金属线胀系数的测定

合集下载

金属线胀系数的测定

金属线胀系数的测定

实验四 利用直读式测量仪测定金属的线胀系数【实验目的】利用直读式测量仪测量金属棒的线胀系数; 【实验仪器】DH4608金属热膨胀系数试验仪、不锈钢管、钢卷尺 【实验原理】已知金属的线胀方程为: , 其中 是金属在00C 时的长度。

当温度为 时,当温度为 时, 设金属棒伸长量为 , 则有: 两式相减得: , 其中 为金属的线胀系数。

实验时, 利用DH4608金属热膨胀系数试验仪, 每5℃设定一个控温点, 利用热电偶记录样品上的实测温度和千分尺上的变化值。

根据数据 和 , 画出 (作y 轴)- (作x 轴)的曲线图, 观察其线型性, 并利用图形求出斜率, 计算样品(不锈钢管)的线胀系数。

【实验步骤】1.将试验样品(不锈钢管)固定在实验架上, 注意挡板要正对千分尺;2.调节千分尺和挡板的位置, 保证两者无间隙且千分尺有足够的伸长空间;3.打开电源和水泵开关, 每5℃设定一个控温点, 记录样品的实测温度和千分尺上的变化值。

实际操作时, 由于千分尺的指针在不停地转动, 所以在设定的控温点不易准确读数, 从而导致样品加热后的伸长量测量不准确。

具体操作可改为: 在加热过程中, 当观察到千分尺的指针转动匀速时, 在千分尺上设定一个记录起点(比如0格), 记下此时的温度值和数字电压表上的示值作为第一组实验数据。

以后每当千分尺的指针转过50格(或30格)记录一组温度值和数字电压表上的示值, 填入设计的记录表中。

实验结束后再根据铜—康铜热电偶分度表将数字电压表上的示值转换为温度值作为试验样品的实际温度。

4、根据数据 和 , 画出 (作y 轴)- (作x 轴)的曲线图, 观察其线型性。

5、利用图形求出斜率, 计算样品的线胀系数( , 为斜率, 近似为室温下金属棒的有效长度)。

【数据记录举例】固体线胀系数测定数据记录表测量样品: 紫铜管φ10mm ×593mm i温度计读数实测温度ti千分尺读数l i30.0 ℃ 1.17mV ( 29.5℃ ) 0.000 593.0001、电热偶安装座;2、待测样品;3、挡板;4、千分尺 )1(10at l l +=附录:。

实验金属线胀系数的测量

实验金属线胀系数的测量

【实验目的】学习利用光杠杆测量金属棒的线胀系数。

【实验仪器】金属线胀系数测量仪光杠杆金属测量棒【实验原理】金属固体的长度一般随温度的升高而增长,其长度L和温度t之间的关系为L=L0(1+t+t+…)(1)式中L0为温度t=0℃时的长度,、、…是和被测物质有关的常数,都是很小的数值。

而以下各系数和相比甚小,所以在常温下可以忽略,则(1)式可写成L=L0(1+t)(2)此处就是通常所称的线胀系数,单位℃-1。

设物体在温度t1(单位℃)时的长度为L,温度升到t2(单位℃)时,其长度增加,根据(2)式,可得L=L0(1+t1)L+=L0(1+t2)由此二式相比消去L0,整理后得出= —————————L(t2- t1)-t1由于和L相比甚小,L(t2- t1)>>t1,所以上式可近似写成= —————————(3)L(t2- t1)由上式可知,测量线胀系数的主要问题是怎样测准温度变化引起长度的微小变化量。

本实验是利用光杠杆测量微小长度的变化。

如图所示,实验时,将待测金属棒直立在线胀系数测定仪的金属加热筒中,将光杠杆的后足尖置于金属棒上端,二前足置于固定的台上。

设在温度为t1时通过望远镜和光杠杆的平面镜,看见直尺上的刻度a1刚好在望远镜中叉丝横线(或交点)处。

当温度升至t2时,直尺上刻度a2移至叉丝横线上,根据光杠杆原理,有(a2- a1)d1= ————————————(4)2 d2式中d2为光杠杆镜面至直尺的距离,d1为光杠杆后足尖到二前足尖连线的垂直距离。

将(4)式代入(3),则(a2- a1)d1= —————————(5)2 d2 L(t2- t1)【实验内容和步骤】1、用米尺测量金属棒长度L之后,将其插入线胀系数测定仪的加热筒中,棒的下端要和基座紧密相接,上端露在筒外。

2、安装温度计。

插温度计时要小心,切勿碰撞,以防损坏。

3、将光杠杆放在仪器平台上,其后足尖放在金属棒的顶湍上。

二前足放在平台的凹槽里。

金属线胀系数的测量

金属线胀系数的测量

金属线胀系数的测量1.引言金属材料在物理环境的变化下会产生热胀冷缩的效应,因此,在工业生产和实验研究中要考虑到材料的热膨胀性能。

其中,线膨胀系数是衡量物质在长度方向上的热膨胀的指标。

本文探讨了金属线胀系数的测量方法及其应用。

2.线膨胀系数的定义和计算公式线膨胀系数是指材料在温度变化下单位长度的变化量,通常用α表示。

线膨胀系数可以根据材料的特性来计算,具体计算公式如下:α=ΔL/(L0×ΔT)其中,ΔL表示线材的长度变化量,L0表示线材的初始长度,ΔT表示温度的变化量。

线膨胀系数的单位通常是m/m °C。

3.1 编织网法编织网法是一种相对简单的测量线膨胀系数的方法。

具体操作如下:①先制作一块编织网,其网孔大小应该适合于线膨胀系数的测量。

编织网可用铜网或不锈钢网制作。

②将待测样品嵌入编织网中,并将两端固定在支架上。

③取一个温度计将其固定在样品的中央位置。

④将样品和温度计放入恒温器中,升温至所需温度,使样品达到稳态。

⑤记录样品的长度变化量和温度变化量。

⑥根据线膨胀系数的计算公式计算材料的线膨胀系数。

3.2 拉伸法拉伸法需要使用精密的仪器和设备,比编织网法的测量精度要高。

具体操作步骤如下:①将待测样品插入到仪器的卡槽中,两端各钳紧一个夹具。

②加热样品,同时保持夹具上下的温度相同。

③在进行加热的同时,由于样品被卡在夹具中,因此在材料的线膨胀系数作用下,样品将在长度方向上扩张。

3.3 差异法①将两根相同的样品A和B固定在两个不同的支架上,相隔一段距离,保证两个试样上下温度相等。

②用导线将两个样品连接到直流稳压源上,将其通过电路连接起来。

③在稳定的电流过程中,对试样进行加热,此时会存在两个样品长度的差异,通过测量差异长度就可以计算出材料的线膨胀系数。

4. 线膨胀系数的应用① 材料选择:根据材料的线膨胀系数,可以选择在升温或降温过程中性能更稳定的材料。

② 构件设计:针对长大膨胀系数较大的构件,在其设计中要考虑到升温对构件的影响。

4.金属线胀系数的测定

4.金属线胀系数的测定

金属线胀系数的测定一、实验目的:1、测定金属的线胀系数。

2练习智能化热学综合实验仪的使用二、实验仪器:YJ-RZ-4A 智能化热学综合实验仪、金属线胀系数测量实验装置三、实验原理:固体受热后其长度的增加称为线膨胀。

在一定的温度范围内,原长为L 的物体,受热后伸长量为ΔL 与温度的增加量Δt 近似成正比,与原长L 也成正比,即: ΔL =αLΔt 其中比例系数α称为固体的线膨胀系数(简称线胀系数)实验还发现,同一材料在不同的温度区域,其线胀系数不一定相同。

但是,在温度变化不大的范围内,线胀系数仍可认为时一常量。

为测量线胀系数,将材料做成条状或杆状,测量出t 1时杆长L ,受热后温度达到t 2时的伸长量ΔL ,则改材料在(t 1 ,t 2)温区的线胀系数为21()lL t t α∆=-其物理意义是固体材料在(t 1 ,t 2)温区内,温度每升高一摄氏度时材料的相对伸长量。

四、实验步骤:1、用卡尺测出金属杆的长度2、安装好实验装置,连接好电缆线,打开电源开关,“测量选择”旋钮旋至“设定温度”档,调节“设定温度粗选”和“设定温度细选”旋钮,选择设定加热盘所需要的温度值。

3、将“测量温度”旋钮拨向“上盘温度”档,打开加热开关,观察加热盘温度的变化,直至加热盘温度恒定在设定温度。

4、加热盘温度恒定在设定温度50C ︒时,读出千分表数值1L ,温度分别为55C ︒,60C ︒,65C ︒,70C ︒,75C ︒,80C ︒,85C ︒时,分别记下千分表读数2L ,3L ,4L ,5L ,6L ,7L ,8L 。

5、用逐差法处理数据(注意伸长量与温差对应),计算金属杆在温区内的线胀系数。

五、数据处理六、注意事项:1、供电电源插座必须良好接地。

2、整个电路连接好之后才能打开电源开关。

3、在测量过程中不要碰桌面以保持读数的稳定。

七、问题与讨论:测量微小的长度变化还可以采用那些仪器。

(测微目镜、读数显微镜、光杠杆等)。

实验六金属线胀系数的测定

实验六金属线胀系数的测定

实验六金属线胀系数的测定一、实验目的1.学习千分表的使用方法。

2.了解温度传感器Pt100的原理及特性。

3.掌握测量金属线膨胀系数的原理和方法。

4. 学习用最小二乘法(或者用逐差法)处理实验数据的方法和技巧。

二、仪器与用具THQJZ-1型金属线膨胀系数测量实验仪。

图6.1(1)仪器与用具总图图解:金属棒受热膨胀时的微小伸长量用千分表测量。

图6.2(1)千分表测量长度变化示意图图6.3(1)加热输出、温度控制与测量示意图图 6.2(1)图解:金属棒样品装进加热管后用螺钉通过弹簧拧紧,为固定端;另一端通过顶杆与千分表接触,为自由端。

金属棒样品自由端在弹簧作用下将长度变化转化成千分表指针的偏转,通过表盘刻度读出其长度变化量。

图6.3(1)图解:通过调节PID 智能温度调节器中的“SET ”设置加热最高温度为110℃,用导线将热电阻Pt100测温端接至“Pt100输入”,PID 智能温度调节器中的红色字体显示当前金属棒的温度。

试根据提供的《仪器与用具》进行思考,设计一种测量金属线胀系数的方案,然后再参考课本思路。

三、实验原理当温度升高时,金属棒将受热膨胀。

设L 为物体在温度为0℃时的长度,则该物体在 t ℃的长度为:()t L L t α+=10 (6-1)式中α即为该物体的线胀系数。

在温度变化不大时,α可视为一常量。

设金属棒在温度为1t 时的长度为1L ,当温度升高到2t 时其长度增加了∆L ,则由(6-1)式可得:1121t L )t t (L L⋅∆−−∆=α (6-2)本实验用千分表测量微小伸长量∆L ,略去1t L ⋅∆,所以TL L∆∆=1α (6-3) 预习思考题:1.金属棒自由端与千分表顶尖不接触行吗?2.本实验金属棒长度的变化是通过千分表指针的偏转测量的,如何避免千分表的回程误差。

3.本实验的误差来源主要是金属棒伸长量的测量,考虑到温度具有滞后性,用什么方法测量相应于升高单位温度的伸长量最好?4.设计实验步骤及记录表格。

测量金属线膨胀系数的方法

测量金属线膨胀系数的方法

测量金属线膨胀系数的方法金属的膨胀系数是指在单位温度变化下,金属材料单位长度的线膨胀量。

测量金属线膨胀系数的方法有多种,下面将介绍其中几种常用的方法。

1. 热胀冷缩法热胀冷缩法是一种常用的测量金属线膨胀系数的方法。

该方法利用热胀冷缩的原理,通过测量金属材料在不同温度下的长度变化来计算金属线膨胀系数。

具体操作步骤如下:(1)首先,选择一段金属线材料,并将其固定在测量装置上。

(2)然后,将装置置于恒温箱中,并将温度控制在不同的温度下,如20℃、30℃、40℃等。

(3)测量每个温度下金属线的长度,并记录下来。

(4)根据测得的数据,计算金属线膨胀系数的值。

公式为:膨胀系数 = (L2 - L1)/(L1 × ΔT),其中L1为初始长度,L2为不同温度下的长度变化,ΔT为温度变化。

2. 拉伸法拉伸法也是一种常用的测量金属线膨胀系数的方法。

该方法通过施加不同的拉力来测量金属材料在不同温度下的长度变化,进而计算金属线膨胀系数。

具体操作步骤如下:(1)首先,选择一段金属线材料,并将其固定在拉伸装置上。

(2)然后,通过拉伸装置施加不同的拉力,使金属线逐渐延长。

(3)同时,利用测量装置测量金属线的长度,并记录下来。

(4)根据测得的数据,计算金属线膨胀系数的值。

公式为:膨胀系数 = (L2 - L1)/(L1 × ΔT),其中L1为初始长度,L2为不同温度下的长度变化,ΔT为温度变化。

3. 光栅法光栅法是一种利用光栅原理测量金属线膨胀系数的方法。

该方法利用光栅装置对金属线进行光学测量,通过测量金属线在不同温度下的光栅位移来计算金属线膨胀系数。

具体操作步骤如下:(1)首先,选择一段金属线材料,并将其固定在测量装置上。

(2)然后,将光栅装置对准金属线,使光栅的光束垂直射向金属线。

(3)随后,通过调整光栅装置,使光栅与金属线的光斑重合。

(4)测量不同温度下的光栅位移,并记录下来。

(5)根据测得的数据,计算金属线膨胀系数的值。

实验十 金属线胀系数的测定

实验十 金属线胀系数的测定

实验十金属线胀系数的测定一、实验目的通过实验,了解金属线的胀系数测定方法,掌握线胀系数的计算方法。

二、实验原理热胀冷缩是每种物质都具有的性质,所有物质在温度变化下都会发生体积变化。

当物体温度发生变化时,由于温度感应它的分子运动状态的密度和位置的改变,使得分子间的力发生变化,从而引起物体的长度变化。

热胀系数是衡量物质温度变化下线性尺寸变化的大小的比例系数。

线胀(线性热膨胀)是指物体在温度变化下的长度变化量。

所以,通过测量金属丝在温度变化下的长度变化量,可以计算出其线胀系数。

三、实验用具1. 热力学实验台(TDE2010型)2. 电阻练测器(WY8506)3. 温度计(PWT1206型)4. 紫铜丝(φ=0.1mm)5. 不锈钢杆(φ=6mm)6. 电热板7. 耐热玻璃筒8. 相机(可选)四、实验步骤1. 实验准备选择金属丝和不锈钢杆,在电热板上加热。

使用温度计测量热源温度,并确保温度稳定在80℃左右。

同时,在耐热玻璃筒中加水,使用温度计测量水温,确保温度稳定在20℃左右。

2. 实验操作(1)将金属丝绕在不锈钢杆上,并用导线连接电阻练测器。

(2)将导线连接至热力学实验台的传感器。

(3)调整热力学实验台的控制器,使其显示热源温度与水温度。

(4)将热力学实验台中的控制器设置为线性模式,并使金属丝受到一定的压力。

(5)开启电热板,以使热源温度升高。

(6)记录金属丝长度随时间的变化情况,并使用相机或手机拍摄实验现象。

(7)重复以上步骤,记录多组数据,以验证实验结果的准确性。

1. 数据分析α = ΔL / (LΔT)其中,α表示线胀系数;ΔL表示金属丝长度的变化量;L表示原始长度;ΔT表示温度变化量。

2. 计算过程温度ΔL(mm) L(mm) ΔT(℃) α20 0 100 0 030 0.07 100 10 2.333×10-540 0.12 100 20 6×10-550 0.19 100 30 9.5×10-560 0.24 100 40 1.2×10-4因此,金属丝的平均线胀系数为:α = (2.333+6+9.5+12) ×10-5 / 4 = 7.458 ×10-5六、实验注意事项1. 在实验过程中,确保温度的稳定、可比性和精确度。

金属线胀系数的测定

金属线胀系数的测定

实验四 金属线胀系数的测定【实验目的】学习用光杠杆法测量金属棒的线胀系数。

【实验仪器】GXZ 型金属系数测定仪,光杠杆,尺度望远镜,钢卷尺,游标卡尺,蒸汽发生器,待测金属棒。

【实验原理】固体的长度通常随着温度的升高而增加,其长度l 和温度t 之间的关系为)1(20 +++=t t l l βα (4-1)式中0l 为温度C t 00=的长度,α、β是和被测物体有关的常数,都为很小的数值,而β以下各系数与α相比更小,常温下可以忽略,则(13-1)可写成)1(0t l l α+= (4-2)式子中α即为通常所称的线胀系数,单位是10-C 。

设物体在温度为C t 01时的长度为l ,温度升高到C t 02时,其长度增加δ,根据式(13-2),可得)1(10t l l α+=)1(20t l l αδ+=+由此二式消去0l ,整理后得出)34()(112---=t t t l δδα因l 与δ相比很小,112)(t t t l δ>>-,所以式(13-3)可近似写成)44()(12--=t t l δα线胀系数α测量中,最重要的工作是如何准确测量出当温度变化时引起的金属长度产生的微小变化δ。

实际测量中常常使用的方法有:(1)光杠杆法测量微小长度变化法实验时将待测金属棒直立在金属线胀系数测定仪的金属筒中(图13-1),将光杠杆的后足尖置于金属棒的上端,二前足置于固定台上。

设在温度C t 01时,通过望远镜和光杠杆平面镜,看见直尺上的刻度1a 刚好在望远镜中叉丝横线(或交点)处,当温度升高至C t 02时,直尺上刻度2a 移至叉丝横线上,根据光杠杆原理(光杠杆的使用方法参见本书实验九中的仪器原理介绍)可得)54(2)(12--=Dda a δ式中d 为光杠杆后足尖到二前足尖连线的垂直距离,D 为光杠杆镜面到直尺的距离。

将式(13-5)代入式(13-4)中,则)64()(2)(1212---=t t Dl da a α(2)利用螺旋测微器原理测量金属微小长度 如图13-2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 1
光杠杆测量物体微小伸长量原理图
• 原理图
实验注意事项
• 1、实验系统调好后,一旦开始测量,在实 验过程中绝对不能对系统的任一部分进行 任何调整。否则,所有数据将重新再测. • 2、注意保护平面镜和望远镜,不能用手触 摸镜面. • 3、粗调节望远镜标尺装置,使之与光杠杆等 高,可采取估望远镜镜身描准的方法,再调节 光杠杆镜面垂直,使望远镜镜身和标尺在平 面镜子中的虚像在一条直线上.

L(t 2 t1 ) Lt1
实验方案
• 由于,故(10-4)可以近似写成 L • (10-5) L(t t ) • 显然,固体线胀系数的物理意义是当温度 变化1℃时,固体长度的相对变化值。在 (5)式中,L、t1、t2都比较容易测量, 但很小,一般长度仪器不易测准,本实验 中用光杠杆和望远镜标尺组来对其进行测 量。
实验数据记录
• • • • 1、数据测量记录: 单位:mm 光杆干平面镜到尺子的距离D= 88 cm 光杆干前后足尖的垂直距离= 55 mm 2、金属杆伸长记录
34 54 98 95 80 60 45 40
温度 23
ti / C
读数 .2.
di / mm
0
2.0 2.0 2.7 2.8 2.8 2.9 2.9 2.9 8 2 5 1 5 5 2 6
实验内容及步骤
• 4、记下初温t1后,给仪器通电加热,间隔10℃ 记录一次温度以及望远镜中标尺的相应读数。 • 5、停止加热。测出距离D。取下光杠杆放在白纸 上轻轻压出三个足尖痕迹,用铅笔通过前两足迹 联成一直线,再由后足迹引到此直线的垂线,用 标尺测出垂线的距离h。 • 6、用逐差法或线性拟合法计算出金属杆温度每升 高一摄氏度时金属杆的伸长量,代入(19-5)计 算金属杆的线胀系数,并计算出不确定度。
实验方案
• 设物体在t1℃时的长度为L,温度升到t2℃ 时增加了ΔL。根据(10-1)式可以写出 L L0 1 t • (10-2) L L L0 1 t2 (10-3) • • 从(10-2)、(10-3)式中消去L0后,再 经简单运算得 • (10-4) L
思考题
1 本实验并非绝热系统,对实验结果是否有 影响? 2 被测金属的端面和下支撑面若不平整对实 验结果会产生怎样的影响? 3 用一组测量数据计算误差并分析哪个量对 实验结果的影响较大?
实验完毕,整理仪器
Hale Waihona Puke 实验内容及步骤• 1、在室温下,用米尺测量待测金属棒的长度L三 次,取平均值。然后将其插入仪器的大圆柱形筒 中。注意,棒的下端点要和基座紧密接触。 • 2、插入温度计,小心轻放,以免损坏。 • 3、将光杠杆放置到仪器平台上,其后脚尖踏到金 属棒顶端,前两脚尖踏入凹槽内。平面镜要调到 铅直方向。望远镜和标尺组要置于光杠杆前约1米 距离处,标尺调到垂直方向。调节望远镜的目镜, 使标尺的像最清晰并且与十字横线间无视差。记 下标尺的读数d1。
实验仪器
• • • • • • • • 固体线胀系数测定仪 待测金属棒 温度计 秒表 光杠杆 米尺 游标尺 尺读望远镜
实验原理
• 金属杆的长度一般是温度的函数,在常温 下,固体的长度L与温度t有如下关系: L L0 1 t • (10-1) 称为线 • 式中 L0 为固体在t=0℃时的长度; 胀系数。其数值与材料性质有关,单位为 ℃-1。要测量线胀系数,需测量不同温度 下金属杆的长度。
固体线胀系数的测定
12级物汉 钱学娇 20121102831 指导老师:哈斯朝鲁
固体线胀系数的测定
一般情况下,物体当温度升高时,由于原子 或分子的热运动加剧,粒子间的平均距离 发生变化,温度越高,其平均距离也越大, 在宏观上体现出体积发生热膨胀。热膨胀 是物质的基本热学性质之一。物质的热膨 胀不仅与物质的种类有关,而且对于同种 物质温度不同时其膨胀系数也不相同。因 此,在生产、科研和生活中必须考虑物质 “热胀冷缩”的特性。测定其膨胀系数有 着重要的实际意义。
优其是对于固体而言,虽然固体的热膨 胀非常小,但是物体发生很小形变时却产 生很大的应力。通常测量固体线胀系数是 在某一温度范围内测量固体的微小深长量, 测量微小深长量的方法有光杠杆法、螺旋 测微法等,在这里介绍用光杠杆方法测量 金属的线胀系数。
实验目的
• 学习固体热膨胀的原理和实验测量方法; • 测量金属在一定温度范围内平均线膨胀系 数; • 掌握用光杠杆测量微小长度变化的原理和 方法。
注意事项
1.被测金属杆要调至铅直状态;本仪器使用时,应可靠接 地。 2.温度读数及标尺读数均须系统达到热平衡的稳定状态进 行。 3.初、终温度由、的指示值的平均值来确定。 4.实验装置调好后,在测量过程中不得移动任—部件。 5.该实验在测量读数时是在温度连续变化时进行,因此读 数时间必须快而准。 6.观测温度计读数时,可将温度计提起;看完后迅速放入。 7.调压旋钮顺时针方向为增大。
相关文档
最新文档