗?我问自己。
C.他消融了、归化了,说不上快乐,也没有悲哀!D.人,成了茫茫一片;声,成了茫茫……【答案】C【解析】试题分析:本题考查标点符号的运用。
2018年高考试题真题——语文(新课标全国卷Ⅰ(1)) Word版含详细答案解析

2018年高考试题真题——语文(新课标全国卷Ⅰ(1)) Word版含详细答案解析2018年普通高等学校招生全国统一考试语文试题注意事项:1.请考生在答题卡上填写姓名和座位号。
2.选择题请用铅笔将正确答案涂黑,如需更改,请先用橡皮擦干净。
3.非选择题请在答题卡上作答,不要在试卷上作答。
4.考试结束后,请将试卷和答题卡一并交回。
一、现代文阅读(35分)一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
诸子之学起源于先秦时期,当时涌现出一批富有创见的思想家,形成了思想史上的奇观。
狭义上,诸子之学仅限于先秦时代;广义上,诸子之学则贯穿于中国思想发展的整个历程,至今仍未结束。
诸子之学的内在品格是历史的承继性、思想的创造性和突破性。
新子学作为现代诸子之学,也应该具备这些品格。
这可以从“照着讲”和“接着讲”两个方面来理解。
一般而言,“照着讲”主要是从历史角度对经典作品进行实证性研究,如训诂、校勘、文献编纂等。
这方面的研究不仅需要回顾、反思历史上的思想家所说的内容,还需要总结其中具有创造性和生命力的内容,为当今的思考提供重要的思想资源。
与“照着讲”相关的是“接着讲”,从思想的发展和诸子之学的关系来看,“接着讲”接近于诸子之学所具有的思想突破性。
它意味着延续诸子注重思想创造的传统,以中西思想互动为背景,“接着讲”无法回避中西思想之间的关系。
在中西思想相遇的背景下,“接着讲”同时展开为中西思想的交融,从更深层次看,这种交融具体展现为世界文化的建构和发展过程。
中国思想传统和西方思想传统都是世界文化的重要资源,世界文化的发展以这两者的互动为前提。
这种意义上的“新子学”同时表现为世界文化发展过程中的创造性思想系统。
相对于传统的诸子之学,“新子学”获得了新的内涵和新的形态。
___女士是一位瘦秀成熟的女性,身上散发着文人气质和军人风度。
她率领的抗联活动在小兴安岭的崇山峻岭中进行,那里的钟声传得很远,给她留下了清晰的回忆。
2018江苏高考语文真题 附加题及答案

一、阅读材料,完成21-23题。
(10分)书汤海秋诗集后龚自珍人以诗名,诗尤以人名。
唐大家若李、杜、韩及昌谷、玉谿,及宋、元眉山、涪陵、遗山,当代吴娄东,皆诗与人为一。
人外无诗,诗外无人,其面目也完。
益阳汤鹏,海秋其字,有诗三千余篇,芟而存之二千余篇,评者无虑数十家,最后属龚巩祚一言。
巩祚亦一言而已,曰:完。
何以谓之完也?海秋心迹尽在是所欲言者在是所不欲言而卒不能不言在是所不欲言而竟不言于所不言求其言亦在是。
要不肯挦撦他人之言以为己言,任举一篇,无论识与不识,曰:此汤益阳之诗。
[注]挦撦:摘取。
21.用斜线“/”给上面文言文中的画线部分断句。
(限4处)(4分)22.文中昌谷、玉溪的本名分别是、。
(2分)23.根据材料,用自己的话概括汤鹏诗作的特点。
(4分)二、名著阅读题(15分)24.下列对有关名著的说明,不正确的两项是(5分)(选择两项且全答对得5分,选择两项对一项得2分,其余情况得0分)A.《三国演义》中,曹操攻陷徐州后,派遣张辽劝降陷入困境中的关羽,关羽提出了“卸甲”的三个条件,这一情节突出了关羽的忠义形象。
B.《茶馆》中,秦仲义说:“只有那么办,国家才能富强!”他说的“那么办”是指通过收回房子、卖掉土地等途径,筹集资金来开办工厂。
C.《风波》中,七斤曾经在喝醉后骂有些遗老臭味的赵七爷是“贱胎”,并在革命后很快剪掉了辫子,这体现了他是一个具有新思想的农民。
D.《老人与海》中,老渔夫圣地亚哥奋力捕到的大马林鱼被鲨鱼给毁了,回到港口后,男孩遗憾地对他说,以后他们俩不能一起捕鱼了。
E.《欧也尼・葛朗台》中,葛朗台太太的性情极好,从不向丈夫要钱,她有着天使般的温柔,她的善良和忍让反衬了格朗台的冷漠和贪婪。
25.简答题(10分)(1)《红楼梦》“散余资贾母明大义,复世职政老沐天恩”一回中,贾母得知府中库藏已空、入不敷出的实情后,将自己多年的积蓄拿出来,以渡难关。
请结合这一情节,分析贾母的形象特点。
(6分)(2)巴金的《家》中,梅表姐因躲避炮火再次来到高家,他在花园里看见觉新站在树下,她“嘴唇微微动一下,像要说话”,最终还是“转过身默默地走了”。
十年语文高考文言文阅读真题及答案解析(2018年)

十年语文高考文言文阅读真题及答案解析(2018年)1.阅读下面的文言文,完成小题。
重到沭阳图记袁枚古之人往往于旧治之所三致意焉。
盖贤者视民如家,居官而不能忘其地者,其地之人,亦不能忘之也。
余宰沭阳二年,乙丑,量移白下。
今戊申矣,感吕峄亭观察三札见招,十月五日渡黄河,宿钱君接三家。
钱故当时东道主,其父鸣和癯而髯,接三貌似之,与谈乃父事,转不甚晓。
余离沭时,渠裁断乳故也。
夜阑置酒,闻车声啍啍,则峄亭遣使来迎。
迟明行六十里,峄亭延候于十字桥,彼此喜跃,骈辚同驱。
食倾,望见百雉遮迣,知沭城新筑。
衣冠数十辈争来扶车。
大概昔时骑竹马者,俱龙钟杖藜矣。
越翌日,入县署游观,到先人秩膳处,姊妹斗草处,昔会宾客治文卷处,缓步婆娑,凄然雪涕,虽一庖湢、一井匽,对之情生,亦不自解其何故。
有张、沈两吏来,年俱八旬。
说当时决某狱,入帘荐某卷,余全不省记。
憬然重提,如理儿时旧书,如失物重得。
邑中朱广文工诗,吴中翰精鉴赏,解、陈二生善画与棋,主人喜论史鉴,每漏尽,口犹澜翻。
余或饮,或吟,或弈,或写小影,或评书画,或上下古今,或招人来,或呼车往,无须臾闲。
遂忘作客,兼忘其身之老且衰也。
居半月,冰霰渐飞,岁将终矣,不得已苦辞主人。
主人仍送至前所迎处,代为治筐箧,束缰靷毕,握手问曰:“何时再见先生?”余不能答,非不答也,不忍答也。
嗟乎!余今年七十有三矣,忍欺君而云再来乎?忍伤君而云不来乎?然以五十年前之令尹,朅来旧邦,世之如余者少矣;四品尊官,奉母闲居,犹能念及五十年前之旧令尹,世之如吕君者更少矣。
离而合,合而离,离可以复合,而老不能再少。
此一别也,余不能学太上之忘情,故写两图,一以付吕,一以自存,传示子孙,俾知官可重来,其官可想,迎故官如新官,其主人亦可想。
孟子曰:闻伯夷、柳下惠之风者,奋乎百世之下,而况于亲炙之者乎?提笔记之,可以风世①,又不徒为区区友朋聚散之感也。
[注]①风世:劝勉世人。
(选自《小仓山房诗文集》,有删节)(1)对下列加下划线词的解释,不正确的一项是()A.余宰沭阳二年宰:治理B.说当时决某狱决:打开C.代为治筐治:备办D.奉母闲居奉:侍奉(2)下列对原文有关内容的概括和分析,不正确的一项是()A.四品官员吕峄亭在家闲居期间,连续写信邀请老县令旧地重游,袁枚因此再到沭阳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆中考材料阅读题分类讲练(含答案)类型1 代数型新定义问题例1【2017·重庆A 】对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以,F(123)=6.(1)计算:F(243),F(617);(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y(1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =F ()s F ()t .当F(s)+F(t)=18时,求k 的最大值.针对训练1.对于一个两位正整数xy(0≤y ≤x ≤9,且x 、y 为正整数),我们把十位上的数与个位上的数的平方和叫做t 的“平方和数”,把十位上的数与个位上的数的平方差叫做t 的“平方差数”.例如:对数62来说,62+22=40,62-22=32,所以40和32就分别是62的“平方和数”与“平方差数”.(1)75的“平方和数”是________,5可以是________的“平方差数”;若一个数的“平方和数”为10,它的“平方差数”为8,则这个数是________.(2)求证:当x ≤9,y ≤8时,t 的2倍减去t 的“平方差数”再减去99所得结果也是另一个数的“平方差数”.(3)将数t 的十位上的数与个位上的数交换得到数t ′,若t 与t 的“平方和数”之和等于t ′与t ′的“平方差数”之和,求t.2.将一个三位正整数n 各数位上的数字重新排列后(含n 本身).得到新三位数abc(a <c),在所有重新排列中,当||a +c -2b 最小时,我们称abc 是n 的“调和优选数”,并规定F(n)=b 2-ac.例如215可以重新排列为125、152、215,因为||1+5-2×2=2,||1+2-2×5=7,||2+5-2×1=5,且2<5<7,所以125是215的“调和优选数”,F(215)=22-1×5=-1. (1)F(236)=________;(2)如果在正整数n 三个数位上的数字中,有一个数是另外两个数的平均数,求证:F(n)是一个完全平方数;(3)设三位自然数t =100x +60+y(1≤x ≤9,1≤y ≤9,x ,y 为自然数),交换其个位上的数字与百位上的数字得到数t ′.若t -t ′=693,那么我们称t 为“和顺数”.求所有“和顺数”中F(t)的最大值.3.进制也就是进位制,是人们规定的一种进位方法.对于任何一种进制——X 进制,就表示某一位置上的数运算时是逢X 进一位.十进制是逢十进一,十六进制是逢十六进一,二进制就是逢二进一,以此类推,X 进制就是逢X 进一.为与十进制进行区分,我们常把用X 进制表示的数a 写成(a)X .类比于十进制,我们可以知道:X 进制表示的数(1111)X 中,右起第一位上的1表示1×X 0,第二位上的1表示1×X 1,第三位上的1表示1×X 2,第四位上的1表示1×X 3.故(1111)X =1×X 3+1×X 2+1×X 1+1×X 0,即:(1111)X 转化为十进制表示的数为X 3+X 2+X 1+X 0.如:(1111)2=1×23+1×22+1×21+1×20=15,(1111)5=1×53+1×52+1×51+1×50=156.根据材料,完成以下问题:(1)把下列进制表示的数转化为十进制表示的数:(101011)2=________;(302)4=________;(257)7=________(2)若一个五进制三位数(a4b)5与八进制三位数(ba4)8之和能被13整除(1≤a ≤5,1≤b ≤5,且a 、b 均为整数),求a 的值;(3)若一个六进制数与一个八进制数之和为666,则称这两个数互为“如意数”,试判断(mm1)6与(nn5)8是否互为“如意数”?若是,求出这两个数;若不是,说明理由.4.我们知道,任意一个正整数n 都可以进行这样的分解:n =p×q(p,q 是正整数,且p ≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解.并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数. 求证:对任意一个完全平方数m ,总有F(m)=1.(2)如果一个两位正整数t ,t =10x +y(1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”;(3)在(2)所得的“吉祥数”中,求F(t)的最大值.类型2 函数型新定义问题例2 已知一个大于1的正整数t 可以分解成t =ac +b 2的形式(其中a ≤c ,a ,b ,c 均为正整数),在t 的所有表示结果中,当bc -ba 取得最小值时,称“ac +b 2”是t 的“等比中项分解”,此时规定:P(t)=b +c 2(a +b ),例如:7=1×6+12=2×3+12=1×3+22,1×6-1×1>2×3-2×1>1×3-1×2,所以2×3+12是7的“等比中项分解”,P(7)=23.(1)若一个正整数q =m 2+n 2,其中m 、n 为正整数,则称q 为“伪完全平方数”,证明:对任意一个“伪完全平方数”q 都有Ρ(q)=12.(2)若一个两位数s =10x +y(1≤y ≤x ≤5,且x ,y 均为自然数),交换原数十位上的数字和个位上的数字得到的新数的两倍再加上原数的14倍,结果被8除余4,称这样的数s 为“幸福数”,求所有“幸福数”的P(s)的最大值.针对训练1. 如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法:①方程x 2-x -2=0是倍根方程;②若(x -2)(mx +n)=0是倍根方程,则4m 2+5mn +n 2=0;③若点(p ,q)在反比例函数y =2x 的图象上,则关于x 的方程px 2+3x +q =0是倍根方程.其中正确的是________.(写出所有正确说法的序号)2. 先阅读下列材料,再解答下列问题:材料:因式分解:(x +y)2+2(x +y)+1.解:将“x +y ”看成整体,令x +y =A ,则原式=A 2+2A +1=(A +1)2.再将“A ”还原,得原式=(x +y +1)2.上述解题中用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x -y)+(x -y)2=________; (2)因式分解:(a +b)(a +b -4)+4=________;(3)证明:若n 为正整数,则式子(n +1)(n +2)(n 2+3n)+1的值一定是某一个整数的平方.3. 若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.(1)实数1,2,3可以构成“和谐三数组”吗?请说明理由;(2)若M(t ,y 1),N(t +1,y 2),R(t +3,y 3)三点均在函数y =kx (k 为常数,k ≠0)的图象上,且这三点的纵坐标y 1,y 2,y 3构成“和谐三数组”,求实数t 的值;(3)若直线y =2bx +2c(bc ≠0)与x 轴交于点A(x 1,0),与抛物线y =ax 2+3bx +3c(a ≠0)交于B(x 2,y 2),C(x 3,y 3)两点.①求证:A ,B ,C 三点的横坐标x 1,x 2,x 3构成“和谐三数组”; ②若a >2b >3c ,x 2=1,求点P(c a ,ba )与原点O 的距离OP 的取值范围.4.若一个整数能表示成a2+b2(a,b是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为5=22+12.再如,M=x2+2xy+2y2=(x+y)2+y2(x,y是整数),所以M也是“完美数”.(1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”.(2)已知S=x2+4y2+4x-12y+k(x,y是整数,k是常数),要使S为“完美数”,试求出符合条件的一个k值,并说明理由.(3)如果数m,n都是“完美数”,试说明mn也是“完美数”.5. 若将自然数中能被3整除的数,在数轴上的对应点称为“3倍点”P,取任意的一个“3倍点”P,到点P距离为1的点所对应的数分别记为a,b.定义:若数K=a2+b2-ab,则称数K为“尼尔数”.例如:若P所表示的数为3,则a=2,b=4,那么K=22+42-2×4=12;若P所表示的数为12,则a=11,b=13,那么K=132+112-13×11=147,所以12,147是“尼尔数”.(1)请直接判断6和39是不是“尼尔数”,并且证明所有“尼尔数”一定被9除余3;(2)已知两个“尼尔数”的差是189,求这两个“尼尔数”.类型3 整除问题例3 我们知道,任意一个大于1的正整数n都可以进行这样的分解:n=p+q(p、q是正整数,且p≤q),在n的所有这种分解中,如果p、q两数的乘积最大,我们就称p+q是n的最佳分解.并规定在最佳分解时:F(n)=pq.例如6可以分解成1+5或2+4或3+3,因为1×5<2×4<3×3,所以3+3是6的最佳分解,所以F(6)=3×3=9.(1)求F(11)的值;(2)一个正整数,由N个数字组成,若从左向右它的第一位数能被1整除,它的前两位数被2除余1,前三位数被3除余2,前四位数被4除余3,…,一直到前N位数被N除余(N-1),我们称这样的数为“多余数”.如:236的第一位数“2”能被1整除,前两位数“23”被2除余1,“236”被3除余2,则236是一个“多余数”.若把一个小于200的三位“多余数”记为t,它的各位数字之和再加1为一个完全平方数,请求出所有“多余数”中F(t)的最大值.针对训练1. 一个正整数,由N个数字组成,若从左向右它的第一位数可以被1整除,它的前两位数可以被2整除,前三位数可以被3整除,…,一直到前N位数可以被N整除,则这样的数叫做“精巧数”.如:123的第一位数“1”可以被1整除,前两位数“12”可以被2整除,“123”可以被3整除,则123是一个“精巧数”.(1)若四位数123k是一个“精巧数”,求k的值;(2)若一个三位“精巧数”2ab各位数字之和为一个完全平方数,请求出所有满足条件的三位“精巧数”.2. 人和人之间讲友情,有趣的是,数与数之间也有相类似的关系.若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”.例如:18的正因数有1、2、3、6、9、18,它的真因数之和为1+2+3+6+9=21;51的正因数有1、3、17、51,它的真因数之和为1+3+17=21,所以称18和51为“亲和数”.数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.例如:121、1351等.(1)8的真因数之和为________;求证:一个四位的“两头蛇数”与它去掉两头后得到的两位数的3倍的差,能被7整除;(2)一个百位上的数为4的五位“两头蛇数”能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”.3. 材料1:将分式x2-x +3x +1拆分成一个整式与一个分式(分子为整数)的和的形式.解:x2-x +3x +1=x (x +1)-2(x +1)+5x +1=x (x +1)x +1-2(x +1)x +1+5x +1=x -2+5x +1, 这样,分式x2-x +3x +1就拆分成一个整式x -2与一个分式5x +1的和的形式.材料2:已知一个能被11整除的个位与百位相同的三位整数100x +10y +x ,且1≤x ≤4,求y 与x 的函数关系式.解:∵101x +10y 11=99x +11y +2x -y 11=9x +y +2x -y 11,又∵1≤x ≤4,0≤y ≤9,∴-7≤2x -y ≤8,还要使2x -y11为整数,∴2x -y =0. (1)将分式x2+6x -3x -1拆分成一个整式与一个分子为整数的分式的和的形式,则结果为___________________;(2)已知整数x 使分式2x2+5x -20x -3的值为整数,则满足条件的整数x =_________________;(3)已知一个六位整数20xy17能被33整除,求满足条件的x ,y 的值.4. 在任意n(n>1且n 为整数)位正整数K 的首位后添加6得到的新数叫做K 的“顺数”,在K 的末位前添加6得到的新数叫做K 的“逆数”.若K 的“顺数”与“逆数”之差能被17整除,称K 是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324-13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568________(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N ,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N 的值;(2)证明:任意三位或三位以上的正整数K 的“顺数”与“逆数”之差一定能被30整除.5. 若整数a 能被整数b 整除,则一定存在整数n ,使得ab =n ,即a =bn.例如:若整数a能被整数7整除,则一定存在整数n ,使得a =7n.(1)将一个多位自然数分解为个位与个位之前的数,让个位之前的数减去个位数的两倍,若所得之差能被7整除,则原多位自然数一定能被7整除.例如:将数字1078分解为8和107,107-8×2=91,因为91能被7整除,所以1078能被7整除,请你证明任意一个三位数都满足上述规律.(2)若将一个多位自然数分解为个位与个位之前的数,让个位之前的数加上个位数的k(k 为正整数,1≤k ≤5)倍,所得之和能被13整除,求当k 为何值时使得原多位自然数一定能被13整除.参考答案例1. 解:(1)F (243)=(423+342+234)÷111=9, F (617)=(167+716+671)÷111=14. (2)∵s ,t 都是“相异数”,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5, F (t )=(510+y +100y +51+105+10y )÷111=y +6,∵F (s )+F (t )=18,∴x +5+y +6=x +y +11=18,∴x +y =7,∵1≤x ≤9,1≤y ≤9,x ,y 都是正整数,∴⎩⎪⎨⎪⎧x =1,y =6或⎩⎪⎨⎪⎧x =2,y =5或⎩⎪⎨⎪⎧x =3,y =4或⎩⎪⎨⎪⎧x =4,y =3或⎩⎪⎨⎪⎧x =5,y =2或⎩⎪⎨⎪⎧x =6,y =1.(2)∵s 是“相异数”,∴x ≠2,x ≠3,∵t 是“相异数”,∴y ≠1,y ≠5,∴⎩⎪⎨⎪⎧x =1,y =6或⎩⎪⎨⎪⎧x =4,y =3或⎩⎪⎨⎪⎧x =5,y =2. ∴⎩⎨⎧F ()s =6,F ()t =12或⎩⎨⎧F ()s =9,F ()t =9或⎩⎨⎧F ()s =10,F ()t =8.∴k =F ()s F ()t =12或k =F ()s F ()t =1或k =F ()s F ()t =54,∴k 的最大值为54.针对训练1解:(1)74;32;31(2)证明:令t =10x +y ,2(10x +y )-(x 2-y 2)-99=20x +2y -x 2+y 2-99=(y 2+2y +1)-(x 2-20x +100)=(y +1)2-(x -10)2,∴t 的2倍减去t 的“平方差数”再减去99所得结果是另一个数的“平方差”数. (3)令t =xy ,t ′=yx ,由题意知:10x +y +x 2+y 2=10y +x +y 2-x 2,所以9x -9y +2x 2=0,9(x -y )+2x 2=0,∵x -y ≥0,2x 2≥0,∴x =y =0. 故t =0.2. 解:(1)F (236)=-3(2)证明:设这个正整数n 三个数位上的数字分别为:x ,x +y 2,y .∵|a +c -2b |最小时,我们称abc 是n 的“调和优选数”,∴F (n )=b 2-ac =⎝ ⎛⎭⎪⎫x +y 22-xy =x2+y24-xy 2=⎝ ⎛⎭⎪⎫x -y 22;∴F (n )为一个完全平方数;(3)t =100x +60+y ,t ′=100y +60+x ,∵t -t ′=99x -99y =693,∴99(x -y )=693,x -y =7,x =y +7, ∴1≤x ≤9,1≤y ≤9,∴1≤y +7≤9,∴1≤y ≤2,∴⎩⎪⎨⎪⎧y =1,x =8或⎩⎪⎨⎪⎧y =2,x =9,∴t =861或t =962, 当t =861时,可以重新排列为168,186,618.∵|1+8-2×6|=3,|1+6-2×8|=9,|6+8-2×1|=12,∴168为861的“调和优选数”,∴F (861)=6×6-1×8=28;当t =962时,可以重新排列为269,296,629,∵|2+9-2×6|=1,|2+6-2×9|=10,|6+9-2×2|=11,∴269为962的“调和优选数”,∴F (962)=6×6-2×9=18.∴所有“和顺数”中F (t )的最大值为28.3. 解:(1)43;50;140(2)b +4×51+a ×52+4+a ×8+b ×82=33a +65b +24=13(2a +5b +1)+7a +11, ∴13整除7a +11,而1≤a ≤5,1≤b ≤5,∴18≤7a +11≤46,∴7a +11=26或39.解得a =157(舍去)或4,∴a =4.(3)(mm 1)6+(nn 5)8=1+6m +36m +5+8n +64n =6+42m +72n .若互为“如意数”,则6+42m +72n =666, ∴7m +12n =110,此时m 必为偶数,经检验,当m =2,n =8时,7m +12n =110, ∴这两个数为85和581.4. (1)证明:对任意一个完全平方数m ,设m =a 2(a 为正整数), ∵|a -a |=0,∴a ×a 是m 的最佳分解, ∴对任意一个完全平方数m ,总有F (m )=a a=1.(2)设交换t 的个位上的数与十位上的数得到的新数为t ′,则t ′=10y +x ,∵t 是“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=36, ∴y =x +4,∵1≤x ≤y ≤9,x ,y 为自然数, ∴满足“吉祥数”的有15,26,37,48,59.(3)F (15)=35,F (26)=213,F (37)=137,F (48)=68=34,F (59)=159.∵34>35>213>137>159,∴所有“吉祥数”中,F (t )的最大值是34.类型二例2解:(1)证明:∵a ≤c ,a ,b ,c 为正整数, ∴bc -ba =b (c -a )≥0.又q =m 2+n 2=m ·m +n 2, 令n =b ,m =a =c ,则此时bc -ba 最小为0,故m ·m +n 2是q 的“等比中项分解”, ∴P (q )=n +m 2(m +n )=12.(2)由题意,得2(10y +x )+14(10x +y )=8k +4(k 为整数), 即:142x +34y =8k +4.∴8(18x +4y )+2y -2x -4=8k , ∴2(y -x -2)是8的倍数,∴y -x -2是4的倍数. 又∵1≤y ≤x ≤5且x ,y 均为自然数, ∴-6≤y -x -2≤-2,∴y -x -2=-4, ∴x =y +2,∴s =31,42,53.∵bc -ba =b (c -a ),且a ,b ,c 为正整数,a ≤c , ∴当b 越小,c -a 的差越小,b (c -a )越小. ∴当s =31时,31=5×6+12,则P (31)=1+62×(5+1)=712;当s =42时,42=2×3+62,则P (42)=6+32×(6+2)=916;当s =53时,53=7×7+22或53=2×2+72, 则P (53)=12.∵916>712>12,∴P (s )max =916. 针对训练1.②③2. 解:(1)1+2(x -y )+(x -y )2=(x -y +1)2;(2)令A =a +b ,则原式变为A (A -4)+4=A 2-4A +4=(A -2)2,故(a +b )(a +b -4)+4=(a +b -2)2;(3)证明:(n +1)(n +2)(n 2+3n )+1=(n 2+3n )[(n +1)(n +2)]+1=(n 2+3n )(n 2+3n +2)+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n +1)2, ∵n 为正整数, ∴n 2+3n +1也为正整数,∴代数式(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.3. 解:(1)∵1,2,3的倒数分别为1,12,13,且1>12>13. ∵12+13≠1,∴1,2,3不可以构成“和谐三数组”.(2)M (t ,k t ),N (t +1,k t +1),R (t +3,k t +3),且k t ,k t +1,k t +3构成“和谐三数组”.①若t k =t +1k +t +3k ,得2t +4=t ,得t =-4;②若t +1k =t k +t +3k ,得2t +3=t +1,得t =-2;③若t +3k =t k +t +1k,得2t +1=t +3,得t =2.综上,t 的值为-4或-2或2.(3)①证明:∵a ,b ,c 均不为0,∴x 1,x 2,x 3都不为0,令y =2bx +2c =0,则x 1=-c b, 联立⎩⎪⎨⎪⎧y =2bx +2c ,y =ax2+3bx +3c ,整理得:ax 2+bx +c =0.∵x 2+x 3=-b a ,x 2·x 3=ca,∴1x2+1x3=x2+x3x2·x3=-b a ·a c =-b c =1x1, ∴A ,B ,C 三点的横坐标x 1,x 2,x 3构成“和谐三数组”. ②∵x 2=1,∴a +b +c =0,∴c =-a -b .∵a >2b >3c ,∴a >2b >3(-a -b ),且a >0,整理得⎩⎪⎨⎪⎧a >2b ,5b >-3a ,∴-35<b a <12且b a ≠0.∵P (c a ,b a),∴OP 2=(c a )2+(b a )2=(-a -b a )2+(b a )2=2(b a +12)2+12,令m =b a ,则-35<m <12且m ≠0,则OP 2=2(m +12)2+12,∵2>0,∴当-35<m <-12时,OP 2随m 的增大而减小,当m =-35时,OP 2有最大值1325,当m =-12时,OP 2有最小值12;当-12<m <12且m ≠0时,OP 2随m 的增大而增大,当m =-12时,OP 2有最小值12,当m =12时,OP 2有最大值52,∴12≤OP 2<52且OP 2≠1,∴22≤OP<102且OP ≠1.4. 解:(1)(答案不唯一)0,1,2,4,8,9均可.因为29=52+22,所以29是“完美数”;(2)当k =13时,S =x 2+4y 2+4x -12y +13=x 2+4x +4+4y 2-12y +9=(x +2)2+(2y -3)2,∵x ,y 是整数,∴x +2,2y -3也是整数,∴S 是一个“完美数”.(3)∵m 与n 都是“完美数”,∴设m =a 2+b 2,n =c 2+d 2(a ,b ,c ,d 都是整数),则 mn =(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2 =a 2c 2+2abcd +b 2d 2+b 2c 2-2abcd +a 2d 2=(ac +bd )2+(bc -ad )2. ∵a ,b ,c ,d 是整数,∴ac +bd 与bc -ad 都是整数, ∴mn 也是“完美数”.5. 解:(1)6不是“尼尔数”;39是“尼尔数”; 设a =3n +1,b =3n -1(其中n 为自然数), K =(3n +1)2+(3n -1)2-(3n +1)(3n -1)=2×9n 2+2×1-(9n 2-1)=9n 2+3, ∴所有“尼尔数”一定被9除余3.(2)设这两个“尼尔数”分别为9m 2+3,9n 2+3,其中m ,n 为整数,则(9m 2+3)-(9n 2+3)=189, m 2-n 2=21. (m +n )(m -n )=1×21或3×7.∴⎩⎪⎨⎪⎧m +n =21,m -n =1或⎩⎪⎨⎪⎧m +n =7,m -n =3.解得⎩⎪⎨⎪⎧m =11,n =10或⎩⎪⎨⎪⎧m =5,n =2. 当m =11,n =10时,9m 2+3=9×112+3=1092, 9n 2+3=9×102+3=903.当m =5,n =2时,9m 2+3=9×52+3=228, 9n 2+3=9×22+3=39.答:这两个“尼尔数”分别是1092和903或228和39.类型3.整除问题例3. 解:(1)11=1+10=2+9=3+8=4+7=5+6, 且1×10<2×9<3×8<4×7<5×6,所以F (11)=5×6=30.(2)设此数为1bc ,由题可得10+b =2m +1①,由①得:10+b 为奇数,所以b 为奇数; 100+10b +c =3n +2②,由②得:1+b +c +1是3的倍数;1+b +c +1=k 2③.(其中m ,n ,k 为整数)又因为1≤b ≤9,1≤c ≤9,所以4≤1+b +c +1≤20, 所以1+b +c +1只能等于9,即b +c =7. 所以当b =1时,c =6,此数为116. 当b =3时,c =4,此数为134; 当b =5时,c =2,此数为152; 当b =7时,c =0,此数为170; 当b =9时,舍去;所以F (t )max =F (170)=85×85=7225.针对训练1. 解:(1)∵四位数123k 是一个“精巧数”, ∴1230+k 是4的倍数; 即1230+k =4n ,当n =308时,k =2;当n =309时,k =6, ∴k =2或6;(2)∵2ab 是“精巧数”,∴a 为偶数,且2+a +b 是3的倍数, ∵a <10,b <10,∴2+a +b <22, ∵各位数字之和为一个完全平方数,∴2+a +b =32=9,∴当a =0时,b =7;当a =2时,b =5;当a =4时,b =3;当a =6时,b =1, ∴所有满足条件的三位“精巧数”有:207,225,243,261.2. 解:(1)证明:设这个四位“两头蛇数”为1ab 1,由题意,得 1ab 1-3ab =1001+100a +10b -30a -3b =1001+70a +7b =7(143+10a +b ).∵a 、b 为整数,∴143+10a +b 为整数,∴一个四位的“两头蛇数”与它去掉两头后得到的两位数的3倍能被7整除. (2)∵16的真因数有:1,2,4,8,∴1+2+4+8=15. ∵15=1+3+11,∴16的“亲和数”为33. 设这个五位“两头蛇数”为1x 4y 1,由题意,得1x4y133为整数, ∴315+30x +10x +10y +633为整数,故10x +10y +6=66,∴x +y =6.∵0≤x ≤9,0≤y ≤9,且x ,y 为整数,x <y , ∴⎩⎪⎨⎪⎧x =0,y =6或⎩⎪⎨⎪⎧x =1,y =5或⎩⎪⎨⎪⎧x =2,y =4,∴这个五位“两头蛇数”为:10461或11451或12441.3. 解:(3)20xy1733=200017+100xy 33=6061+3xy +xy +433, 故xy +4为33的倍数,因为10≤xy ≤99,所以14≤xy +4≤103,即xy +4=33,66,99,所以xy =29,62,95,即⎩⎪⎨⎪⎧x =2,y =9或⎩⎪⎨⎪⎧x =6,y =2或⎩⎪⎨⎪⎧x =9,y =5.4. 解:(1)是;设N =5xy (8-y ),其中0≤y ≤x ≤9,y ≤8,x ,y 为整数,则N 的“顺数”为:56xy (8-y ),N 的“逆数”为:5xy 6(8-y ),由题意,得56xy (8-y )-5xy6(8-y )17为整数,∴7+x -5y 17为整数,∵0≤y ≤x ≤9,y ≤8,,∴-33≤7+x -5y ≤16,∴7+x -5y =-17或0,解得⎩⎪⎨⎪⎧x =6,y =6或⎩⎪⎨⎪⎧x =3,y =2或⎩⎪⎨⎪⎧x =8,y =3.∴N 的值为5835,5326,5662.(2)证明:设正整数K =xAy ,其中A 为m 位正整数,m ≥1,1≤x ≤9,0≤y ≤9,x ,y 为整数,则K 的“顺数”为:x 6Ay =10m +2x +6×10m +1+10A +y , K 的“逆数”为:xA 6y =10m +2x +100A +60+y , x 6Ay -xA 6y =60(10m -1)-90A ,∴x 6Ay -xA 6y 能被30整除,即结论成立.5. 解:(1)证明:设某三位数百位、十位、个位上的数字分别是x 、y 、z , 则原三位数为:100x +10y +z ,根据题意,存在整数n ,使得10x +y -2z =7n , ∴10x +y =2z +7n ,∴100x +10y +z =10(10x +y )+z =10(2z +7n )+z =21z +70n ,∴100x +10y +z 7=21z +70n7=3z +10n ,∵z 、n 都为整数,∴(3z +10n )为整数,∴原数能被7整除.(2)设将一个多位自然数按题意分解后得到的个位数是B ,个位之前的数是A ,则原数为(10A +B ).根据题意,存在整数m ,使得A =13m -kB ,∴10A +B =10(13m -kB )+B =130m +(1-10k )B =130m -13kB +(1+3k )B ,∴10A +B 13=130m -13kB +(1+3k )B 13=10m -kB +1+3k13B , ∵k 为正整数,1≤k ≤5,∴k =1或2或3或4或5,∵1+3×113=413,1+3×213=713,1+3×313=1013,1+3×413=1,1+3×513=1613.又∵m ,B 为整数,∴当k =4时,10m -kB +1+3k13B 为整数, 此时原多位自然数能被13整除.。