数据结构 栈 英文版
数据结构——用C语言描述(第3版)教学课件第3章 栈和队列

if(S->top==-1) /*栈为空*/
return(FALSE);
else
{*x = S->elem[S->top];
return(TRUE);
}
返回主目录}[注意]:在实现GetTop操作时,也可将参数说明SeqStack *S 改为SeqStack S,也就是将传地址改为传值方式。传 值比传地址容易理解,但传地址比传值更节省时间、 空间。
返回主目录
算法:
void BracketMatch(char *str) {Stack S; int i; char ch; InitStack(&S); For(i=0; str[i]!='\0'; i++) {switch(str[i])
{case '(': case '[': case '{':
3.1.3 栈的应用举例
1. 括号匹配问题
思想:在检验算法中设置一个栈,若读入的是左括号, 则直接入栈,等待相匹配的同类右括号;若读入的是 右括号,且与当前栈顶的左括号同类型,则二者匹配, 将栈顶的左括号出栈,否则属于不合法的情况。另外, 如果输入序列已读尽,而栈中仍有等待匹配的左括号, 或者读入了一个右括号,而栈中已无等待匹配的左括 号,均属不合法的情况。当输入序列和栈同时变为空 时,说明所有括号完全匹配。
return(TRUE);
}
返回主目录
【思考题】
如果将可利用的空闲结点空间组织成链栈来管理,则申 请一个新结点(类似C语言中的malloc函数)相当于链 栈的什么操作?归还一个无用结点(类似C语言中的 free函数)相当于链栈的什么操作?试分别写出从链栈 中申请一个新结点和归还一个空闲结点的算法。
堆、栈的概念与理解

1、从数据结构层次理解,栈是一种先进后出的线性表,只要符合先进后出的原则的线性表都是栈。至于采用的存储方式(实现方式)是顺序存储(顺序栈)还是链式存储(链式栈)是没有关系的。堆则是二叉树的一种,有最大堆最小堆,排序算法中有常用的堆排序。
2、从系统层次理解,栈是系统为运行的程序分配的先进后出的存储区域。在学习bootloader时知道,在上电后初始化阶段要为各个工作模式下分配堆 栈,这里的堆栈实际上就是指stack,堆栈的说法只是因为历史的原因。在执行函数时,函数内部局部变量的存储单元可以在栈上创建(针对CISC架构而 言,RISC架构下,局部变量的存储单元是在寄存器上创建),函数执行结束时这些存储单元自动被释放。堆是系统管理的可以被程序利用的全局存储空间,动态 内存分配就是从堆上分配。
什么是堆什么是栈
一 英文名称
堆和栈是C/C++编程中经常遇到的两个基本概念。先看一下它们的英文表示:
堆――heap
栈――stack
二 从数据结构和系统两个层次理解
在具体的C/C++编程框架中,这两个概念并不是并行的。深入到汇编级进行研究就会发现,栈是机器系统提供的数据结构,而堆是由C/C++函数库提供的。这两个概念可以从数据结构和系统两个层次去理解:
具体地说,现在计算机(串行执行机制),都直接在代码层次支持栈这种数据结构。这体现在,有专门的寄存器指向栈所在的地址,有专门的机器指令完成数据入栈 出栈的操作。比如ARM指令中的stmfd和ldmfd。因为栈内存分配运算内置于处理器的指令集中,所以效率很高,但是支持的数据有限,一般是整数、指 针、浮点数等系统直接支持的数据类型,并不直接支持其他的数据结构。在CISC中,对子程序的调用就是利用栈来完成的。C/C++中的自动变量也是直接利 用栈的例子,这就是为什么当函数返回时,该函数的自动变量失效的原因(因为栈恢复了调用前的状态)。在RISC下,这些都是通过寄存器来完成的。这些留待 第二部分总结中详细阐述。
数据结构 外文翻译 外文文献 英文文献

外文翻译原文Computer programming data structure is an important theoretical basis for the design, it is not only the core curriculum of computer disciplines, and has become a popular elective course other Polytechnic professional, so studied this course well and studied computer are closely related.一、the concept of data structureComputer data structure is the foundation of science and technology professional classes, is the essential core curriculum. All computer system software and application software to use various types of data structures. Therefore, if we want to make better use of computers to solve practical problems, only to several computer programming languages are difficult to cope with the many complex issues. To the effective use of computers, give full play to computer performance, but also must learn and master relevant knowledge of data structure. A solid foundation of "data structure"for learning other computer professional courses, such as operating systems, translation theory, database management systems, software engineering, artificial intelligence, etc. are very useful.二、why should learn from data structure?In the early development of computers, the use of computer designed primarilyto deal with terms. When we use the computer to solve a specific problem, the following general needs through several steps : the first is a specific problem of appropriate abstract mathematical models, and then design or choose a mathematical model of the algorithm,the final procedures for debugging, testing, until they have the ultimate answer.Since then the object is INTEGER, REAL, BOOLEAN, the procedures of the main designers of energy is focused on programming skills, without attention to the data structure. With the expansion of computer applications and development of software and hardware, the issue of non-terms increasing importance. According to statistics, Now dealing with the issue of non-occupancy of more than 90% of the machine time. Such issues involve more complex data structure, the relationshipsbetween data elements generally can not be described by mathematical formula. Therefore, the key to solving such problems is no longer mathematical analysis and calculations, but to devise appropriate data structure, can effectively address the problem.Description of the terms of such non-mathematical model is not a mathematical equation, but such as tables, trees, such as map data structure. Therefore, it can be said that data structure courses primarily designed to study the issue of non-value calculation procedures as a computer operations and the relationship between objects and their operating disciplines.The purpose of the study is to understand the structure of data for computer processing of the identity object to the practical problems involved in dealing with that subject at the computer out and deal with them. At the same time, through training algorithms to improve the thinking ability of students through procedures designed to promote student skills integrated applications and professional qualities.三、the concepts and terminologySystematic study of knowledge in the data structure before some of the basic concepts and terminology to give a precise meaning.Data (Data) is the information carrier, it could be computer identification, storage and processing. It is the computer processing of raw materials, a variety of data processing applications. Computer science, computer processing is the so-called data objects, which can be numerical data can be non - numerical data. Numerical data are integer, the actual number or plural, mainly for engineering computing, scientific computing and commercial processing; Non - numerical data, including characters, text, graphics, images, voice and so on.Data elements (Data Element) is the basic unit of data. In different conditions, data elements can be called elements, nodes, the peak, recording. For example, students information retrieval system table information, a record high, 8 Queen's issue of a state tree, teaching programming issues such as a peak, known as a data element. Sometimes, a data from a number of data elements (Data Item), for example, the student information management system students each data element table is a studentrecord. It includes students of the school, name, sex, nationality, date of birth, performance data items. These data items can be divided into two types : one called early such as student gender, origin, etc., these data were no longer divided in data processing, the smallest units; Another called portfolio, the performance of students who, it can be divided into mathematics, physics, chemistry and other smaller items. Normally, in addressing the question of the practical application of each student is recorded as a basic unit for a visit and treatment.Data objects (Data Object) or data element type (Data Element Class) is the nature of the data elements with the same pool. In a specific issue, the data elements have the same nature (not necessarily equal value elements), belonging to the same data objects (data element type), the data element is an example of such data elements. For example, traffic information systems in the transportation network, is a culmination of all the data elements category, peak a and B each represent an urban middle is the data elements of the two types of examples of the value of their data elements a and B respectively.Data structure (Data Structure) refers to the mutual relationship that exists between one or more data elements together. In any case, between data elements will not be isolated in between them exist in one way or another, such as the relationship between the data element structure. According to the data elements of the relationship between different characteristics, usually have the following four basic categories of the structure :1 assembly structures. In the assembly structure, the relationship between data elements is "belonging to the same pool." Assembly elements relations is a very loose structure.2 linear structures. The structure of the data elements exist between one-to-one relationship.3 tree structure. The structure of the data elements exist between hierarchical relationship.4graphics structure. The structure of the data elements of the relationship that existed between Duoduiduo, graphics structure also known as network structure.C++Builder programming experience一、Database programmingAnd the use of Delphi, Borland C++Builder BDE (Borland Database Engine) database interface, in particular its use BDE Administrator unified management database alias, the database operation has nothing to do with the location of the database documents, thus enabling database development easier operation. But in a database application procedures at the same time we have to "release" BDE, the database for some simple procedures may BDE than our own design procedures big, but as the use of BDE InstallShield, add database alias is likely allocation failure. Therefore, we can use the following methods : still in the design stage procedure using BDE alias management database for debugging, but in procedures substantially (as in the main Chuangti OnCreate event processing function) to Table components DatabaseName attributes, such as the use of similar phrases as follows :Table1->DatabaseName = ExtractFilePath (Application->ExeName); OrTable1->DatabaseName= ExtractFilePath (Application->ExeName+ "DB");Thus, no impact on the debugging phase, will be issued if the application procedures Table1 document on the use of databases or their current catalogue "DB" virus, database procedures can be normal operation. You can even be a database to catalogue the documents in the form of character string Register (installed in the installation process), then the procedure in the acquisition of substantially from the catalogue of payrolls, Fuzhi DatabaseName attribute to be. Anyway, you do not need to install relatively large BDE forced users.二、the Registry visitAs in the design process we often required 9x/NT Windows Registry information visit, such as retrieval of information procedures, preservation of information. Register write a subroutine to visit necessary. When the Register to visit, the library will be directly available without always some duplication operation. The following can be used to access cosmetic Licheng, the character string type Jianzhi, and the retrieval of failure to return default value Default.#include < Registry.hpp >int ReadIntFromReg(HKEY Root, AnsiString Key, AnsiString KeyName, int Default) {int KeyValue;TRegistry *Registry = new TRegistry();Registry->RootKey = Root;Registry->OpenKey(Key, false);try {KeyValue = Registry->ReadInteger(KeyName);}catch(...) {KeyValue = Default;}delete Registry;return KeyValue;}void SaveIntToReg(HKEY Root, AnsiString Key, AnsiString KeyName, int KeyValue) {TRegistry *Registry = new TRegistry();Registry->RootKey = Root;Registry->OpenKey(Key, true);Registry->WriteInteger(KeyName, KeyValue);delete Registry;}char *ReadStringFromReg(HKEY Root, AnsiString Key, AnsiString KeyName, char *Default) {AnsiString KeyValue;TRegistry *Registry = new TRegistry();Registry->RootKey = Root;Registry->OpenKey(Key, false);try {KeyValue = Registry->ReadString(KeyName);}catch(...) {KeyValue = (AnsiString)Default;}delete Registry;return KeyValue.c_str();}void SaveStringToReg(HKEY Root, AnsiString Key,AnsiString KeyName, char *KeyValue) {TRegistry *Registry = new TRegistry();Registry->RootKey = Root;Registry->OpenKey(Key, true);Registry->WriteString(KeyName, (AnsiString)KeyValue);delete Registry;}We may use the following access methods (to Windows wallpaper documents) : AnsiString WallPaperFileName =ReadStringFromReg(HKEY_CURRENT_USER,"\\Control Panel\\Desktop", "Wallpaper", "");三、show / hide icons task columnStandard Windows applications generally operating in the mission mandate column on the chart shows, users can directly use the mouse clicking column logo for the mission task cut over, but some applications do not use task column signs, such as the typical Office tools, There are also procedures that can be shown or hidden customization tasks column icon, such as Winamp. We can do the procedure, as long as access Windows SetWindowLong function can drive, as follows : // hidden task column chart :SetWindowLong (Application->Handle.GWL_EXSTYLE, WS_EX_TOOLWINDOW);// task column shows signs :SetWindowLong (Application->Handle.GWL_EXSTYLE, WS_EX_APPWINDOW);四、the establishment of a simple "on" windowA complete Windows applications typically contain a "on the" window to show version information. We customized a dialog box as usual "on the" window of the "on" free customized window, indicates that more information, even including super links. If only show simple version information,Windows ShellAbout function shelf items have sufficient, following this line of code can be "on" Duihuakuang and is Windows standard "on the" Duihuakuang and procedures may show signs such as the use of resources and systems.ShellAbout (Handle, ( "on" +Application->Title+ "#"). C_str ()( "\n"+Application->Title+ "V1.0\n\n" + "夏登城版权所有!"). C_str ()Application->Icon->Handle);五、the two methods to choice catalogueIn our applications, allowing users to choose the regular catalogue, such as software manufacturers, users choose catalogue. This involves catalogue option, we may use the following methods for users to choose one of the catalogue : 1, use SHBrowseForFolder and SHGetPathFromIDList function; Company affirms its function as follows :WINSHELLAPI LPITEMIDLIST WINAPISHBrowseForFolder(LPBROWSEINFO lpbi); WINSHELLAPI BOOL WINAPI SHGetPathFromIDList(LPCITEMIDLIST pidl, LPSTR pszPath); LPBROWSEINFO 和LPITEMIDLIST structure refer Win32 files. This method of selecting catalogues available Windows desktop all available inventory, including networks of other computers sharing catalogue neighbors, but not the new catalogue. Li Cheng allows users to choose the following directory, the directory of choice Licheng return at all trails character string.#include < shlobj.h >char *GetDir(char *DisplayName, HWND Owner) {char dir[MAX_PATH] = "";BROWSEINFO *bi = new BROWSEINFO;bi->hwndOwner = Owner;bi->pidlRoot = NULL;bi->pszDisplayName = NULL;bi->lpszTitle = DisplayName;bi->ulFlags = BIF_RETURNONLYFSDIRS;bi->lpfn = NULL;bi->lParam = NULL;bi->iImage = 0;ITEMIDLIST *il = SHBrowseForFolder(bi);if(il!=NULL) {SHGetPathFromIDList(il, dir);}delete bi;return dir;}We can use the following list to be chosen from :AnsiString at Dir = (AnsiString) GetDir ( "Please select catalogue :" Handle);2, the use of SelectDirectory function. C++Builder the function SelectDirectory achievable catalogue of options, which showed that similar "open" / "preserve" Duihuakuang, but its advantage is to use / non-use keyboard input catalogue members, and allow the creation of new directories. Its original definition as follows : Extern package bool __fastcall SelectDirectory (AnsiString &Directory, TSelectDirOpts Options, 103-116 HelpCtx);Licheng SelectDir allow you to choose the following directory :#include < FileCtrl.hpp >AnsiString SelectDir(AnsiString Dir) {if(SelectDirectory(Dir, TSelectDirOpts()<< sdAllowCreate << sdPerformCreate << sdPrompt,0))return Dir;elsereturn "";}for the following redeployed to the users choice catalogue :AnsiString SelectedDir = SelectDir ( "C:\\My Documents");外文翻译译文数据结构是计算机程序设计的重要理论设计基础,它不仅是计算机学科的核心课程,而且已成为其他理工专业的热门选修课,所以学好这门课程是与学好计算机专业是息息相关的。
数据结构英语作文加翻译

数据结构英语作文加翻译Title: The Importance of Data Structures in Computer Science。
Data structures play a crucial role in the field of computer science. They are fundamental concepts that enable efficient storage, retrieval, and manipulation of data in computer programs. In this essay, we will explore the significance of data structures, their types, and their applications in various domains.Firstly, let us delve into the importance of data structures. In computer science, data is the foundation of every software application. However, raw data alone is not sufficient; it needs to be organized in a structured manner to be processed efficiently. Here comes the role of data structures. They provide a way to organize and store datain such a way that it can be easily accessed and manipulated. By choosing appropriate data structures, programmers can optimize the performance of theiralgorithms, leading to faster execution times and more efficient resource utilization.There are several types of data structures, each with its unique characteristics and use cases. One of the most basic data structures is the array, which stores elements of the same type in contiguous memory locations. Arrays are widely used due to their simplicity and constant-time access to elements. Another commonly used data structure is the linked list, which consists of nodes where each node contains a data field and a reference (or pointer) to the next node in the sequence. Linked lists are efficient for insertion and deletion operations but may have slower access times compared to arrays.Apart from arrays and linked lists, there are more complex data structures such as stacks, queues, trees, and graphs. Stacks follow the Last-In-First-Out (LIFO)principle and are often used in algorithms involving function calls, expression evaluation, and backtracking. Queues, on the other hand, adhere to the First-In-First-Out (FIFO) principle and are commonly used in scenarios liketask scheduling, job processing, and breadth-first search algorithms. Trees are hierarchical data structures consisting of nodes connected by edges, with a root node at the top and leaf nodes at the bottom. They are utilized in applications like hierarchical data storage, binary search trees, and decision trees. Graphs are collections of nodes (vertices) and edges connecting these nodes, and they find applications in various fields such as social networks, routing algorithms, and network flow optimization.Now, let's discuss the applications of data structures across different domains. In software development, data structures are extensively used in designing databases, implementing algorithms, and building user interfaces. For example, databases rely on data structures like B-trees and hash tables for efficient storage and retrieval of information. In algorithm design, efficient data structures are crucial for optimizing time and space complexity. Many popular algorithms such as sorting, searching, and graph traversal algorithms heavily rely on data structures for their implementation. Moreover, in user interface development, data structures like trees and graphs are usedto represent the hierarchical structure of UI components and their relationships.In addition to software development, data structures find applications in fields like artificial intelligence, bioinformatics, and computational biology. In artificial intelligence, data structures are used to represent knowledge, make decisions, and solve complex problems. For instance, knowledge graphs are used to represent relationships between entities in a knowledge base, while decision trees are employed in decision-making processes. In bioinformatics and computational biology, data structures are used to store and analyze biological data such as DNA sequences, protein structures, and metabolic pathways. Efficient data structures and algorithms are essential for tasks like sequence alignment, genome assembly, and protein folding prediction.In conclusion, data structures are the building blocks of computer science. They enable efficient storage, retrieval, and manipulation of data in computer programs, leading to faster execution times and more efficientresource utilization. With various types of data structures available and their applications spanning across different domains, it is evident that a solid understanding of data structures is essential for every computer scientist and software developer. By mastering data structures and their applications, programmers can write more efficient and scalable software solutions, thereby advancing the field of computer science as a whole.(翻译)。
数据结构专业英语词汇汇总

数据结构专业英语词汇汇总
- Data structure: 数据结构
- Array: 数组
- Linked list: 链表
- Stack: 栈
- Queue: 队列
- Binary tree: 二叉树
- AVL tree: AVL树 (一种自平衡二叉查找树)
- Red-black tree: 红黑树 (一种自平衡二叉查找树)
- Hash table: 哈希表
- Graph: 图
- Vertex: 顶点
- Edge: 边
- Adjacency list: 邻接表 (一种表示图的数据结构)
- Adjacency matrix: 邻接矩阵 (一种表示图的数据结构) - Heap: 堆
- Binary heap: 二叉堆 (一种特殊的堆数据结构)
- Priority queue: 优先队列 (用堆实现的一种队列)
- Trie: 字典树 (一种用于快速检索的树形数据结构)
- Big O notation: 大O符号 (一种表示算法时间复杂度的记号) - Sorting algorithm: 排序算法
- Searching algorithm: 算法
- Abstract data type (ADT): 抽象数据类型
- Hashing: 哈希函数的计算过程
- Collision: 哈希冲突 (发生在两个不同的键值被映射到相同的哈希桶时)。
编译技术中常用的数据结构

编译技术中常用的数据结构一、线性表线性表是编译技术中常用的数据结构之一,它是一种能够按照线性顺序存储数据元素的数据结构。
线性表可以通过顺序存储结构或链式存储结构来实现。
1. 顺序存储结构顺序存储结构是将线性表的元素按照顺序存储在一块连续的存储空间中。
在编译技术中,顺序存储结构常用于存储符号表、常量表等数据结构。
通过数组来实现顺序存储结构,可以快速访问线性表的任意位置元素。
2. 链式存储结构链式存储结构是通过节点之间的指针链接来实现线性表的存储。
在编译技术中,链式存储结构常用于存储中间代码、语法树等数据结构。
链式存储结构灵活性较高,可以动态地分配和释放存储空间。
二、栈栈是一种具有后进先出(LIFO)特性的线性表。
在编译技术中,栈常用于处理函数调用、表达式求值等场景。
栈的基本操作包括入栈和出栈。
入栈将元素压入栈顶,出栈将栈顶元素弹出。
编译技术中,栈还常用于处理函数的局部变量、函数的三、队列队列是一种具有先进先出(FIFO)特性的线性表。
在编译技术中,队列常用于处理优化算法、指令调度等场景。
队列的基本操作包括入队和出队。
入队将元素插入队尾,出队将队头元素移除。
编译技术中,队列还常用于处理指令流水线、任务调度等问题。
四、树树是一种非线性的数据结构,它由若干个节点组成,节点之间通过边连接。
在编译技术中,树常用于构建语法树、抽象语法树等数据结构。
树的基本概念包括根节点、叶子节点和内部节点。
树的遍历方式有前序遍历、中序遍历和后序遍历。
编译技术中,树的遍历常用于语法分析、语义分析等阶段。
五、图图是一种由节点和边组成的非线性数据结构。
在编译技术中,图常用于构建控制流图、数据依赖图等数据结构。
图的基本概念包括顶点、边和路径。
图可以分为有向图和无向图,还可以带有权重。
编译技术中,图的遍历常用于寻找程序中的循环、六、哈希表哈希表是一种通过哈希函数将关键字映射到存储位置的数据结构。
在编译技术中,哈希表常用于符号表、常量表等数据结构。
数据结构栈和队列ppt课件

栈的运用 例3.1 将一个十进制正整数N转换成r进制的数
N 〕
1835
229
28
3
N / 8 〔整除〕 N % 8〔求余
229
3
低
28
5
3
4
0
3
高
❖例3.2 算术表达式中括号匹配的检查
❖用栈来实现括号匹配检查的原那么是,对表达式从左 到右扫描。
❖〔1〕当遇到左括号时,左括号入栈;
❖〔2〕当遇到右括号时,首先检查栈能否空,假设栈 空,那么阐明该“右括弧〞多余;否那么比较栈顶左 括号能否与当前右括号匹配,假设匹配,将栈顶左括 号出栈,继续操作;否那么,阐明不匹配,停顿操作 。
❖在顺序栈上实现五种根本运算的C函数 ❖〔3〕入栈 ❖int push (SeqStack *s, DataType x) ❖{ if (s->top==MAXSIZE-1) /*栈满不能入栈*/ ❖{ printf("overflow"); ❖return 0; ❖} ❖ s->top++; ❖ s->data[s->top]=x; ❖ return 1; ❖}
链队列及运算的实现
采用链接方法存储的队列称为链队列〔Linked Queue〕
采用带头结点的单链表来实现链队列,链队列中 的t结ype点de类f st型ruc与t N单od链e 表一样。将头指针front和尾指针 re{arD封at装aTy在pe一da个ta;构造体中,链队列用C言语描画如 下:struct Node *next;
❖只设了一个尾指针r ❖头结点的指针,即r->next ❖队头元素的指针为r->next->next ❖队空的断定条件是r->next==r
计算机专业常用英语

10. local a. 局部;本地[机]
localhost 本(主)机
比较 remote a. 远程 remote access 远程访问 remote communications 远程通信 remote terminal 远程终端
11. ring network 环形网络 ring topology 环形拓扑
4
比较 model 模型 module 模块 modulo 模(运算)
11. opcode 操作码( operation code ) 12. decode v. 译码
decoder 译码器,解码器,翻译程序
5
2.2 Microprocessor And Microcomputer
1. integrated circuit 集成电路
8. library (程序)库,库
16
9. single threading 单线程处理方式
Within a program, the running of a single process at a time. 在程序中,一次运行一个进程的方式。
single-precision 单精度 single-user computer 单用户计算机 thread 线程;线索 threaded tree 线索树 threading 线程技术
11
16. idle a. 空闲,等待
Operational but not in use. 用来说明处在可操作状态但不在使用。 idle state 空闲状态
12
18. launch v. 启动,激活 19. prototyping 原型法 20. project n. 投影运算 21. workstation 工作站
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Error Processing——error code
We shall use a single enumerated type called Error_code to report errors from all of our programs and functions. The enumerated type Error_code is part of the utility package in Appendix C. Stacks use three values of an Error_code: success, overflow, underflow Later, we shall use several further values of an Error_code.
Error_code Stack :: push(const Stack_entry &item); precondition: None. postcondition: If the Stack is not full, item is added to the top of the Stack. If the Stack is full, an Error_code of overflow is returned and the Stack is left unchanged.
top an-1 an-2
maxstack
bottom
a0
Understand stack
You can imagine stack as this barrel, when you want to put the black pie into the barrel, you just put it on the top of the orange one. Meanwhile, when you want to get the red pie, you should first popup the other two pies, and then you can get the red one.
Stack methods The methods of our class stack must include the following fundamental operations.
empty( ) top( ) push( )
pop( )
Constructor
Entry Types, Generics
2.2 IMPLEMENTATION OF STACKS
contiguous stacks In this Chapter, we will learn contiguous stacks. linked stacks We will learn in Chapter 4.
2.2.1 Specification of Methods for Stacks
Pushing and popping a stack
S M D R A Q
Standard Template Library (STL)
The standard template library (abbreviated STL) in C++ contains much useful information, many functions, and many classes. We can include the STL stack implementation into our programs with the directive #include <stack> and then we can define and initialize empty stack objects and apply methods called push, pop, top, and empty.
a1
a2
a3
a4
a5
a6
question
Read an integer n, which will be at most 25, then read a list of n numbers, and print the list in reverse order.
2.1.2 Stacks
Definition: A stack is a last in-first out (LIFO) data structure in which all insertion and deletion are restrict to one end, called top. Pop Stack Push Stack
Hale Waihona Puke Standard Template Library (STL)
In C++, a template construction allows us to create data structures whose entries have different types. Example: stack<double> numbers stack<int> numbers The STL provides several implementations of various data structures such as stacks. A second, optional template parameter selects the implementation.
For generality, we use Stack_entry for the type of entries in a Stack. A client can specify this type with a definition such as typedef int Stack_entry; or typedef char Stack_entry; The ability to use the same underlying data structure and operations for different entry types is called generics. typedef provides simple generics. Starting in Chapter 6, we shall use C++ templates for greater generality.
2.1.3 First Example: Reversing a List
As a simple example of the use of stacks, let us write a program to solve the problem of Section 2.1.1. Our program must read an integer n, followed by n floating-point numbers. It then writes them out in reverse order. We can accomplish this task by pushing each number into a stack as it is read. When the input is finished, we pop numbers off the stack, and they will come off in the reverse order.
CHAPTER 2 INTRODUCTION TO STACKS
【学习内容】 BASIC CONCEPTS 1. Stack Specifications 2. Implementation of Stacks 3. Application: A Desk Calculator 4. Application: Bracket Matching 5. Abstract Data Types and Their Implementations
Error Processing—exception handling
an exception is produced when a error is detected in a data structure; client can capture the exception and decide how to response. return an error code from implementation.
Specification for Methods
Error_code Stack :: pop( ); precondition: None. postcondition: If the Stack is not empty, the top of the Stack is removed. If the Stack is empty, an Error_code of underflow is returned and the Stack is left unchanged.
#include <stack> #include <iostream> using namespace std; int main( ) { int n; double item; stack<double> numbers; // declares and initializes a stack of numbers cout << " Type in an integer n followed by n decimal numbers." << endl << " The numbers will be printed in reverse order." << endl; cin >> n; for (int i = 0; i < n; i++) { cin >> item; numbers.push(item); } cout << endl << endl; while (!numbers.empty( )) { cout << numbers.top( ) << " "; numbers.pop( ); } cout << endl; return 0;}