微波课设八木天线设计
八木天线的原理和制作概要

八木天线的原理和制作概要八木天线(Yagi-Uda Antenna)是一种常用的定向性天线,广泛应用于无线通信、电视、无线电等领域。
八木天线以其简单的结构和高增益而受到青睐。
其工作原理是基于干涉和辐射。
八木天线的结构包括一个驱动元件(又称为激励器)和若干个反射元件和辐射元件组成。
驱动元件一般为一个有源的振荡天线,如偶极子,通过振荡产生的电磁波激发其他元件。
反射元件位于驱动元件的后方,起到集中反射电磁波的作用。
辐射元件则位于驱动元件的前方,起到扩散辐射电磁波的作用。
通过这样的结构,八木天线能够提高天线的增益,增强信号的传输方向性。
八木天线的反射元件由若干个均匀定位的平行的金属棒组成,其长度与驱动元件的工作频率有关。
反射元件比驱动元件短约1/4波长,从而实现相位差。
当反射元件上的电流被激发时,它们会发出电磁波,将电磁波聚焦到驱动元件的边缘,因此可以抑制边缘辐射。
这种电磁波的相干性与反射元件的长度、数量等因素有关。
辐射元件由若干个均匀定位的平行金属棒组成,其长度比驱动元件短约1/2波长。
辐射元件的长度和距离驱动元件的距离也会影响天线的增益和方向性。
当激励器产生的电磁波通过驱动元件传入辐射元件时,电磁波在辐射元件上会产生类似干涉的效应,增加电磁波辐射的方向性,以及进一步增强电磁波的辐射功率。
制作八木天线的步骤如下:1.根据要接收或发射的信号频率计算波长,根据波长确定驱动元件、反射元件和辐射元件的长度。
2.准备天线材料,一般为厚度适中、导电性能良好的金属棒,如铝棒。
3.构建驱动元件,可选择一根合适长度的金属棒作为驱动元件,在其一端连接激励器。
4.构建反射元件,根据计算得到的长度要求,制作若干个金属棒,间隔适当,一端与驱动元件连接。
5.构建辐射元件,根据计算得到的长度要求,制作若干个金属棒,与驱动元件的另一端连接。
6.连接和固定天线元件,确保元件之间的相对位置和长度精确。
使用导线连接驱动元件和激励器。
7.进行天线的测试和调整,根据实际效果来优化天线的性能。
高增益微带八木天线的设计

高增益微带八木天线的设计高增益微带八木天线的设计【摘要】本文基于八木天线的结构设计并制作了一个准八木高增益微带天线,利用电磁仿真软件CST进行仿真设计。
通过增加引向器的个数来增加增益随着引向器的增加,增益由4.15dBi增加到8.2dBi;通过增加x方向的单元数,压缩E 面的方向性进而提高增益,其增益由8.2dBi提高到12.7dBi。
最终设计出一款工作于5.8GHz,增益约为12.7dBi,前后比为26dB的天线,实测与仿真结果基本吻合。
1、微带八木天线的设计原理随着微波技术的发展,微带准八木天线由于其结构简单易于加工实现而成为国内外的一个研究热点。
微带准八木天线的工作原理如图,采用180°相位差的微带传输线作为馈线,馈入八木天线的两臂的信号刚好等幅反向。
八木天线可看作是端射式行波天线,其波瓣图可近似为间距λ/4,相位递减90°的电源端射阵。
在微带八木中要实现输入端的阻抗匹配很关键,2单元6元阵子在馈电微带的阻抗匹配计算如图1所示图1 阻抗匹配计算八木天线的地板作为反射器,馈电后的主阵子向空间辐射电磁波,同时引向阵子由于耦合作用产生了感应电流,也向外辐射电磁波,引向器和反射器的相互作用能将有源振子辐射的能量集中到主辐射方向。
引向器的数目在一定的范围内越多,方向性越强,增益就越高。
有源振子的长度一般取半波长,通过调整阵子间的间距以及无源振子的长度,可以改变无源振子上产生的交变感应电流的相位和幅度,使得电磁场在主方向上叠加,从而达到增强天线辐射方向性的目的,进而提高天线的增益和辐射效率。
不同数量引向阵子对应增益增量如表1所示。
表1 不同单元八木天线的增益值2、微带八木天线的结构微带八木天线的结构如图2所示。
与宇田八木天线的结构基本相同,微带准八木天线每个单元由源辐射阵子、反射器和引向器组成,其反射器为微带的截断接地板,源辐射阵子为偶极子。
馈电口通过巴伦进行阻抗变化进行功分到两个单元。
微波课设八木天线设计

课设报告课程名称:微波技术与天线课设题目:八木天线的仿真设计课设地点:电机馆跨越机房专业班级:信息1002班学号:学生姓名:指导教师:2013/6/27目录1、设计摘要2、设计原理3、八木天线参数选择及设计要求4、八木天线的HFSS10仿真1建立模型2确认设计3 S参数反射参数42D辐射远区场方向图53D Polar5、仿真结果分析6、实验中的问题7、心得体会一、设计摘要八木天线又称引向天线,它由一个有源振子及若干无源振子组成的线形端射天线;其结构示意图如下,在无源振子中较长的一个为反射器,其余的均为引向器,它被广泛应用于米波、分米波波段的通信、雷达、电视、及其它无线电系统中;六元八木天线示意图八木天线中,有源振子可以是半波振子,也可以是折合振子一般常用折合振子,以提高八木天线的输入阻抗,以便和馈电线匹配;主要作用是提高辐射能量;无源振子是若干孤立的金属杆,它与馈线和有源振子不直接相连,作用是使辐射的能量集中到天线的端向;二、设计原理:八木天线的工作原理是:有源振子被馈电后,向空间辐射电磁波,使无源振子中的产生感应电流,从而也产生辐射;改变无源振子的长度及其与有源振子之间的距离,无源振子上的感应电流的幅度和相位也随着改变,从而影响有源振子的方向图;若无源振子与有源振子之间的距离小于λ/4,无源振子比有源振子短时,整个电磁波能量将在无源振子方向增强;无源振子比有源振子长时,将在无源振子方向减弱;比有源振子稍长一点的称反射器,它在有源振子的一侧,起着消弱从这个方向传来的电波或从本天线发射去的电波的作用;比有源振子略短的称引向器,它位于有源振子的另一侧,它能增强从这一侧方向传来的或向这个方向发射出去的电波;通常反射器的长度比有源振子长4%~5%,而引向器可以有多个,第1~4个引向器的长度通常比有源振子顺序递减2%~5%;本设计就是基于八木天线的基本理论的基础上,设计一个六元八木天线;三、八木天线参数选择及设计要求根据上述八木天线基本理论的介绍,我们可以知道引向器越多,方向越尖锐、增益越高,但实际上超过四、五个引向器之后,这种“好处”增加就不太明显了,而体积大、自重增加、对材料强度要求提高、成本加大等问题却渐突出;通常情况下有一副五单元八木即有三个引向器,一个反射器和一个有源振子就够用了;因此,我们选用了一个比较合适的参数范围,其参数如下:其工作频率为f=300MHz;1,参数的选择:λ=c/f=1m;2lref=λ,2ldri=λ,2l1=2l2=2l3=2l4=λ;Ddri=λ,d1=d2=d3=0,30λ,dref=λ;振子直径2a=λ;2,设计要求:利用HFS10仿真软件对此组数据进行仿真,并分析其远辐射场特性以及S曲线,并绘制其方向图;四、八木天线的HFSS10仿真1,建立模型:模型细节:八木天线实物仿真2,确认设计:确认设计3、S参数反射参数:4、2D辐射远区场方向图1phi=0deg时:2phi=90deg时:3phi=180deg时:5、3D Polar:五、仿真结果分析可知,天线工作的谐振频率在550MHz附近,与实际设计要求f=300MHz 有一定的偏差;在实验中已知振子直径2a=;为了实现八木天线与同轴线之间的阻抗匹配;通过添加了附加平衡段平衡器balun来实现阻抗匹配;在以上工程中balun的半径r=,长度l=;六、实验中的问题:1、建模出错:第一次建模时未能正确画出让Arm_2与Balun连接的L1与L2;让我在空欢喜的等待了2小时的,建模的结果当然也是不符合要求;其反射系数曲线和2D辐射远场方向图如下:虽然在425MHz时,衰减到了10dB以下,但是由于其工作频带过窄,不能正常工作,不符合要2修改模型以后未修改U2半径;反射系数曲线图如下:不符合要求七、心得体会当初选择八木天线作为自己的课设题目时,以为工作量再大,那又能大到哪里去;结果,在实验的过程中,也体会到了做八木天线的难度;建模其实没什么难度,难的是在每次修改平衡器Balun的半径r以后,一运行就得等上3小时左右;而且修改半径以后也不能确定结果是否符合要求;不过,在不断地修改与尝试过程中,我对八木天线和仿真软件HFSS也有了更多的认识,比如总结了一下一些常用快捷键,如:Ctrl+D:最佳角度观看模型;Shift+鼠标:水平移动模型;Alt+鼠标:旋转模型;Shift+Alt+鼠标:放大缩小模型;Alt+双击坐标轴:平视图;还有在查阅有关八木天线的相关资料时,也是出乎意料,网上的资源简直非常少,而且收费的居多在我的查阅范围里;可能网上八木天线的知识是很多的;但在我的查询中,至少让我体会到,天线是难学的学科;。
微波课设八木天线设计

微波课设八木天线设计 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】课设报告课程名称:微波技术与天线课设题目:八木天线的仿真设计课设地点:电机馆跨越机房专业班级:信息1002班学号:学生姓名:指导教师:2013/6/27目录1、设计摘要2、设计原理3、八木天线参数选择及设计要求4、八木天线的HFSS10仿真(1)建立模型(2)确认设计(3) S参数(反射参数)(4)2D辐射远区场方向图(5)3D Polar5、仿真结果分析6、实验中的问题7、心得体会一、设计摘要八木天线又称引向天线,它由一个有源振子及若干无源振子组成的线形端射天线。
其结构示意图如下,在无源振子中较长的一个为反射器,其余的均为引向器,它被广泛应用于米波、分米波波段的通信、雷达、电视、及其它无线电系统中。
六元八木天线示意图八木天线中,有源振子可以是半波振子,也可以是折合振子一般常用折合振子,以提高八木天线的输入阻抗,以便和馈电线匹配。
主要作用是提高辐射能量。
无源振子是若干孤立的金属杆,它与馈线和有源振子不直接相连,作用是使辐射的能量集中到天线的端向。
二、设计原理:八木天线的工作原理是:有源振子被馈电后,向空间辐射电磁波,使无源振子中的产生感应电流,从而也产生辐射。
改变无源振子的长度及其与有源振子之间的距离,无源振子上的感应电流的幅度和相位也随着改变,从而影响有源振子的方向图。
若无源振子与有源振子之间的距离小于λ/4,无源振子比有源振子短时,整个电磁波能量将在无源振子方向增强;无源振子比有源振子长时,将在无源振子方向减弱。
比有源振子稍长一点的称反射器,它在有源振子的一侧,起着消弱从这个方向传来的电波或从本天线发射去的电波的作用;比有源振子略短的称引向器,它位于有源振子的另一侧,它能增强从这一侧方向传来的或向这个方向发射出去的电波。
通常反射器的长度比有源振子长4%~5%,而引向器可以有多个,第1~4个引向器的长度通常比有源振子顺序递减2%~5%。
八木天线原理

八木天线原理
八木天线原理是一种用于天线设计的原理,最早由日本工程师八木秀次在20世纪40年代提出。
八木天线的特点是具有高增益和定向性,适用于无线通信等领域。
八木天线的设计是基于单根驻波振子的原理。
八木天线由一个驻波振子和若干个反射器组成。
振子是天线系统中的主要辐射器,它负责接收或发送电磁波。
反射器则用于增强振子的辐射效果。
八木天线的工作原理可以简述如下:当电磁波入射并经过振子时,振子会将电磁波吸收并产生电流,然后将电流通过导线传递给反射器。
反射器上的电流会反射回振子,形成反相电流。
这种反射过程会增强振子的电磁辐射,从而提高天线的辐射效果。
八木天线的优点是可以获得较高的增益和定向性。
它的增益可以比传统的单根振子天线高出几倍,适合在信号较弱或远距离通信的场景中使用。
同时,八木天线的辐射方向也比较集中,可以减少信号的散射,提高通信的可靠性。
总之,八木天线原理是一种基于驻波振子和反射器的设计原理,具有高增益和定向性的特点。
它在无线通信等领域有着重要的应用价值。
微波仿真论坛_八木天线的设计仿真与测试 (1)

北京交通大学硕士学位论文八木天线的设计仿真与测试姓名:常媛媛申请学位级别:硕士专业:通信与信息系统指导教师:周克生20061201北京交通人子硕士学位论文中文摘耍中文摘要摘要:天线在现代通信系统中的作用不可或缺,本文的主要内容就是围绕天线展丌。
论文的主要内容分两个部分:八木天线的设计和参数测量。
本文的第一个主要部分是八木天线的设计仿真,设计基于GSM-R干扰检测定向用天线的要求。
要在GSM-R频段的下行885MHz-889MHz频段内和上行930MHz-934MHz 频段内有高的方向性系数;方向图主瓣半功率角小于40。
,并且副瓣电平足够低(<-9dB);阻抗带宽要覆盖885-934MHZ的频带,驻波比小于 1.5:另外,也要使其满足移动检测的便携式要求。
八木天线有很多分析方法,本文主要介绍了感应电动势法、行波天线的观点、矩量法与优化算法相结合的方法及现代仿真技术应用于天线设计方法。
本文八木夭线的分析与设计包括天线部分的设计和平衡不平衡转换结构的设计。
通过理论分析和基于矩量法的仿真软件FEKO和基于有限元法的HFSS设计仿真,得到符合要求的八木天线•通过仿真得到了天线在两个频段上垂直和水平极化方向的方向图及相关特性参数、天线输入阻抗、驻波比及带宽等天线设计要求的参数。
通过结果的对比也验证了两种软件的有效性。
本文的第二个主要部分是天线特性参数的测量,包括天线的校准、天线方向图的测量、天线驻波比的测量。
通过理论学习和实际动手操作,详细介绍了测量方法、测量步骤、测量误差的分析等。
最后,作为八木天线的设计的延续^本文介绍了国外一种新型的八木天线设计方法,其板状设计易于和基于微带的单片微波集成电路结合共形,极有可能在未来的通信和雷达系统毫米波成像技术领域得到进一步的应用,为今后进一步的设计和优化提供了思路。
关键词:八木天线HFSS FEK0 方向系数方向图半功率角驻波比分类号:TN82北京交通人7硕+论文ABSTRACTABSTRACTAntenna plays an important role in present communication system. The main work of this paper focused on the design and measurement of Yagi-Uda antenna.The first section was the design and simulation of Yagi-Uda antenna. The antenna was used for the detection and direction of interference on the frequency band of GSM-R. In order to satisfy the requirement of detection and direction, we should manage to get the following antenna parameters: high directional coefficient; the bandwidth should cover the frequency band of GSM-R( 885-934MHz) ; HPBW (half-power-bandwidth of main lobe) <40°,1st side lobe :<-9dB;we should tradeoff the high directional coefficient and antenna size for the convenience of moving carrying.There are various methods on the analysis of Yagi-Uda antenna. In this paper,four methods were introduced; voltagc-induction method, the point of traveling wave, MOM combining optimum algorithm and software simulation. I use electromagnetic software HFSS and FEKO for the design. There are two part of my design: antenna and balun design. The horizontal and vertical polarization directional parameters were got, other parameters, Z m9 VSWR, bandwidth, were also got.The second main part of my work was the measurement of antenna parameters, which include antenna calibration, antenna direction measurement, VSWR measurement. The measurement method and step were describe in detail through theory study and practicc handle. The validity of two kinds of software was also tested through simulation and measurement.*Finally, a new kind design of Yagi-Uda antenna was introduced,which was totally compatible with any microstrip-based MMIC circuitry. I think this antenna find wide applications in wireless communication systems, power combining and phased arrays,as well as millimeter-wave imaging arrays.KEYWORDS : Yagi-Uda antenna HFSS FEKO direction coefficient HPBW VSWRCLASSNO; TN82致谢首先要感谢我的导师周克生教授,在我攻读硕士学位期间给予我许多帮助和悉心指导《从基础知识的学习和科研能力的培养,到论文的选题、深入、成文,周老师在每一个环节都以他周到细致的分析、敏锐的视角、渊博的知识和对科学研究的严谨态度对我做了关键性的指引。
一种超高频微带八木标签天线的研究与设计
一种超高频微带八木标签天线的研究与设计一种超高频微带八木标签天线的研究与设计摘要:微波八木天线技术是一种重要的天线技术,特别适用于需要小尺寸、轻重量、低价格、高方向性以及宽带等特征的通信场合。
本文研究设计的是一种超高频微带八木标签天线,通过仿真软件进行模拟并最终实现实验验证。
结果显示,新型八木标签天线具有高增益,较好的特性,可用于无线通信、追踪和定位等场合。
关键词:微波八木天线技术;超高频;微带八木标签天线;仿真模拟;实验验证一、绪论随着信息技术的发展,无线通信、追踪和定位技术等具有广泛应用的领域发展迅速。
其中,天线技术是实现无线通信传输的关键设备,天线技术的性能对通信系统的整体性能有着至关重要的影响。
因此,研究各种天线技术及其应用对于提升通信系统的传输性能至关重要。
八木天线是一种微波淋巴细胞瘤成像新型高效的天线,其具有高增益、宽带、高方向性和轻便等优点,在卫星通信、民用通信、飞行器通信和导航等领域得到广泛应用。
另外,在RFID(Radio Frequency Identification)技术中,八木天线也得到了广泛的应用。
八木天线通常是由若干个同步振子组成,每一个振子能够工作于一定的频率范围内,通过相位控制实现高方向性与宽带。
传统的八木天线通常由金属材料制造,存在尺寸较大、重量较重、成本较高等缺点。
近年来,微带八木标签天线(Microstrip-Yagi-Tag Antenna)受到了研究人员的广泛关注,其具有灵活性、低成本、高效性和小尺寸等特点,逐渐成为八木天线研究的热点。
本文研究设计的是一种超高频微带八木标签天线,对其相关性能进行仿真模拟,并最终实现实验验证。
本论文的目的是为了验证这种新型八木标签天线具有高增益、小尺寸和低成本等优点,并可用于无线通信、追踪和定位等领域。
二、超高频微带八木标签天线的设计1、设计原理超高频微带八木标签天线是一种由微带八木天线和标签天线结合而成的天线。
其工作原理是利用椭圆极化特性来实现天线的工作,通过选择合适的夹角、相位和振荡器长度等参数来实现多频段工作。
北邮电磁场与微波实验天线部分八木天线
信息与通信工程学院电磁场与电磁波实验报告——天线部分
班级:
学号:
班内序号:
姓名:
实验二
网络分析仪测试八木天线方向图实验目的:
1.掌握网络分析仪辅助测试方法;
2.学习测量八木天线方向图方法;
3.研究在不同频率下的八木天线方向图特性。
实验步骤:
1.调整分析仪到轨迹(方向图)模式;
2.调整云台起点位置270°;
3.寻找归一化点(最大值点);
4.旋转云台一周并读取图形参数;
5.坐标变换、变换频率(600MHz、900MHz、1200MHz),分析八木
天线方向图特性;
测量图600MHz
900MHz
1200MHz
实验结果分析
随着频率的增高,圆图四周的毛刺现象越来越严重,600 MHz的时候四周的辐射情况反映在圆图上是一个对称的图形,当频率上升到900MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,当频率上升到1200MHz时,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。
实验心得
通过测量不同频率的电磁波通过八木天线的接收,我发现在不同
方向接收到的信号强度不同,实际应用中的有向天线和基站的扇区覆盖,我想就是应用了这样的原理。
天线实验将我们电磁波学习的理论知识跟实际应用有机地结合在一起,尤其是smith圆图在现实和仿真中的作用。
微波课设 八木天线
太原理工大学现代科技学院微波技术与天线课程设计设计名称八木天线的仿真设计专业班级学号姓名指导教师太原理工大学现代科技学院课程设计任务书的顺序进行装订上交(大张图纸不必装订)指导教师签名日期::专业班级信学号姓名成绩八木天线的仿真设计一、八木天线简介作为电磁换能元件,天线在整个无线电通信系统中位置十分重要,质量好坏直接影响着收发信距离的远近和通联效果,可以说没有了天线也就没有了无线电通信。
作为一款经典的定向天线,八木天线在HF、VHF以及UHF波段应用十分广泛,它全称为“八木/宇田天线”,英文名YAGI,是由上世纪二十年代日本东北帝国大学的电机工程学教授八木秀次,在与他的学生宇田新太郎研究短波束时发明的。
相对于基本的半波对称振子或者折合振子天线,八木天线增益高、方向性强、抗干扰、作用距离远,并且构造简单、材料易得、价格低廉、挡风面小、轻巧牢固、架设方便。
通常八木天线由一个激励振子(也称主振子)、一个反射振子(又称反射器)和若干个引向振子(又称引向器)组成,相比之下反射器最长,位于紧邻主振子的一侧,引向器都较短,并悉数位于主振子的另一侧,全部振子加起来的数目即为天线的单元数,譬如一副五单元的八木天线就包括一个主振子、一个反射器和三个引向器,结构如图1所示。
主振子直接与馈电系统相连,属于有源振子,反射器和引向器都属无源振子,所有振子均处于同一个平面内,并按照一定间距平行固定在一根横贯各振子中心的金属横梁上。
八木天线又称引向天线,是上个世纪二十年代,日本东北大学的八木秀次和宇田太郎两人发明的。
八木天线通常由一个有源振子、一个反射器及若干个引向器构成,反射器与引向器都是无源振子,所有振子都排列在一个平面内且相互平行。
它们的中点都固定在一根金属杆上,除了有源振子馈电点必须与金属杆绝缘外,无源振子则都与金属杆短路连接。
因为金属杆与各个振子垂直,所以金属杆上不感应电流,也不参与辐射。
引向器天线的最大辐射方向在垂直于各个振子且由有源振子指向引向器的方向,所以它是一种端射式天线阵。
八木天线制作方法
八木天线制作方法简介八木天线是一种常见的定向天线,具有高增益和较低的副瓣。
它由两个主要元素构成:驱动器和反射器。
八木天线常用于无线通信、电视接收和雷达系统等应用中。
本文将介绍八木天线的制作方法,帮助您自己制作一台八木天线。
材料制作八木天线所需的材料如下:1.驱动器:一根直径为5mm的铜线2.反射器:一张高质量的铝箔3.绝缘支架:一根长约30cm的塑料或木材支架4.小型电缆:用于连接驱动器和接收器的传输信号线制作步骤步骤 1:准备工作在开始制作八木天线之前,确保您已经准备好所需的材料,并清理工作区以确保安全和有效的制作过程。
步骤 2:制作驱动器1.首先,将5mm直径的铜线剪成约30cm的长度。
2.使用钳子弯曲铜线,制作一个类似“V”形的形状。
3.将驱动器的两端留出一些额外的长度,以便将来连接电缆。
步骤 3:制作反射器1.将高质量的铝箔切割成一个矩形形状,长约40cm,宽约20cm。
2.弯曲铝箔,使其形成一个类似于驱动器的“V”形状。
3.将反射器的两端折叠成锐角,以增加天线的增益。
步骤 4:安装驱动器和反射器1.将驱动器固定在绝缘支架的中间位置。
2.使用胶带或螺丝将反射器固定在驱动器的两侧。
步骤 5:连接电缆1.将一端的小型电缆连接到驱动器的一端。
2.将另一端的小型电缆连接到无线接收器或电视机上。
步骤 6:检查和调整1.使用天线分析仪或频谱分析仪等工具,检查天线的工作频率范围和增益。
2.如果需要调整天线的频率范围或增益,可以略微调整驱动器和反射器的形状。
维护和注意事项•定期检查八木天线的连接部分,确保连接牢固。
•避免在潮湿或恶劣的天气条件下使用八木天线,以防止损坏。
•如果发现八木天线的工作范围或效果变差,可以检查连接或重新调整天线。
结论通过上述制作步骤,您可以自己制作一台八木天线。
请记住,在制作过程中保持仔细和耐心,并遵循安全操作规程。
自制的八木天线可以提供较高的增益和性能,为您的通信和接收需要提供更好的体验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波课设八木天线设计文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
课设报告
课程名称:微波技术与天线
课设题目:八木天线的仿真设计
课设地点:电机馆跨越机房
专业班级:信息1002班
学号:
学生姓名:
指导教师:
2013/6/27
目录
1、设计摘要
2、设计原理
3、八木天线参数选择及设计要求
4、八木天线的HFSS10仿真
(1)建立模型
(2)确认设计
(3) S参数(反射参数)
(4)2D辐射远区场方向图
(5)3D Polar
5、仿真结果分析
6、实验中的问题
7、心得体会
一、设计摘要
八木天线又称引向天线,它由一个有源振子及若干无源振子组成的线形端射天线。
其结构示意图如下,在无源振子中较长的一个为反射器,其余的均为引向器,它被广泛应用于米波、分米波波段的通信、雷达、电视、及其它无线电系统中。
六元八木天线示意图
八木天线中,有源振子可以是半波振子,也可以是折合振子一般常用折合振子,以提高八木天线的输入阻抗,以便和馈电线匹配。
主要作用是提高辐射能量。
无源振子是若干孤立的金属杆,它与馈线和有源振子不直接相连,作用是使辐射的能量集中到天线的端向。
二、设计原理:
八木天线的工作原理是:有源振子被馈电后,向空间辐射电磁波,使无源振子中的产生感应电流,从而也产生辐射。
改变无源振子的长度及其与有源振子之间的距离,无源振子上的感应电流的幅度和相位也随着改变,从而影响有源振子的方向图。
若无源振子与有源振子之间的距离小于λ/4,无源振子比有源振子短时,整个电磁波能量将在无源振子方向增强;无源振子比有源振子长时,将在无源振子方向减弱。
比有源振子稍长一点的称反射器,它在有源振子的一侧,起着消弱从这个方向传来的电波或从本天线发射去的电波的作用;比有源振子略短的称引向器,它位于有源振子的另一侧,它能增强从这一侧方向传来的或向这个方向发射出去的电波。
通常反射器的长度比有源振子长4%~5%,而引向器可以有多个,第1~4个引向器的长度通常比有源振子顺序递减2%~5%。
本设计就是基于八木天线的基本理论的基础上,设计一个六元八木天线。
三、八木天线参数选择及设计要求
根据上述八木天线基本理论的介绍,我们可以知道引向器越多,方向越尖锐、增益越高,但实际上超过四、五个引向器之后,这种“好处”增加就不太明显了,而体积大、自重增加、对材料强度要求提高、成本加大等问题却渐突出。
通常情况下有一副五单元八木(即有三个引向器,一个反射器和一个有源振子)就够用了。
因此,我们选用了一个比较合适的参数范围,其参数如下:
其工作频率为
f=300MHz;
1,参数的选择:
λ=c/f=1m;
2lref=λ,2ldri=λ,2l1=2l2=2l3=2l4=λ;
Ddri=λ,d1=d2=d3=0,30λ,dref=λ;
振子直径2a=λ。
2,设计要求:
利用HFS10仿真软件对此组数据进行仿真,并分析其远辐射场特性以及S曲线,并绘制其方向图。
四、八木天线的HFSS10仿真
1,建立模型:
模型细节:
八木天线实物仿真
2,确认设计:
确认设计
3、S参数(反射参数):
4、2D辐射远区场方向图
(1)phi=0deg时:
(2)phi=90deg时:
(3)phi=180deg时:
5、3D Polar:
五、仿真结果分析
可知,天线工作的谐振频率在550MHz附近,与实际设计要求f=300MHz有一定的偏差。
在实验中已知振子直径2a=。
为了实现八木天线与同轴线之间的阻抗匹配。
通过添加了附加平衡段平衡器balun来实现阻抗匹配。
在以上工程中balun的半径r=,长度l=。
六、实验中的问题:
1、建模出错:
第一次建模时未能正确画出让Arm_2与Balun连接的L1与L2。
让我在空欢喜的等待了2小时的,建模的结果当然也是不符合要求。
其反射系数曲线和2D辐射远场方向图如下:(虽然在425MHz时,衰减到了10dB以下,但是由于其工作频带过窄,不能正常工作,不符合要
(2)修改模型以后(未修改U2半径)。
反射系数曲线图如下:(不符合要求)
七、心得体会
当初选择八木天线作为自己的课设题目时,以为工作量再大,那又能大到哪里去。
结果,在实验的过程中,也体会到了做八木天线的难度。
建模其实没什么难度,难的是在每次修改平衡器Balun的半径r以后,一运行就得等上3小时左右。
而且修改半径以后也不能确定结果是否符合要求。
不过,在不断地修改与尝试过程中,我对八木天线和仿真软件HFSS也有了更多的认识,比如总结了一下一些常用快捷键,如:
Ctrl+D:最佳角度观看模型;Shift+鼠标:水平移动模型;Alt+鼠标:旋转模型;
Shift+Alt+鼠标:放大缩小模型;Alt+双击坐标轴:平视图。
还有在查阅有关八木天线的相关资料时,也是出乎意料,网上的资源简直非常少,而且收费的居多(在我的查阅范围里)。
可能网上八木天线的知识是很多的。
但在我的查询中,至少让我体会到,天线是难学的学科。